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ABSTRACT 
 

This paper presents an overview on applications of hybrid finite element method (FEM) to heat transfer analysis of 

skin tissue materials. Recent developments on the hybrid fundamental solution based FEM of heat transfer in skin 

tissues are described. Formulations for all cases are derived by means of modified variational functional and 

fundamental solutions. Generation of elemental stiffness equations from the modified variational principle is also 

discussed. Finally, a brief summary of the approach and potential research topics is provided. 
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I. INTRODUCTION 

 

Heat transfer in skin tissues and biomaterials has been 

widely investigated [1-4]. It should be mentioned that 

analytical solutions which are available only for a few 

problems with simple geometries and boundary 

conditions [5-17]. Therefore, development of efficient 

numerical methods is vital for solving engineering 

problems [18-24]. The first is the so-called hybrid 

Trefftz FEM  (or T-Trefftz method) [25, 26]. Unlike in 

the conventional FEM, the T-Trefftz method couples the 

advantages of conventional FEM [27-30] and BEM [31-

33]. In contrast to the standard FEM, the T-Trefftz 

method is based on a hybrid method which includes the 

use of an independent auxiliary inter-element frame field 

defined on each element boundary and an independent 

internal field chosen so as to a prior satisfy the 

homogeneous governing differential equations by means 

of a suitable truncated T-complete function set of 

homogeneous solutions. Since 1970s, T-Trefftz model 

has been considerably improved and has now become a 

highly efficient computational tool for the solution of 

complex boundary value problems. It has been applied 

to potential problems [4, 34-36], two-dimensional 

elastics [37, 38], elastoplasticity [39, 40], fracture 

mechanics [41-43], micromechanics analysis [44, 45], 

problem with holes [46, 47], heat conduction [48-50], 

thin plate bending [51-54], thick or moderately thick 

plates [55-59], three-dimensional problems [60], 

piezoelectric materials [61-65], and contact problems 

[66-68]. 

 

On the other hand, the hybrid FEM based on the 

fundamental solution (F-Trefftz method for short) was 

initiated in 2008 [26, 69] and has now become a very 

popular and powerful computational methods in 

mechanical engineering. The F-Trefftz method is 

significantly different from the T-Trefftz method 

discussed above. In this method, a linear combination of 

the fundamental solution at different points is used to 

approximate the field variable within the element. The 

independent frame field defined along the element 

boundary and the newly developed variational functional 

are employed to guarantee the inter-element continuity, 

generate the final stiffness equation and establish 

linkage between the boundary frame field and internal 

field in the element. This review will focus on the F-

Trefftz finite element method.  

 

The F-Trefftz finite element method, newly developed 

recently [26, 69], has gradually become popular in the 

field of mechanical and physical engineering since it is 

initiated in 2008 [26, 70, 71]. It has been applied to 

potential problems [36, 72-74], plane elasticity [38, 75, 

76], composites [77-81], piezoelectric materials [82-84], 

three-dimensional problems [85], functionally graded 
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materials [86-88], bioheat transfer problems [89-95], 

thermal elastic problems [96], hole problems [97, 98], 

heat conduction problems [69, 99], micromechanics 

problems [44, 45], and anisotropic elastic problems 

[100-102].  

 

Following this introduction, the present review consists 

of 3 sections. F-Trefftz FEM for nonlinear heat transfer 

in FGMs is described in Section 2. It describes in detail 

the method of deriving element stiffness equations. 

Section 3 focuses on the essentials of F-Trefftz elements 

for composites. Finally, a brief summary of the 

developments of the Treffz methods is provided. 

 

II.  Heat Transfer in Multi-Layer Skin Tissues 

2.1 Basic Equations 

Consider  

In biological engineering, the human skin tissue is 

usually modeled as a three layered material including the 

epidermis, the dermis and the subcutaneous fat layer. 

Besides, an inner tissue which is the region from the 

inner surface of the subcutaneous fat layer to the core of 

the skin is also introduced [103]. In the four layered 

biological model shown in Figure 1, each layer is 

supposed to be homogeneous. within which the blood 

perfusion, thermal conductivity, and heat capacity are 

assumed to be constant. 

