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ABSTRACT 
 
In this paper, we study the existence of nonoscillatory solution of first-order neutral difference equations with delay 

and advance terms. Some sufficient conditions for the existence of positive solutions are obtained. Banach 

contraction principle is used in the proofs of the results. 
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I. INTRODUCTION 

 

In this paper, we consider a first-order neutral difference 

equation 

 

         

       

1 1 2 2

1 1 2 2 0

x n P n x n P n x n

Q n x n Q n x n

 

 

      

    
          

(1.1)

 
 

where  1 2 0, [ , ),P P C t R  ,  1 2 0, [ , ),[0, )Q Q C t   , 

1 2, 0    and  
1 2, 0   . 

 

We present some new criteria for the existence of non-

oscillatory solutions of the First Order Neutral 

Difference Equation (1.1). Recently, the existence of 

nonoscillatory solutions of neutral difference equations 

has been investigated by many authors, see [3, 6, 7, 10, 

11] and the references contained therein. There have 

been several books on the subject of qualitative 

properties of neutral difference equations [1, 2, 5]. 

 

Let  1 1max ,m   . A solution of the difference 

equation (1.1) is called eventually positive if there exists 

a positive integer 0n  such that   0x n  for  0n N n . 

If there exists a positive integer 0n  such that   0x n   

for  0n N n , then (1.1) is called eventually negative. 

 

The solution of the difference equation (1.1) is said to be 

oscillatory if it is neither eventually positive nor 

eventually negative. Otherwise, it is called 

nonoscillatory. 

 

This paper deals with the discrete version of the 

equation discussed in [9]. The following important 

theorem is needed in the proof of main results. 

 

Theorem 1.1 (Banach’s Contraction Mapping 

Principle). A contraction mapping on a complete metric 

space has exactly one fixed point. 
 

II. EXISTENCE OF POSITIVE BOUNDED 

SOLUTIONS 

We shall show that an operator S  satisfies the 

conditions for the contraction mapping principle by 

considering different cases for the ranges of the 

coefficients  1P n and  2P n . 

Theorem 2.1. Assume that  1 10 1P n p   ,  

 2 2 10 1P n p p     and  

   
0 0

1 2,
s n s n

Q s Q s
 

 

      (2.1) 

Then (1.1) has a bounded non-oscillatory solution. 

 

Proof. Because of (2.1) we can choose 
1 0n n , 
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 1 0 1 1max ,n n     (2.2) 

Sufficiently large such that  

  2
1 1

2

, ,
s n

M
Q s n n

M






   (2.3) 

 
 1 2 2 1

2 1

2

, .
s n

p p M M
Q s n n

M





  
   (2.4) 

where
1M and 

2M  are positive constants such that 

 1 2 2 1 2p p M M M   and

  1 2 2 1 2,p p M M M   . 

Let 
0nl
 be the set of all real sequence with the norm 

 supx x n  . Then 
0nl
  is a Banach space. We 

define a closed, bounded and convex subset   of 
0nl
 as 

follows 

 
0 1 2 0: ( ) , .nx l M x n M n n      

Define a mapping 
0

: nS l  as follows 

  

       

       

  

1 1 2 2

1 1 2 2 1

1 0 1

, ,

, .

s n

P n x n P n x n

Sx n Q s x s Q s x s n n

Sx n n n n

  

 




    



         

  

  

Obviously Sx  is continuous. For 
1n n and x , from 

(2.3) and (2.4) respectively, it follows that 

      

 

  

1 1

2 1

2
2

2

2

s n

s n

Sx n Q s x s

M Q s

M
M

M

Sx n M

 














  

 

 
   

 






 

 

Also we have 

              

 

 

  

1 1 2 2 2 2

1 2 2 2 2 2

1 2 2 1

1 2 2 2 2

2

1

s n

s n

Sx n P n x n P n x n Q s x s

p M p M M Q s

p p M M
p M p M M

M

Sx n M

   














      

   

    
     

 






 

 

Hence 

  1 2M Sx n M  for 
1n n . 

Thus we have proved that   Sx n   for any x . 

