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ABSTRACT 
 

Phylogenetic research field concerned with the reconstructing of the phylogenetic tree using some information that 

has evolved from the root to all the descendants. There are many ways to try and find the best tree.If one knows 

beforehand that a subset of species form a subgroup that are closely related then one can constrain the search 

algorithm to only look for those trees where this subset of species forms a subtree. Placing such constraints reduces 

the number of trees that the search algorithm must consider and thus reduces the time spent searching for the best 

tree. In Bayesian phylogenetic inference we are interested in distributions over a space of trees. When fossil 

evidence is used in the inference to constrain the tree, new tree spaces arise and counting the number of trees is 

more difficult. We have constructed a tree using algorithm that is polynomial in the number of sampled individuals 

for counting of resolutions of a constraint tree assuming that the number of constraints is three. 

Keywords: Phylogenetics, Ranked Tree, Tree Counting, Dynamic Algorithms, Bayesian Inference, Full Constraint 

Tree. 

 

I. INTRODUCTION 

 

Phylogenetics is the study of evolutionary 

relationships among biological entities (often species, 

individuals or genes which may be referred to as taxa). 

The tree that represents such relationships among 

species is called phylogenetic tree. The leaves of the 

tree represent existing species, the internal vertices 

represent ancestors, the edges represent evolutionary 

steps, the root represents the oldest evolutionary 

ancestor of the existing species represented in the tree. 

Point to be noted that phylogenetic trees can be either 

rooted (if the common ancestor is known) or unrooted 

(if the common ancestor is unknown) [9]. 

 

Now-a-days a phylogenetic tree is the common object 

of interest in many areas of biological as well as 

computational science. Given molecular sequence data 

sampled from a group of organisms it is possible to 

infer the historical relationships between these 

organisms using a statistical model of molecular 

evolution. At present, Bayesian Markov chain Monte 

Carlo (MCMC) methods are the dominant inferential 

tool for inferring molecular phylogenies [10]. 

 

When fossils are used to restrict the age of internal 

nodes, the tree prior should accurately account for this 

fact. Heled and Drummond [6] introduced a natural 

approach for tree prior specification when fossil 

evidence is employed in the inference. Their method 

requires counting of ranked phylogenetic trees that 

obey a number of constraints that arise from including 

the fossil evidence. The construction requires 

calculation of the marginal density for the time of the 

calibration node, the node representing the most recent 

common ancestor of a clade which may or may not be 

monophyletic. For a particular location of the 

calibration node, or particular constraints on the tree 

topology, the marginal density function is the marginal 

density function for the divergence times weighted by 

the number of trees satisfying the constraints. In this 

case, the weight constants do not cancel in the MCMC 

scheme and therefore have to be calculated. 
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Figure 1: Phylogenetic tree of the Animal kingdom 

[2]. 

 

For phylogenetic trees, the tree counting problem is to 

find the number of all possible trees on n leaves. For 

some types of phylogenetic trees, there are known 

closed form solutions to this problem. For other types, 

only recursive equations have been derived. Using 

such recursive algorithms, we can generate several 

types of phylogenetic trees, such that: Ranked X-trees, 

Fully Ranked X-trees, Fully Ranked X-trees with 

sampled ancestors, Constraint X-tree, FRS Constraint 

X-tree etc [1]. 

 

Tree counting has a long history. For phylogenetic 

trees, the counting problem is to find the number of all 

possible trees on n leaves.  For some types of 

phylogenetic tree, there are known closed form 

solutions to this problem. For other types, only re- 

cursive equations have been derived. The number of 

trees in a tree space is an important characteristic of 

the space and is useful for specifying prior 

distributions. When all samples come from the same 

time point and no prior information available on 

divergence times, the tree counting problem is easy. 

However, when fossil evidence is used in the inference 

to constrain the tree or data are sampled serially, new 

tree spaces arise and counting the number of trees is 

more difficult. A survey of results on counting 

different types of rooted trees is presented in [3] where 

trees with different combinations of the following 

properties are considered: trees are either labeled (only 

leaves are labeled) or unlabeled, ranked or non-ranked, 

and bifurcating or multifurcating. The results 

presented in the survey can also be found in [8]. 