 

Figure 1. Diagram of the multi-layer skin tissues 

 

The steady-state heat transfer in the biological tissue is 

governed by the well-known Pennes bioheat equation 

 
 2 0b b b b r mk T c T T Q Q         (1) 

where k is the thermal conductivity, T is the temperature 

change of the tissue, 
2  is the Laplace operator, b , bc  

and b  are respectively the density, specific heat and 

perfusion rate of blood, bT  is the temperature of arterial 

blood, mQ  and rQ  are metabolic heat generation and 

heat deposition in the tissue caused by outer heating 

factor such as laser, microwave, respectively.  

    

The bioheat transfer equation (1) is a statement of the 

law of conservation of energy. The first term on the left 

hand-side of Eq (1) represents the heat conduction in the 

tissue caused by the temperature gradient, and the 

second term stands for heat transport between the tissue 

and microcirculatory blood perfusion. The third and last 

terms are internal heat generation due to tissue 

metabolism and outer heating sources. 

 

In this section, a contact heat source, i.e. a heating disk 

as displayed in Figure 1, is considered to represent the 

potential outer burning injury and investigate the 

induced temperature variation in the multi-layer skin 

tissue under different heating temperature. In our 

analysis the assumption that no interfacial resistance 

exists between the heating source and the skin surface is 

employed. Therefore, the temperature at the skin surface 

which is in contact with the heating disk remains 

constant during heating. Besides, the temperature change 

caused by the heating disk is much greater than the 

metabolic heat generation, so the metabolic heat 

generation is negligible here [104]. Simultaneously, the 

internal heat generation caused by outer heating source 

is also neglected. As a result, the bioheat equation (1) 

reduces to 

 
 2 0b b b bk T c T T    

 
(2) 

Specially, when the blood perfusion rate is zero, this is 

the fact that no blood flow exists in the epidermis layer, 

then the governing equation (2) reduces to the standard 

Laplace equation 

 
2 0k T   (3) 

In the bioheat transfer model under consideration, the 

boundary 1  represents the bottom-most surface of the 

skin, thus we assume the temperature on it is equivalent 

to the body core temperature cT , that is 

 1   at boundary cT T 
 

(4) 
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At the upper and bottom surfaces, no heat flow runs into 

the skin tissue along these two edges by assuming that 

the tissue far from the area of interest is not affected by 

the imposed thermal disturbance, so the adjacent 

condition is given 

 

 
2 30   at boundaries  and 

T
k

n


   

  
(5) 

 

The part of the epidermis surface is directly exposed to 

the environmental fluid, so the heat exchange occurs 

between the environmental fluid and skin via convection 

and radiation. Because, in biological tissues, the effect 

of radiation from the surrounding is very small in 

contrast to the convection, so the radiation is neglected 

here [89]. Also, the cooling of the human skin by the 

evaporation of sweat should be considered since the heat 

loss due to evaporation has been found to contribute 

approximately 15% of the total heat loss from the skin 

surface [104]. Thus, we have 

 

 
  4 5   at  and s

T
k h T T E

n
 


     

  
(6) 

 

where h  and T  are respectively the ambient 

convection coefficient and temperature, sE  is the heat 

loss due to sweat evaporation on the skin surface. 

 

Finally, at the boundary where the heating disk is 

applied, the temperature is assumed to be equal to the 

temperature of heating disk dT , i.e. 

 6      at dT T 
 

(7) 

 

2.2 Dimensionless Form 

Due to the significant scale difference of variables in Eq. 

(1), the dimensionless variables defined as follows are 

introduced 

 

0

2

0 0 0 0 0

( )
,    ,   ,     =bT T kx y k

X Y K
L L Q L k


   

 

(8)  

where 0L  is a reference length of the biological body, 

0k , 0 , 0c  and 0Q  are respectively reference values of 

the thermal conductivity, density, specific heat and heat 

source term. 