This means that S . To apply contraction mapping 

principle, we shall show S  is a contraction mapping on 

 . Thus 
1 2,x x  and 

1n n , 

     

       

       

       

       

     

     

     

     

1 2

1 1 1 2 1 2

1 1 1 2 1 2

1 2 1 2 2 2

1 2 1 2 2 2

1 1 1 2 1

2 1 2 2 2

1 1 1 2 1

2 1 2 2 2

1 1 2

s n

s n

s n

s n

Sx n Sx n

P n x n P n x n

Q s x s Q s x s

P n x n P n x n

Q s x s Q s x s

P n x n x n

P n x n x n

Q s x s x s

Q s x s x s

p x x

  

 

  

 

 

 

 

 



















    

      

    


       



   

   

   

   

 









 

 

   

 

 

2 1 2 1 1 2

2 1 2

1 2 1 2 1 2

1 2 2 12
1 2

2 2

1 2

2 1
1 2

2

1 1 2

s n

s n

s n s n

p x x Q s x x

Q s x x

p p Q s Q s x x

p p M MM
p p

M M

x x

M M
x x

M

x x













 

 

   

 

 
     
 

    
    
 




 

 





 

 

where  1
1

2

1
M

M
   . This implies that 

     1 2 1 1 2 .Sx n Sx n x x    

Thus we have proved that S  is a contraction mapping on 

 . In fact 
1 2,x x   and 

1n n  we have 

         1 2 1 1 2 1 1 1 2( ) .Sx n Sx n p n x n x n x x          

Since 
10 1  , we conclude that S  is a contraction 

mapping on  . Thus S  has a unique fixed point which 

is a positive and bounded solution of (1.1). This 

completes the proof. 

 

 

 



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 

 

 
372 

Theorem 2.2. Assume that  1 10 1P n p   ,  

 1 2 21 0p p P n     and (2.1) hold, then (1.1) has a 

bounded non-oscillatory solution. 

Proof. Because of (2.1) we can choose 
1 0n n  

sufficiently large satisfying (2.2) such that 

 
 2 2

1 1

2

1
, ,

s n

p N
Q s n n

N





 
   (2.5) 

  1 2 1
2 1

2

, .
s n

p N N
Q s n n

N





 
   (2.6) 

where
1N and 

2N  are positive constants such that 

 1 1 2 2 21N p N p N   and   1 1 2 2 2, 1N p N p N   . 

Let 
0nl
 be the set of all real sequence with the norm 

 supx x n  . Then 
0nl
  is a Banach space. We 

define a closed, bounded and convex subset   of 
0nl
 as 

follows 

 
0 1 2 0: ( ) , .nx l N x n N n n      

Define a mapping 
0

: nS l  as follows 

  

       

       

  

1 1 2 2

1 1 2 2 1

1 0 1

, ,

, .

s n

P n x n P n x n

Sx n Q s x s Q s x s n n

Sx n n n n

  

 




   



        

  


 

Obviously Sx  is continuous. For 
1n n and x , from 

(2.5) and (2.6) respectively, it follows that 

          

 

 

  

2 2 1 1

2 2 2 1

2 2

2 2 2

2

2

1

s n

s n

Sx n P n x n Q s x s

p N N Q s

p N
p N N

N

Sx n N

  














    

  

   
    

 






 

 

Also 

          

 

  

1 1 2 2

1 2 2 2

1 2 1
1 2 2

2

1

s n

s n

Sx n P n x n Q s x s

p N N Q s

p N N
p N N

N

Sx n N

  














    

  

  
    

 






 

 

Hence 

  1 2N Sx n N  for 
1n n . 

Thus we have proved that   Sx n   for any x . 