 

In [5], Felsenstein considered partially labeled trees, 

i.e., a tree in which all the leaves are labeled and some 

interior nodes also may be labeled. He derived the 

recursive equations for counting the number of rooted, 

non-ranked, partially labeled trees with n labeled 

nodes. Complexity of tree counting of different 

variations of the extended problem has been analyzed 

in these recent years. Given an edge-weighted tree TT 

with leaf set X, define the weight of a subset S of X as 

the sum      of the edge-weights of the minimal subtree 

of TT connecting the elements in S. It is known that 

the problem of selecting subsets of X of a given size to 

maximize this weight can be solved using a greedy 

algorithm. This optimization problem arises in 

conservation biology where the weight is referred   to 

as the phylogenetic diversity of a taxa set S.  Here, we 

consider the extension of this problem whereby we are 

only interested in selecting subsets of the taxa set that 

are ecologically “viable”.  Such subsets are specified 

by an acyclic digraph which represents, for example, a 

food web. This additional constraint makes the 

problem computationally hard.[4] 

 

In our report, we will focus on constraint trees only. In 

phylogenetic analysis, it is common to have some 

limited information about the ancestors of sampled 

individuals, such information acts as constraints for 

constructing phylogenetic trees. Here, we consider 

three such constrains: monophyletic, crown group [7] 

and relative age. 

 

A subgroup of some sampled individuals is called 

monophyletic if the most recent common ancestor of 

that subgroup is not an ancestor of any other 

individual that does not belong to the subgroup. 

Crown group is basically a clade or group consisting 

of a species and all its descendants. It is quite possible 

to know the relative ages of the most recent common 

ancestors of monophyletic subgroups [9] or crown 

groups which are usually presented as the rankings of 

the constraint X-tree. 
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Counting of resolutions of a constraint tree is an 

expensive procedure. But if the number of constraints, 

k is small, the tree construction is quite feasible. In 

practice, k is typically small, and in our case k=3, so 

this algorithm will be of practical use. 

 

II.  METHODS AND MATERIAL  
 

Let us consider a phylogenetic tree T. Since the 

relative ages of the species of T are known, we can say 

that T is a ranked tree. These ranks will be determined 

using a ranking function, r. So, if there are two 

vertices (which can be either interior or leaf) v1 and 

v2; then v1 <= T v2 implies that r (v1) <= r (v2). A 

node in a rooted tree is called interior if it has 

descendants and a leaf if it has   no descendants. The 

root is considered interior. Rooted tree is called binary 

if every interior node has exactly two children. It is 

called weakly binary if every interior node has at most 

two children. 

 

We consider T to be a rooted phylogenetic tree. This T 

will represent the relationships among a set of species, 

let the set be X = X1, X2, X3, . . . , Xn. So, |X| = n.  

Also we will count on some   constrains like 

monophyletic or crown group, for which   the prior 

information of the common ancestors should be 

known. 

 

A Ranked X-tree is the simplest version of such 

phylogenetic tree. When all individuals are sampled at 

the same time, a simple Ranked X-tree is generated 

while solving the counting tree problem. A figure of 

such a Ranked X-tree is given in figure 1. 

 

In biology, a phylogenetic tree represents the 

evolutionary history of a collection of sampled 

individuals. The collection of individuals is 

represented by the set X. The root of the tree is the 

most recent common ancestor of X and interior nodes 

are bifurcation events. The ranking function represents 

the time order of the bifurcation events. A general 

problem in evolutionary biology is how to reconstruct 

the phylogenetic tree from sequence data obtained 

from sampled individuals. Tackling this problem in a 

Bayesian framework may require counting the number 

of all possible histories on a sample of individuals.  

When all individuals are sampled at the same time (as 

in Figure 1) counting tree problem has a simple 

solution. 

 

Figure 2: Ranked X-tree, X   = X1, X2, X3, X4, X5. 

The numbers on the right are values of the ranking 

function. [1] 

 

The number of all ranked X-trees up to isomorphism is 

 ( )  
  (   ) 

 (   )
 

 

Here, the letter R in the equation comes from the word 

“Ranked”. This formula has been derived by many 

authors.  Proofs can be found in [3, 8 and 4]. 