 

Making use of the new variables defined by Eq (8), the 

Laplace operator in Eq (3) becomes 

 

22 2 2 2

0 0

2 2 2 2 2

0 0

1Q LT T

x y k L X Y

      
   

      

(9)  

Eq (1) can then be rewritten as follows 

 

2

0

0r m
b

Q Q
K S

Q


   

 

(10) 

 where 

 

2

0

0

b b b
b

L c
S

k

 


 

(11) 

At the same time, the corresponding boundary 

conditions reduce to 

 

 

 

1

2 3

4 5

6

                                           on 

0                               on  and 

    on  and 

                                            on 

c

s

d

q K
n

q K H E
n

 

  


     
 


        


  




(12) 

where 

 

0

0 0 0

,     s
s

h L E
H E

k Q L


  

 

(13) 

 

2.3 Hybrid FE Implementation 

 

2.3.1 Variational Functional 

 

In the present hybrid finite element formulation, the 

hybrid functional associated with two independent fields 

 ,   defined inside the element domain and over 

element boundary respectively are constructed as[19]  

 
   

2 2

2

1 2

2

1
d

2

1
d d d

2

e

qe e ce

me bK S
x x

q q H



 
  

       
           
        

          



  

(14) 

where qe  and ce  are element boundaries with 

specified heat flux and convection condition, 

respectively. e  represents the domain of element e 

with boundary e , as shown in Figure 2Error! 

Reference source not found.. Besides, in this figure, 

te  and Ie  stand for respectively the element boundary 

on which the temperature is prescribed and the common 

element boundary between element e and its adjacent 

elements. It’s obvious that 

 e te qe ce Ie     
 

(15) 
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Figure 2. Illustration of a typical hybrid element 

 

By invoking the divergence theorem 

 

2

1 1 2 2

d d d
f g f g f

g g f
X X X X n  

     
       

     
   (16)  

 

for any smooth functions f and g in the domain, the first-

order variation of Eq (14) is written as 

 

 

   

 

2 d d

d d

           d

e te

qe ce

e

me bK S q

q q q H

q

  

 



 

 
 



         

          
 

   

 

 


  

(17)  

from which it can be seen that the first, third and fourth 

integrals are associated with the governing equation (10), 

specified heat flux condition and convection condition in 

Eq. (12), respectively. The second integral will 

disappears when   is assumed to prior satisfy the 

specified temperature constraint on the boundary te . 

The last integral enforces the equality of   and   

along the element frame e . 

 

If the intra-element temperature   satisfies the governing 

equation (10) analytically, then the hybrid functional (14) 

can be further simplified by applying the divergence 

theorem again to the functional (14), i.e. 

 

  
2 3

2

1
d d

2

d d
2

e e

e e

me q q

H
q

 




 

       

      

 

   
(18) 

 

which includs boundary integrals only and can be used 

to derive the corresponding element stiffness equation. 

 

2.3.2 Assumed Fields 

 

To perform the HFS-FEM analysis, the solution domain 

 is divided into a number of elements. For a particular 

element, say element e, occupying a sub-domain e, 

with the element boundary e, two groups of 

independent fields    and  are assumed in the 

following way.  

 

(1) Non-conforming intra-element fields 

 

In the proposed fundamental-solution based hybrid finite 

element formulation, in order to construct the solution 

satisfying the governing equation (10) within the 

element domain, the temperature approximation   at 

any given point P  within the element domain is 

expressed by a combination of fundamental solutions, as 

was done in the method of fundamental solutions 

(MFS) , for example, 

*

1

( , ) ( ) ,    ,
sn

i i e e e i e

i

G P Q c P P Q


     N c

 

(19)   

where ic  is undetermined coefficients and sn  is the 

number of virtual sources iQ  surrounding the element 

domain. 
*( , )iG P Q  denotes the free-space Green’s 

function (fundamental solutions) for the governing 

equation (10): 

 
2 * *( , ) ( , ) ( , ) 0i b i iK G P Q S G P Q P Q   

 
(20) 

whose solution is given by 

*

0

1
( , ) ( )

2
iG P Q K r

K



 

 
(21) 

 