This means that S . To apply contraction mapping 

principle, we shall show S  is a contraction mapping on 

 . Thus 
1 2,x x  and 

1n n , 

     

     

     

     

     

 

 

   

 

1 2

1 1 1 2 1

2 1 2 2 2

1 1 1 2 1

2 1 2 2 2

1 1 2 2 1 2 1 1 2

2 1 2

1 2 1 2 1 2

2 2 1 2 1
1 2

2 2

1

s n

s n

s n

s n

s n s n

Sx n Sx n

P n x n x n

P n x n x n

Q s x s x s

Q s x s x s

p x x p x x Q s x x

Q s x x

p p Q s Q s x x

p N p N N
p p

N N

 

 

 

 

 

















 

 



   

   

   

   

     

 

 
     
 

    
   
 









 

 

1 2

2 1
1 2

2

2 1 2

x x

N N
x x

N

x x






 

 

 

where 1
2

2

1
N

N
   . This implies that 

     1 2 2 1 2 .Sx n Sx n x x  
 

Thus we have proved that S  is a contraction mapping on 

 . In fact 
1 2,x x   and 

1n n  we have 

         1 2 1 1 2 1 2 1 2( ) .Sx n Sx n p n x n x n x x          

Since 
20 1  , S  is a contraction mapping on  . Thus 

S  has a unique fixed point which is a positive and 

bounded solution of (1.1). This completes the proof. 

Theorem 2.3. Assume that  
01 1 11 p P n p     , 

  2 2 10 1P n p p     and (2.1) hold, then (1.1) has a 

bounded non-oscillatory solution. 

Proof. In view of (2.1), we can choose 
1 0n n , 

1 1 0 1n n     (2.7) 

Sufficiently large such that  
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  1 4
1 1

4

, ,
s n

p M
Q s n n

M






   (2.8) 

 
 

01 3 2 4

2 1

4

1
, .

s n

p M p M
Q s n n

M





  
   (2.9) 

where
3M and 

4M  are positive constants such that 

 
01 3 2 4 1 41p M p M p M   and 

  
01 3 2 4 1 41 ,p M p M p M   . 

Let 
0nl
 be the set of all real sequence with the norm 

 supx x n  . Then 
0nl
  is a Banach space. We 

define a closed, bounded and convex subset   of 
0nl
 as 

follows 

 
0 3 4 0: ( ) , .nx l M x n M n n      

Define a mapping 
0

: nS l  as follows 

  

 
     

        

  
1

1 2 1 1 2

1 1

1 1 2 2 1

1 0 1

1

, ,

, .

s n

x n P n x n
P n

Sx n Q s x s Q s x s n n

Sx n n n n



    


 


 


      




         

  




 

Obviously Sx  is continuous. For 
1n n and x , from 

(2.8) and (2.9) respectively, it follows that 

  
 

   

 

  

1

1 1

1 1

4 1

1

1 4
4

1 4

4

1

1

1

s n

s n

Sx n Q s x s
P n

M Q s
p

p M
M

p M

Sx n M



 









 





 
      

 
  

 

  
    

  






 

 

We have  

  
 

     

   

 
 

 
 

  

1

0

0

1 2 1 1 2

1 1

2 2

4 2 4 4 2

1 1

1 3 2 4

2 4 4

1 4

3

1

1

11
1

s n

s n

Sx n x n P n x n
P n

Q s x s

M p M M Q s
P n

p M p M
p M M

p M

Sx n M



    












 





      


 

 
    

  

     
       

  







 

 

Hence 

  3 4M Sx n M  for 
1n n . 

Thus we have proved that   Sx n   for any x . 

This means that S . To apply contraction mapping 

principle, we shall show S  is a contraction mapping on 

 . Thus 
1 2,x x  and 

1n n , 

     

 
   

     

     

      

 

 

   

1

1

1 2

1 1 2 1

1 1

2 1 1 1 2 2 1 2

1 1 1 2 1

2 1 2 2 2

1 2 2 1 2 1 1 2

1

2 1 2

2 1 2 1 2

1

1

1

1

1
1

1
1

s n

s n

s n

s n

s n s n

Sx n Sx n

x n x n
P n

P n x n x n

Q s x s x s

Q s x s x s

x x p x x Q s x x
p

Q s x x

p Q s Q s x x
p

p





 


    

 

 



 



 









 

 



   


      

   

   


     




  



 
     

 

 









 

 
0

0

1 3 2 41 4
2

4 4

1 2

1 4 1 3

1 2

1 4

3 1 2

1

1

p M p Mp M
p

M M

x x

p M p M
x x

p M

x x





    
   

 



 
  

 

 

 

where 01 3

3

1 4

1
p M

p M
   . This implies that 

     1 2 3 1 2Sx n Sx n x x   . 

