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ABSTRACT 
 

Finite Element Method (FEM) is an established numerical solution technique for engineering problems in various 

fields. Mesh free (MF) methods are among the breed of numerical analysis technique that are being vigorously 

developed to avoid the drawbacks that traditional methods like Finite Element method (FEM) possess. The Element 

Free Galerkin (EFG) method is a meshless method in which only a set of nodes and a description of model‟s 

boundary are required to generate the discrete equations.The aim of this paper is to find optimum value of the 

dimensionless size of support domain, (dmax) for different weight function and nodal distribution. The EFG method 

is applied to one dimensional structural problem of a bar and results obtained using MATLAB program A 

comparison of finite element solution has been also performed to compare the accuracy of the solutions. 
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I. INTRODUCTION 

 

The development of the finite element method (FEM) in 

the 1950s was one of the most important advances in the 

field of numerical methods. The FEM is a robust and 

thoroughly developed method, and hence it is widely 

used in engineering fields due to its versatility for 

complex geometry and flexibility for many types of 

linear and non-linear problems. This mesh based 

numerical methods (FEM, FDM, CFD etc.) despite of 

great success; suffer from difficulties in some aspects, 

which limit their applications in many complex 

problems such as crack propagation, problems with 

phase change, large-strain deformations, etc. [1]  

 

In recent years, meshless methods have been developed 

as alternative numerical approaches in efforts to 

eliminate known drawbacks of the finite element method 

(FEM). The main objective in developing meshless 

methods was to eliminate, or at least reduce, the 

difficulty of meshing and remeshing of complex 

structural elements. The nature of the various 

approximation functions employed by meshless methods 

allows the descretization or redescretization of problem 

domains by simply adding or deleting nodes where 

desired. Nodal connectivity to form an element as in 

FEM method is not needed, only nodal coordinates and 

their domain of influence (dmax) are necessary to 

discretize the problem domain. Meshless methods may 

also reduce other problems associated with the FEM, 

such as solution degradation due to locking and severe 

element distortion [1]. There are several meshless 

methods under current development, including the 

Element-Free Galerkin (EFG) method proposed by 

Belytschko, the Reproducing Kernel Particle Method 

(RKPM) proposed by Liu, Smooth Particle 

Hydrodynamics (SPH) method proposed by Gingold and 

Monaghan, Meshless Local Petrov-Galerkin (MLPG) 

method proposed by Atluri, and some other methods [5]. 

The well-establish EFG method use shape functions 

which are derived from moving least square (MLS) 

approximation. 

 

II. METHODS AND MATERIAL 
 

2. Element Free Galerkin Method (EFG): 

 

The Element Free Galerkin (EFG) method proposed by 

Belytschko et al (1994) is based on the diffuse element 

method developed by Nayroles et al (1992). In EFG 

method only a set of points (node) and the description of 
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the model of boundaries are necessary to generate the 

discrete equations. 

 

 

 (a) FEM: nodes and     (b) MF: only nodes 

       elements 

Figure 1: Modelling in the FEM and MF 

 

The Boundary representation in meshfree methods is 

done only by the arbitrary distribution of the nodes, 

which may or may not be uniform. Fig. 1 shows the 

boundary representation for meshfree methods only by 

the nodes and for FEM using the nodes & elements. The 

field variables of interest are specified on these nodes. 

 

 In EFG we use the moving least square (MLS) method 

for constructing the shape functions. Moving least 

square method was first proposed by Lancaster and 

Salkauskas (1981), as an interpolation method. It was 

used in element free methods by Belytschko et al. 

(1994), with use of Lagrange multiplier to invoke 

essential boundary. [2, 3] 

 

3. Support Domains 

 

Because there is no connectivity between the nodes, you 

have to decide which nodes ix  should influence on the 

approximation for a point x. It is not computationally 

possible to use all the nodes in Ω, therefore we introduce 

a very important expression called support domain 

(Domain of influence). A local support domain of a 

point x determines the number of nodes to be used to 

support or approximate the function value at x. The 

support domain can have different shapes and its 

dimension and shape can be different for different points 

of interest x, as shown in Figure 2 they are usually 

circular or rectangular.  

 

 
X: point of interest   0: field node 

 

Figure 2. Support Domain 

  

The dimensions of domain of influence affects the 

accuracy of the interpolation at the point of interest, 

therefore the selection of suitable dimension of support 

domain is very important. To define the support domain 

for a point x, the dimension of the support domain ds is 

determined by 

maxs cd d d  

 

Where, dmax is the dimensionless size of the support 

domain, dc is the characteristic length that relates to the 

nodal spacing near the point x. If the nodes are 

uniformly distributed dc is simply the distance between 

the two neighbouring nodes. 

 

4. System of Equation: 

 

Consider the descretization of the domain 0 < x < 1 

given by a set of evenly spaced nodes. Each node has a 

corresponding „nodal parameter‟ or ui associated with it, 

which is a parameter governing the function u(x) at that 

point. For the displacement function u(x) of a field 

variable, the approximated value û (x) can be 

represented as [2]. 