In Eqs. (20) and (21),   stands for the Dirac delta 

function, 0K  is the modified Bessel function of the 

second kind with order 0, ir P Q   is the distance 

between the field point P  and source point iQ , and 

 

 

bS

K
    (22) 

In the MFS, the coordinates of the source points iQ  are 

prescribed and usually they are chosen to locate on a 

pseudo boundary whose shape is similar to the element 

boundary e . Here, the locations of those source points 
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are determined by means of element nodes using the 

following relation [21] 

 

 

 
i

i

Q i i c

Q i i c

x x x x

y y y y





  

  
 

(23) 

 

where ( , )
i iQ Qx y , ( , )i ix y  and ( , )c cx y  are respectively 

the coordinates of source point iQ , nodal point i , and 

element center. The dimensionless parameter   is used 

to control the distance of source points to the element 

physical boundary. It’s obvious that the source points 

generated by Eq. (23) lie on a pseudo boundary similar 

to the element boundary. 

 

Specially, in the absence of blood perfusion rate, the 

fundamental solutions used for intra-element 

approximation is given by 

 

* 1
( , ) ln( )

2
iG P Q r

K
 

 
(24) 

Further, the heat flux is approximated by
 

 

*

1

( , )sn

i
i e e

i

G P Q
q K K c

n n


    

 
 Q c

 

 (25)

 

where 

 

*

1

( , )
( )

2

iG P Q r
K r

n K n






 


 
  (26) 

for the case of 0b  , and 

 

*( , ) 1

2

iG P Q r

n Kr n

 
 

 
  (27) 

for the case of 0b  .
 

 (2) Conforming frame fields defined on element 

boundary 

 

An independent frame field defined over the element 

boundary can be approximated by the shape function 

interpolation widely used in the conventional FEM and 

BEM 

 1

( ) ( ) ( ) ,     
dn

i ei e e e

i

P N P d P P


    N d  (28)  

where dn  is the number of nodes in the element, iN  is 

the shape function.

  

The substitution of Eqs. (19), (25) and (28) into the 

functional (18) yields 

 

T T T T T1 1

2 2
me e e e e e e e e e e e e e e       c H c d g c G d d F d d f a  

in which 

 

T T

T T

2
T

d ,      d ,     

d ,          d , 

d ,    d
2

e e

eq ce

ce ce

e e e e e e

e e e e e

e e e

q h

h T
h T

 


 

 
 

 

   

   

   

 

 

 

H Q N G Q N

g N F N N

f N a  

By virtue of the stationary conditions 

 
T T

,      me me

e e

 
 

 
0 0

c d
 

we obtain the following element stiffness equation for 

determining nodal temperature ed
 

 e e e e K d g f  (29) 

and the relationship of unknown coefficient ec  and ed
 

 
1

e e e e

c H G d
 

In Eq. (29), the element stiffness matrix eK  has 

following form 

 
T 1

e e e e e

 K G H G F
 

Assembling the element stiffness matrix element by 

element, we can obtain the global stiffness matrix, which 

still has the sparse and symmetrical features of the 

conventional finite element stiffness matrix. 

 

III. Transient Heat Transfer in Skin Tissues 

3.1 General mathematical equations 

 

The bioheat transfer in a biological tissue can be 

described by the well-known Pennes equation in the 

following general form: 

 
*

* 2 * * * * * * * * *

*b b b a t

T
k T c T T Q c

t
  


    


(30) 

with the boundary conditions 

* * * *

1

* * * *

2

* * * * *

3

( , ) ( , )         

( , ) ( , )          

( , ) ( )    

T t T t

q t q t

q t h T T 

  


 


  

x x x

x x x

x x

(31) 

where 
2  represents the Laplacian operator, 

* *( , )T tx  

is the sought temperature field variable, 
*t  denotes time 

(
* 0t  ). 