Thus we have proved that S  is a contraction mapping on 

 . In fact 
1 2,x x   and 

1n n  we have 

         1 2 1 1 2 1 3 1 2( ) .Sx n Sx n p n x n x n x x          

Since 
30 1  ,we conclude that S  is a contraction 

mapping on  . Thus S  has a unique fixed point which 

is a positive and bounded solution of (1.1). This 

completes the proof. 

 

Theorem 2.4. Assume that  
01 1 11 p P n p     , 

 1 2 21 0p p P n     and (2.1) hold, then (1.1) has a 

bounded non-oscillatory solution. 

Proof. In view of (2.1), we can choose 
1 0n n  

sufficiently large satisfying (2.7) such that  
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 
 1 2 4

1 1

4

, ,
s n

p p N
Q s n n

N





 
   (2.10) 

  01 3 4

2 1

4

, .
s n

p N N
Q s n n

N





 
   (2.11) 

where
3N and 

4N  are positive constants such that 

 
01 3 4 1 2 4p N N p p N   and 

  
01 3 4 1 2 4,p N N p p N   . 

Let 
0nl
 be the set of all real sequence with the norm 

 supx x n  . Then 
0nl
  is a Banach space. We 

define a closed, bounded and convex subset   of  

0nl
 as follows 

 
0 3 4 0: ( ) , .nx l N x n N n n      

Define a mapping 
0

: nS l  as follows 

  

 
     

        

  
1

1 2 1 1 2

1 1

1 1 2 2 1

1 0 1

1

, ,

, .

s n

x n P n x n
P n

Sx n Q s x s Q s x s n n

Sx n n n n



    


 


 


      




         

  




 

Obviously Sx  is continuous. For 
1n n and x , from 

(2.10) and (2.11) respectively, it follows that 

  
 

   

   

 

 

  

1

2 1 1 2

1 1

1 1

2 4 4 1

1

1 2 4

2 4 4

1 4

4

1

1

1

s n

s n

Sx n P n x n
P n

Q s x s

p N N Q s
p

p p N
p N N

p N

Sx n N



   











 





    


 

 
   

 

    
     

  





  

 

Furthermore 

  
 

 

   

 

  

1

0

0

0

1

1 1

2 2

4 4 2

1

1 3 4

4 4

1 4

3

1

1

1

s n

s n

Sx n x n
P n

Q s x s

N N Q s
p

p N N
N N

p N

Sx n N



 











 





  


 

 
   

 

   
     

  





  

 

Hence 

  3 4N Sx n N  for 
1n n . 

Thus we have proved that   Sx n   for any x . 

This means that S . To apply contraction mapping 

principle, we shall show S  is a contraction mapping on 

 . Thus 
1 2,x x  and 

1n n , 

     

  

  

   

 
0

0

1 2

1 2 2 1 2 1 1 2

1

2 1 2

2 1 2 1 2

1

1 3 41 2 4

2

1 4 4

1 2

1 4 1 3

1 2

1 4

4 1 2

1

1
1

1
1

1

s n

s n

s n s n

Sx n Sx n

x x p x x Q s x x
p

Q s x x

p Q s Q s x x
p

p N Np p N
p

p N N

x x

p N p N
x x

p N

x x













 

 



     

 

 
     

 

    
    

 



 
  

 

 





 
 

where  01 3

4

1 4

1
p N

p N
   . This implies that 

     1 2 4 1 2Sx n Sx n x x   . 

Thus we have proved that S  is a contraction mapping on 

 . In fact 
1 2,x x   and 

1n n  we have 

         1 2 1 1 2 1 4 1 2( ) .Sx n Sx n p n x n x n x x          

Since 
40 1  , S  is a contraction mapping on  . Thus 

S  has a unique fixed point which is a positive and 

bounded solution of (1.1). This completes the proof. 
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Theorem 2.5. Assume that  1 11 0p P n    ,  

 2 2 10 1P n p p     and (2.1) hold, then (1.1) has a 

bounded non-oscillatory solution. 