 

This scenario can be different if the individuals are 

serially sampled at different times. To represent such 

relationship, we can construct a fully ranked (FR) X-

tree. Before the tree is reconstructed we observe only 

leaves (sampled individuals) of the tree that are 

grouped (pre-ranked) according to the times they were 

sampled. A figure is given below (Figure 3) where a 

subset X1, X2, X3  of set   X were sampled before 

another subset X4, X5 of X according to two sampling 

time. 

 

Although there is a ranking function r, we will 

consider another pre-ranking function ψ such that 

ψ(X1) = ψ(X2) =   ψ(X3)   =   1 and ψ(X4) = ψ(X5) = 2. 

That means, later sampled individuals will have higher 

pre-ranking value. Now, we denote the number of 

individuals sampled at the i-th time point with ni. Note 

that the number of all fully ranked X-trees depends 

only on ni, not on the set X or pre-ranking function ψ. 
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Figure 3: Fully ranked X-tree. X   = X1, X2, X3, X4, 

X5. The  numbers  on  the  right are values of the 

ranking  function [1]. 

 

This quantity is expressed by the following function: 

 

 (       )  ∑
 (  )

 ( )

  
    (           )          

(1) 

 

And F(n) = R(n). 

 

Consider a continuous process of bifurcation in which 

lineages may bifurcate in time or be cut and labeled 

(sampled). The process finishes when all lineages are 

cut producing a tree. The discrete structure of the tree 

produced by this process is   a fully ranked X-tree. It is 

easy to see that every fully ranked X-tree can be 

obtained as a result of this process. To count the 

required number we can count the number of different 

trees which can   be produced by the process if we 

know that after it finishes there are ni sampled 

individuals (i.e., cut and labeled lineages) at the i-th 

time point, i.e., we have the sequence (n1, ..., nm)[1]. 

 

A third type of tree (Figure 4) can be introduced      at 

this stage, in which sampled individuals may be direct 

ancestors of later sampled individuals. We call it a tree 

with sampled ancestors.  This type of tree is not 

usually considered in phylogenetics since the 

probability of sampling a direct ancestor   is often 

negligible. However, in small populations or when a 

large portion of the population is sampled, this cannot 

be ignored. This type of tree is called a fully ranked X-

tree with sampled ancestors or FRS X-tree in short. 

 

 

Figure 4: FRS X-tree with the labeled 1-

degree root. X   = X1, X2, X3, X4, X5. The 

numbers on the right are values of the 

ranking function. 

 

Here, the pre-ranking function remains the same as 

FRS tree. Let S (n1, . . .  , nm) denote the number  of all 

FRS X-trees that have the same pre-ranking function. 

Then 

 

 (       )  ∑ ∑ ( 
 
)

   (      )
   

  
   (    

 
)  

 ( )

 ( )
 (             )                                          

(2) 

 

And S(n) = R(n). 

 

Now, as we stated earlier, it is quite common to have 

some prior knowledge about the ancestors of sampled 

individuals, such as whether there is any monophyletic 

or crown group existing or not. As we are considering 

ranked trees, it is obvious that we will have some prior 

knowledge on relative ages also. Such known 

information imposes constraints on the space of 

possible phylogenetic trees representing the 

evolutionary history of sampled individuals and thus a 

constraint x-tree is generated. An example is given as 

Figure 5 with colored edges. 



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)  240 

 
 

Figure 5: Constraint tree, labels are omitted. Subtree 2 

is colored green. It has two child nodes that are leaves, 

therefore, n2 = 2. The ancestor function for this tree is 

defined as f (2) = f (3) = 1 and f (4) = 2.  A compact 

notation for this constraint tree is (n1, . . .  , nk, f ) = (0, 

2, 3, 2, (2, 1), (3, 1), (4, 2)). 

 

Let R
r
(n1, ..., nk, f) be the number of ranked trees  

resolving a constraint tree defined by the tuple (n1, . . . 

, nk, f). Then the following equations hold. 

 

  (   )                                                                    

(3) 

 

  (             )  

∑ (  
 
)    

  (                    )+  
 (       ( )  

                  )                                                   

(4) 

 

  (           )  

∑ (  
 
)      (                )                   

(5) 

 

[Evaluation of these equations are on [1].] 
 