*k  is the thermal conductivity dependent on 

the special variables x ; 
*  is the mass density and 

c  is the specific heat. 
* * *

t m rQ Q Q   stands for the 

general internal heat generation per unit volume due to 

metabolic heat and the laser beam. 
*q  represents the 

boundary normal heat flux defined by 
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*
* * * * T

q k T k
n


     


n (32) 

n  is the unit outward normal to the boundary  . A 

variable with over-bar denotes the variable being 

specified on given boundary. The constant 
*

aT  is artery 

temperature. The constant 
*h  is the convection 

coefficient and 
*T  is the environmental temperature. For 

a well-posed problem, we have 321  . 

 

Finally, the initial condition is defined as 

 * * *

0( , 0)T t T x x (33) 

To avoid the potential numerical overflow of the present 

algorithm, the following dimensionless variables are 

employed in the analysis: 

 

 * * *
0

2

0 0 0 0 0

* ** *

0

2

0 0 0 0 0 0

,        ,    ,     

,        ,      ,         

a

t
t

T T kx y k
X Y T k

L L Q L k

t k Qc
c t Q

c L c Q




 


   

   

(34) 

where 0L  is the reference length of the biological body, 

0k , 0 , 0c , and 0Q  are respectively reference values of 

the thermal conductivity, density, specific heat of tissue, 

and heat source term. 

 

From Eq (34) we derive  

2 2* *

0 0 0 0

0 0 0 0

2 22 * 2 2 * 2

0 0 0 0

2 2 2 2 2 2

0 0 0 0

2*

0 0 0

* 2

0 0 0 0

1 1
,       

1 1
,    

,

Q L Q LT T T T

x k L X y k L Y

Q L Q LT T T T

x k L X y k L Y

Q L kT T

t k L c t

   
 

   

   
 

   

 


 

(35) 

Substitution of Eq. (33) and Eq. (35) into Eq. (30) yields 

2 ( , )
( , ) ( , ) ( )b b b t

T t
k T t c T t Q c

t
  


   



x
x x x (36) 

where 
* * * 2

0

0

b b b
b b b

c L
c

k

 
   (37) 

Correspondingly, the boundary conditions are rewritten 

as 

1

2

3

( , ) ( , )         

( , ) ( , )          

( , ) ( )    

T t T t

q t q t

q t h T T 

  


 
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x x x

x x x

x x

(38) 

with 

 

 

* * * *0
0

2

0 0 0 0 0

* *

0

2

0 0

,      ,     

,    

a

a

T T k h Lq
T q h

Q L Q L k

T T k T
T q k

Q L n









  

 
  



(39) 

 

3.2 Transient HFS-FEM Formulations 

 

3.2.1 Direct Time Stepping 

 

Making use of finite difference method, the derivative of 

temperature can be written as  

1( , ) ( ) ( )n nT t T T

t t

 


 

x x x
(40) 

where t  is the time-step, 
1 1( ) ( , )n nT T t x x  and 

( ) ( , )n nT T tx x  represent the temperature at the time 

instances 
1nt 
 and 

nt , respectively. 

 

As a result, Eq. (36) at the time instance 
1nt 
 can be 

rewritten as 
2 1 1

1

( ) ( ) ( )

( ) ( )
      

n n

b b b t

n n

k T c T Q

T T
c

t

 



 



  






x x x

x x (41) 

Rearranging Eq. (41) gives 
2 1 2 1( ) ( ) ( )n nT T b   x x x (42) 

with 

b b bcc

k t k

 
  


(43) 

1
( ) ( ) ( )n

t

c
b Q T

k k t


  


x x x (44) 

 

Accordingly, the boundary conditions at time instance 
1nt 
 can be represented as 

 
1 1

1

1 1

2

1 1

3

( ) ( , )         

( ) ( , )          

( ) ( )    

n n

n n

n n

T T t

q q t

q h T T

 

 

 

 

  


 


  

x x x

x x x

x x

(45) 

The linear system consisting of the governing partial 

differential equation (42) and boundary conditions (45) 
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is a standard inhomogeneous modified Helmholtz 

system, which will be solved by means of the present 

HFS-FEM and the dual reciprocity technique based on 

radial basis function interpolation described in the 

following sections. 