Proof. From (2.1), we can choose 
1 0n n  sufficiently 

large satisfying (2.2) such that 

 

 
 1 6

1 1

6

1
, ,

s n

p M
Q s n n

M





 
   (2.12) 

  2 6 5
2 1

6

, .
s n

p M M
Q s n n

M





 
   (2.13) 

where
5M and 

6M  are positive constants such that 

 5 2 6 1 61M p M p M   and 

  5 2 6 1 6, 1M p M p M   . 

Let 
0nl
 be the set of all real sequence with the norm 

 supx x n  . Then 
0nl
  is a Banach space. We 

define a closed, bounded and convex subset   of 
0nl
 as 

follows 

 
0 5 6 0: ( ) , .nx l M x n M n n      

Define a mapping 
0

: nS l  as follows 

  

       

       

  

1 1 2 2

1 1 2 2 1

1 0 1

, ,

, .

s n

P n x n P n x n

Sx n Q s x s Q s x s n n

Sx n n n n

  

 




    



         

  



 

Obviously Sx  is continuous. For 
1n n and x , 

from (2.12) and (2.13) respectively, it follows that 

          

 

 

  

1 1 1 1

1 6 6 1

1 6

1 6 6

6

6

1

s n

s n

Sx n P n x n Q s x s

p M M Q s

p M
p M M

M

Sx n M

  














    

  

   
    

 






 

 

Also we have 

 

          

 

  

2 2 2 2

2 6 6 2

2 6 5
2 6 6

6

5

s n

s n

Sx n P n x n Q s x s

p M M Q s

p M M
p M M

M

Sx n M

  














    

  

  
    

 






 

 

Hence 

  5 6M Sx n M  for 
1n n . 

Thus we have proved that   Sx n   for any x . 

This means that S . To apply contraction mapping 

principle, it remains to show that S  is a contraction 

mapping on  . Thus 
1 2,x x   and   

1n n , 

     

 

 

   

1 2

1 1 2 2 1 2 1 1 2

2 1 2

1 2 1 2 1 2

s n

s n

s n s n

Sx n Sx n

p x x p x x Q s x x

Q s x x

p p Q s Q s x x









 

 



      

 

 
      
 





 

 

 

 

1 6 2 6 5
1 2

6 6

1 2

6 5
1 2

6

5 1 2

1 p M p M M
p p

M M

x x

M M
x x

M

x x

 



    
     
 




 

 

 

where  5
5

6

1
M

M
   . This implies that 

     1 2 5 1 2 .Sx n Sx n x x    

Thus we have proved that S  is a contraction mapping on 

 . In fact 
1 2,x x   and 

1n n  we have 

         1 2 1 1 2 1 5 1 2( ) .Sx n Sx n p n x n x n x x        
 

Since 
50 1  , we conclude that S  is a contraction 

mapping on  . Thus S  has a unique fixed point which 

is a positive and bounded solution of (1.1). This 

completes the proof. 
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Theorem 2.6. Assume that  1 11 0p P n    ,  

 1 2 21 0p p P n      and (2.1) hold, then (1.1) has a 

bounded non-oscillatory solution. 

Proof. From (2.1), we can choose 
1 0n n  sufficiently 

large satisfying (2.2) such that 

 
 1 2 6

1 1

6

1
, ,

s n

p p N
Q s n n

N





  
   (2.14) 

  5
2 1

6

,
s n

N
Q s n n

N






   (2.15) 

where
5N and 

6N  are positive constants such that 

 5 1 2 61N p p N   and   5 1 2 6, 1N p p N   . 

Let 
0nl
 be the set of all real sequence with the norm 

 supx x n  . Then 
0nl
  is a Banach space. We 

define a closed, bounded and convex subset   of 
0nl
 as 

follows 

 
0 5 6 0: ( ) , .nx l N x n N n n      

Define a mapping 
0

: nS l  as follows 

  

       

       

  

1 1 2 2

1 1 2 2 1

1 0 1

, ,

, .

s n

P n x n P n x n

Sx n Q s x s Q s x s n n

Sx n n n n

  

 




    



         

  

  

Obviously Sx  is continuous. For 
1n n and x , from 

(2.14) and (2.15) respectively, it follows that 

          

   

 

 

  

1 1 2 2

1 1

1 6 2 6 6 1

1 6 2 6

1 2 6

6

6

6

1

s n

s n

Sx n P n x n P n x n

Q s x s

p N p N N Q s

p N p N

p p N
N

N

Sx n N

  

















    

 

   

  

   
  

 






 

 

Furthermore 

      

 

  

2 2

6 2

5
6

6

5

s n

s n

Sx n Q s x s

N Q s

N
N

N

Sx n N

 














  

 

 
   

 






 

Hence 

  5 6N Sx n N  for 
1n n . 