 

Where, P represents the polynomial basis function, m is 

the number of polynomial coefficients and a(x) is the 

unknown coefficient matrix. 

 

For 1-D problems, P
T
 (x) = [1, x], Linear m = 2 and 

                                

0 1 2( ) [ ( ) ( ) ( ) ,... ( )]T

ma x a x a x a x a x
 

In matrix form the shape function Φ is obtained as, 
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Using shape function, we get a new formulation of the 

displacement field, 

    

 
So the displacement in a point x are approximated as a 

sum of shape functions multiplied with respectively 

displacement. 

 

The discrete equation system is obtained by imposition 

of boundary conditions using Lagrange‟s multipliers in a 

weak form of a problem of linear elasticity and by 

making use of the approximation equations for field 

variables [2] as follows: 

 

0T

K G u f

G q
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
  

                   

        k kq u    

 

In which, K is the stiffness matrix, G is the boundary 

condition matrix, u is the nodal displacements vector, λ 

is the Lagrange multipliers, f is the force vector and q is 

a boundary condition vector, and E  is Young's modulus. 

 

4.1 Weight Functions 

 

The weights functions like cubic weight function, 

quartic weight, exponential weight etc, perform two 

actions, one as a medium of imparting smoothness or 

desired continuity to the approximation and other one, 

more important, is the establishment of the local nature 

of the approximation. The weight functions chosen for 

construction of shape function are as follows: 

 
 

Where, s = |x-xI|/dI and, dI is the radius of influence 

domain or radius of support domain of the node. 

 

5. Numerical Examples 

 

The Element Free Galerkin method is used for 

obtaining the displacement parameter at the end of 

the bar by applying the developed MATLAB code. 

 

 

 
 

Figure 3. 1-D bars with node and integration cell 
 

The displacement of the bar is fixed at the left end, and 

the right end is traction free. The bar has a constant cross 

sectional area of unit value, and modulus of elasticity E. 

The integration cells are constructed for the one-point 

gauss-quadrature integration of the nodal discrete 

equations. The number of integration cells is equal to 

(Number of nodes -1).   

 

III. RESULTS AND DISCUSSION 
 

Various results for optimum value of domain of 

influence parameter for end node for different weight 

function and nodal distribution along the bar are plotted 

using one point gauss quadrature integration method in 

MATLAB platform. 
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Table 1: dmax for irregular cubic spline  

 

Sr. No. 1 2 3 4 5 6 

dmax 2 2.1 2.2 2.3 2.4 2.5 

efg 0.3348 0.3342 0.3338 0.3338 0.3343 0.3358 

exact 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 

 

Figure 4: dmax for irregular cubic spline 

Table 2 : dmax for regular cubic spline 

 

Sr. No. 1 2 3 4 5 6 7 8 

dmax 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 

efg 0.3324 0.3324 0.3324 0.3325 0.3327 0.333 0.3336 0.3345 

exact 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 

 

Figure 5 : dmax for regular cubic spline 
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Table 3 : dmax for irregular exponential 

 

Sr. No. 1 2 3 4 5 6 7 8 

dmax 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 

efg 0.3355 0.3352 0.3349 0.3347 0.3347 0.3348 0.3351 0.3357 

exact 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 

 

Figure 6: dmax for irregular exponential 

Table 4: dmax for regular exponential 

 

Sr. 
No. 1 2 3 4 5 6 7 8 9 10 11 

dmax 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6 

efg 0.3324 0.3324 0.3323 0.3323 0.3323 0.3323 0.3324 0.3325 0.3327 0.333 0.3334 

exact 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 

 

 

Figure 7: dmax for regular exponential 
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Table 5: dmax for irregular quartic spline 

 

Sr. No. 1 2 3 4 5 6 

dmax 1.8 1.9 2 2.1 2.2 2.3 

efg 0.3363 0.3353 0.3342 0.3339 0.3345 0.3368 

exact 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 

 

 

 

Figure 8: dmax for irregular quartic spline 

Table 6: dmax for regular quartic spline 

 

Sr. No. 1 2 3 4 5 6 

dmax 2 2.1 2.2 2.3 2.4 2.5 

efg 0.3324 0.3325 0.3328 0.3335 0.3345 0.3358 

exact 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 

 

Figure 9: dmax for regular quartic spline 
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IV. CONCLUSION 

 
The effect of support domain dmax for 1D problem was 

studied and the optimum values for various weight 

functions and regular – irregular nodal distribution were 

obtained as follows. 

 

For irregular cubic spline 2.25, regular cubic spline 2.55, 

irregular exponential 3.05, regular exponential 3.5, 

irregular quartic spline 2.09 and for regular quartic 

spline it was found 2.27. 

 

From variation of solution for displacement parameter at 

the end of the bar with respect to dmax, it is clear that 

there is an optimum value for the dmax where we can get 

the best approximation to the exact solution. 
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