 

3.2.2 Particular solution obtained using radial basis 

functions 

Let 
1n

pT 
 be a particular solution of the governing 

equation (42), we have 
2 1 2 1( ) ( ) ( )n n

p pT T b   x x x (46) 

but does not necessarily satisfy boundary condition (45). 

Subsequently, the system consisting of Eq. (42) and 

Eq. (45) can be reduced to a homogeneous system by 

introducing two new variables as follows: 
1 1 1

1 1 1

( ) ( ) ( )

( ) ( ) ( )

n n n

h p

n n n

h p

T T T

q q q

  

  

 

 

x x x

x x x
(47) 

where 
11

1 1
( )( )

( ) ,    ( )

nn
pn nh

h p

TT
q k q k

n n


 


   

 

xx
x x (48) 

Substituting Eq. (47) into Eq. (42), we obtain the 

following homogeneous equation 
2 1 2 1( ) ( ) 0n n

h hT T   x x (49) 

with modified boundary conditions 

 

1 1 1

1

1 1 1

2

1 1 1

3

( ) ( ) ( , ) ( )   

( ) ( ) ( , ) ( )    

( ) ( ) ( )            

n n n

h h p

n n n

h h p

n n n

h h

T T T t T

q q q t q

q h T T

  

  

  

 

    


   


  

x x x x x

x x x x x

x x x x

(50) 

where 
1

1 1
( )

( ) ( )

n

pn n

p

q
T T T

h



 

 



   
x

x x (51) 

The above homogeneous system can be solved using the 

hybrid finite element model described in the next section. 

 

The above homogeneous system can be solved using the 

hybrid finite element model described in the next section.  

 

In what follows, we describe the solution procedure for 

the particular solution part 
1( )n

pT  x . For the arbitrary 

right-handed source term ( )b x , the particular solution 

1( )n

pT  x  can be determined numerically by the dual 

reciprocity technique, in which it is essential to 

approximate the source term by a series of basic 

functions, i.e. radial basis functions (RBFs). 

Let   be a radial basis function. Then the source term 

( )b x  in Eq. (46) can be approximated as follows[26] 

1

( ) ( )
M

j j

j

b r 


x (52) 

where 
j jr  x x  denotes the Euclidean distance 

between the field point x and source point xj, and j  are 

unknown coefficients. 

 

Making use of Eq. (52), the particular solution can be 

obtained as 

1

1

( ) ( )
M

n

p j j

j

T r



 x (53) 

where the function is governed by 
2 2( ) ( ) ( )j j jr r r      (54) 

Taking the thin plate spline (TPS) 
2( ) ln( )j j jr r r  (55) 

as an example, the approximate particular solution   

can be obtained by the annihilator method as[105] 

 

2

4 4 2

04

4 4 4

4 4 1
ln ln

4
     ,                0( )

4 4 4
ln ,       0

2

j j j

j jj

j

r r r

K r rr

r

  




 

  


  



   

  
    

 

(56) 

where  =0.5772156649015328 is Euler's constant. 

 

3.2.3 Homogeneous Solution Using the Hybrid Finite 

Element Model 

 

To perform the hybrid finite element analysis in a 

convenient way, the boundary conditions given in Eq. 

(50) are rewritten as 

 

1

1

1

2

1 1 1

3

( ) ( )                                

( ) ( )                               

( ) ( ) ( )      

n

h h

n

h h

n n n

h h

T T

h T T

 







  

 

  


 


  

x x x

x x x

x x x x

(57) 

 

with 
1

1 ( )
( ) ,   ( ) ( )/ ,   

n
n h
h h h

T h
q k h

n k
 


 




    



x
x x x (58) 

Then, the following hybrid variational functional 

expressed at element level can be constructed as 
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 

   

2

3

2 2

, ,

2

1
d d

2

1
d d

2

e e

e e

me i iT T T T

T T h T T

 



 

 
 

     

     

 

 

(59) 

in which T  is the temperature field defined inside the 

element domain e  with the boundary e , T  denotes 

the frame field defined along the element boundary, and 

2 2e e    , 3 3e e    . Note that in Eq. (59), 

the superscript ‘n+1’ and subscript ‘h’ are discarded for 

the sake of simplicity. 