Thus we have proved that   Sx n   for any x . 

This means that S . To apply contraction mapping 

principle, we shall show S  is a contraction  

mapping on  . Thus 
1 2,x x  and 

1n n , 

     

 

 

   

 

 

1 2

1 1 2 2 1 2 1 1 2

2 1 2

1 2 1 2 1 2

1 2 6 5
1 2

6 6

1 2

6 5
1 2

6

6 1 2

1

s n

s n

s n s n

Sx n Sx n

p x x p x x Q s x x

Q s x x

p p Q s Q s x x

p p N N
p p

N N

x x

N N
x x

N

x x

 











 

 



      

 

 
      
 

    
     
 




 

 





 
 

where  5
6

6

1
N

N
   . This implies that 

     1 2 6 1 2 .Sx n Sx n x x    

Thus we have proved that S  is a contraction mapping on 

 . In fact 
1 2,x x   and 

1n n  we have 

         1 2 1 1 2 1 6 1 2( ) .Sx n Sx n p n x n x n x x          

Since 
60 1  , S  is a contraction mapping on  . Thus 

S  has a unique fixed point which is a positive and 

bounded solution of (1.1). This completes the proof. 

 

Theorem 2.7. Assume that  
01 1 1 1p P n p      , 

 2 2 10 1P n p p      and (2.1) hold, then (1.1) has a 

bounded non-oscillatory solution. 

Proof. In view of (2.1), we can choose 

1 0n n sufficiently large satisfying (2.7) such that  

  01 7

1 1

8

,
s n

p M
Q s n n

M






   (2.16) 

 
 1 2 8

2 1

8

1
,

s n

p p M
Q s n n

M





   
   (2.17) 

where
7M and 

8M  are positive constants such that 

 
01 7 1 2 81p M p p M     and 

  
01 7 1 2 8, 1p M p p M     . 
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Let 
0nl
 be the set of all real sequence with the norm 

 supx x n  . Then 
0nl
  is a Banach space. We 

define a closed, bounded and convex subset   of 
0nl
 as 

follows 

 
0 7 8 0: ( ) , .nx l M x n M n n      

Define a mapping 
0

: nS l  as follows 

  

 
     

        

  
1

1 2 1 1 2

1 1

1 1 2 2 1

1 0 1

1

, ,

, .

s n

x n P n x n
P n

Sx n Q s x s Q s x s n n

Sx n n n n



    


 


 


      




         

  




 

Obviously Sx  is continuous. For 
1n n and x , from 

(2.17) and (2.16) respectively, it follows that 

  
 

 

   

   

 

 

  

1

1

1 1

2 1 1 2

1 1

8 2 8 8 2

1

8 2 8

1

1 2 8

8

8

8

1

1

1
(

1
)

s n

s n

Sx n x n
P n

P n x n

Q s x s

M p M M Q s
p

M p M
p

p p M
M

M

Sx n M



 


  











 






  



   

 

  
    

 


  

     
  

 





  

Also 

  
 

   

 

  

1

0

0

0

1 1

1 1

8 1

1

1 7

8

1 8

7

1

1

1

s n

s n

Sx n Q s x s
P n

M Q s
p

p M
M

p M

Sx n M



 









 





 
      

  
  

 

  
    

  






 

 

Hence  

  7 8M Sx n M  for 
1n n . 

Hence   Sx n   for any x . 

This means that S . In order to apply contraction 

mapping principle, we shall show S  is a contraction 

mapping on  . Thus if 
1 2,x x  and 

1n n , 

     

   

 
0

0

1 2

2 1 2 1 2

1

1 7 1 2 8

2

1 8 8

1 2

1 7 1 8

1 2

1 8

7 1 2

1
1

11
1

1

s n s n

Sx n Sx n

p Q s Q s x x
p

p M p p M
p

p M M

x x

p M p M
x x

p M

x x

 



 

 



  
     

 

     
    

 



 
  

 

 

 

 

where  01 7

7

1 8

1
p M

p M
   . This implies that 

     1 2 7 1 2 .Sx n Sx n x x    

Thus we have proved that S  is a contraction mapping on 

 . In fact 
1 2,x x   and 

1n n  we have 

         1 2 1 1 2 1 7 1 2( ) .Sx n Sx n p n x n x n x x          

Since 
70 1  , S  is a contraction mapping on  . Thus 

S  has a unique fixed point which is a positive and 

bounded solution of (1.1). This completes the proof. 

 

Theorem 2.8. Assume that  
01 1 1 1p P n p      , 

 1 2 21 0p p P n     and (2.1) hold, then (1.1) has a 

bounded non-oscillatory solution. 

Proof. In view of (2.1), we can choose 
1 0n n  

sufficiently large satisfying (2.7) such that 

  01 7 2 8

1 1

8

, ,
s n

p N p N
Q s n n

N





 
   (2.18) 

 
 1 8

2 1

8

1
, .

s n

p N
Q s n n

N





  
   (2.19) 

where
7N and 

8N  are positive constants such that 

 
01 7 2 8 1 81p N p N p N     and 

  
01 7 2 8 1 8, 1p N p N p N     . 

Let 
0nl
 be the set of all real sequence with the norm 

 supx x n  . Then 
0nl
  is a Banach space. We 

define a closed, bounded and convex subset   of 
0nl
 as 

follows 

 
0 7 8 0: ( ) , .nx l N x n N n n      
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Define a mapping 
0

: nS l  as follows 

  

 
     

        

  
1

1 2 1 1 2

1 1

1 1 2 2 1

1 0 1

1

, ,

, .

s n

x n P n x n
P n

Sx n Q s x s Q s x s n n

Sx n n n n



    


 


 


      




         

  




 

Obviously Sx  is continuous. For 
1n n and x , from 

(2.19) and (2.18) respectively, it follows that 

  
 

 

   

 

 

  

1

1

1 1

2 2

8 8 2

1

1 8

8 8

1 8

8

1

1

11

s n

s n

Sx n x n
P n

Q s x s

N N Q s
p

p N
N N

p N

Sx n N



 











 






  



 

  
   

 

     
     

  





  

Furthermore 

  
 

   

   

 

1

0

2 1 1 2

1 1

1 1

2 8 8 1

1

1

1

s n

s n

Sx n P n x n
P n

Q s x s

p N N Q s
p


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







 






    



 

  
   

 





 

  

0

0

1 7 2 8

2 8 8

1 8

7

1 p N p N
p N N

p N

Sx n N



   

     
  



 

Hence 

  7 8N Sx n N  for 
1n n . 

Thus we have proved that   Sx n   for any x . 

This means that S . To apply contraction mapping 

principle, we shall show S  is a contraction mapping on 

 . Thus 
1 2,x x  and 

1n n , 

     

  

  

   

 
0

0

1 2

1 2 2 1 2 1 1 2

1

2 1 2

2 1 2 1 2

1

1 7 2 8 1 8

2

1 8 8

1 2

1 7 1 8

1 2

1 8

8 1 2

1

1
1

11
1

1

s n

s n

s n s n

Sx n Sx n

x x p x x Q s x x
p

Q s x x

p Q s Q s x x
p

p N p N p N
p

p N N

x x

p N p N
x x

p N

x x

 











 

 




     

 

  
     

 

     
    

 



 
  

 

 





 
 

where  01 7

8

1 8

1
p N

p N
   . This implies that 

     1 2 8 1 2 .Sx n Sx n x x    

Thus we have proved that S  is a contraction mapping on 

 . In fact 
1 2,x x   and 

1n n  we have 

         1 2 1 1 2 1 8 1 2( ) .Sx n Sx n p n x n x n x x          

Since 
80 1  , S  is a contraction mapping on  . Thus 

S  has a unique fixed point which is a positive and 

bounded solution of (1.1). This completes the proof. 
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