 

By invoking the divergence theorem and assuming that 

T  satisfies the specified temperature boundary 

condition (the first equation of Eq. (57)) and the 

compatibility condition on the interface between the 

element under consideration and its adjacent elements as 

prerequisites, variation of Eq. (59) can be written as 

   

   
2

3

2

, d d

d d

e e

e e

me iiT T T T

T T h T T T

     

  

 

 
 

      

       
 

 

 
(60) 

from which it can be seen that the third integral enforces 

the equality of T  and T  along the element boundary 

e . The first, second and fourth integrals enforce 

respectively the governing equation (49), flux, and 

convection boundary conditions (the second and third 

equations in (57)). 

 

If the internal temperature field T  satisfies the 

homogeneous modified Helmholtz equation, i.e. 
2 2 0T T   (61) 

then applying the divergence theorem again to the 

functional (59), we have 

 

 

2

3

2

1
d d

2

d d
2

e e

e e

me T T

h
T T T

 



 




 

     

    

 

 

                    (62) 

 

In the proposed HFS-FEM, the variable T  is given as a 

superposition of fundamental solutions 
*( , )jG P Q  at sn  

source points to guarantee the satisfaction of Eq. (60) 

1 *

1

( , ) ( ) ,  ,
sn

n

h j ej e e e j e

j

T G P Q c P P Q



    N c (63) 

where ejc  is undetermined coefficients and sn  is the 

number of virtual sources jQ  applied at points outside 

the element. 

 

The free-space fundamental solution of the modified 

Helmholtz operator can be obtained as the solution of 
2 * 2 *( , ) ( , ) ( , )j j jG P Q G P Q P Q     (64) 

and is given by[106] 

*

0

1
( , ) ( )

2
j jG P Q K P Q


   (65) 

where ( , )jP Q  is the Dirac delta function and 0K  

denotes the modified Bessel function of the second kind 

with order 0. 

 

Simultaneously, the independent frame variable on the 

element boundary can be defined by the standard shape 

function interpolation 

1

( ) ( ) ( ) ,     
n

i ei e e e

i

T P N P d P P


   N d (66) 

where n is the number of nodes of the element under 

consideration, iN  is the shape function and eid  is nodal 

temperature. Their descriptions can be found in standard 

finite element texts and are not repeated here. 

 

By substitution of Eq. (63) and Eq. (66) into Eq. (62) we 

obtain 

T T T

T T

1

2

1
    

2

me e e e e e e e e

e e e e e e

    

  

c H c d g c G d

d F d d f a

             (67) 

in which 

2 3

3 3

T T

T T

2
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d ,      d , 
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d ,    d
2

e e

e e

e e

e e e e e e

e e e e e

e e e

q h

h T
h T

 


 

 
 

 

   
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 

 

 

H Q N G Q N

g N F N N

f N a

  (68) 

and 

e
e

n






N
Q               (69)  

 

 

IV. CONCLUSION 

 
1) On the basis of the preceding discussion, the 

following conclusions can be drawn. This review 

reports recent developments on applications of 

hybrid F-Trefftz finite element method to skin 

tissues and structures. It proved to be a powerful 
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computational tool in modeling materials and 

structures with various mechanical properties. 

However, there are still many possible extensions 

and areas in need of further development in the 

future. Among those developments one could list 

the following: 

2) Development of efficient F-Trefftz FE-BEM 

schemes for complex engineering structures 

containing heterogeneous materials and the related 

general purpose computer codes with preprocessing 

and postprocessing capabilities. 

3) Generation of various special-purpose elements to 

effectively handle singularities attributable to local 

geometrical or load effects (holes, cracks, 

inclusions, interface, corner and load singularities). 

The special-purpose functions warrant that excellent 

results are obtained at minimal computational cost 

and without local mesh refinement.  

4) Development of F-Trefftz FE in conjunction with a 

topology optimization scheme to contribute to 

microstructure design. 

5) Extension of the F-Trefftz FEM to elastodynamics 

and fracture mechanics of FGMs. 
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