Here,   C   is   the   collection   of   nodes   that have 

more  than  2  children  and  at  least  2  of   them are 

leaves. Therefore, C = {i < k|n I ≥ 2 and ni + βi > 2}, 

where ni + βi = number of children of node i  and βi  = 

|{b|f(b) = i}|. 

 

We will calculate R
n 

(n1, n2, ..., nk, f ) for 

corresponding constraint tree. In order to find it at 

each step S, we will calculate the numbers of R
n
(X1, 

X2,…,Xt, f (t-1) with 

 

∑     

    

                                                         (6) 

 

Actually we do not have to calculate all such numbers. 

To determine which numbers are required, we define 

two upper triangular matrices m and M of size k*k. 

 

Suppose, we draw a horizontal line which is strictly 

below the line that passes through node j and strictly 

above the line that passes through node j+1 (or all the 

leaves if j=k), then 

 

mij =  The minimal possible number of inter- sections 

of this line with brunches of subtree i, 

Mij = The maximal possible number of intersections of 

this line with brunches of subtree i. 

 

Let ai,j  = |xj|f (x) = i| for ij.  So ai,j  is the number of 

children of node i with ranks at most j. Then 

 

    =           

     {

            

                      

           

 

 

This leads to the following algorithm to count 

resolutions. At each step sn, we construct a set Ss. A 

unique element of Sn is R
r
(n1, ..., nk, f ) and calculating 

elements of Ss only requires elements of Ss1. 

 

Algorithm: Calculating the number of resolutions 

of a constraint tree 

 

S2 = R
r
(2, Φ) 

for s = 3 → (n − 1) do 

while there is a new element R
r
(x1, ..., xt, f | t-1) 

in the set Ss1 do  

if t < k and eligible 

(x1,...,xf(t+1),1,...,xt,2,f|t1) then 

Calculate R
r
(x1, ..., xf(t+1) − 1, 

..., xt, 2, f | t1) and add it to Ss  

end if 

for i = 1 → t do 

if eligible(x1, ..., xi + 1, ..., xt, f 

| t1) then 
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R
r
(x1, ..., xi + 1, ..., xt, f | t1) 

and add it to Ss 

end if 

end for  

end while  

end for 

 

From figure 6, the last interior node of a resolving tree 

(that is, the interior node with the highest rank or the 

furthest node from the root) is either a parent to leaves 

in subtree 1 or leaves in subtree 2. Suppose it is the 

first case (Figure 6, centre). 

 

 

 

 

 

 

 

 

Figure 6: Recursive approach. The last interior node 

in a resolving tree locates in subtree 2. 

 

Since leaves have distinct labels from X, there    are 

( 
 
) ways to chose two leaves that are children of that 

last node. We can partition all the   resolving trees for 

which the last node is in subtree 1 in ( 
 
) groups. The 

number of trees in each group is the number of trees 

that resolve a constraint tree defined by (2, 3, (2, 1)) 

and shown on the right of Figure 5. A similar 

argument holds if the last node in a resolving tree is a 

parent to nodes from subtree 2. 

Generalizing the results of constraint X-tree to fully 

ranked trees, we can also construct fully ranked 

constraint X-tree or FR Constraint X-tree. However, 

our study covers a simpler constraint X-tree with three 

constraints as stated in our introduction section. 

 

III. RESULTS AND DISCUSSION  

 

In phylogenetic analysis, it is common to have some 

limited information about the ancestors of sampled 

individuals. This information creates constraint tree. 

We can generate the tree in more generalized way. 

Here we have used three constraints like monophyletic 

group, crown group and relative ages of fossils. This 

known information imposes constraints on the space 

of possible phylogenetic trees representing the 

evolutionary history of sampled individuals and make 

tree counting more space and time reducing. But on a 

group of sampled individuals, the number of generated 

phylogenetic trees satisfying the constraints is still a 

big issue. 

 

From equation (3), if a constraint tree has 2 leaves 

then, it is unique and is resolution of itself. We 

consider the tree with more than 2 leaves in each 

subtree. However, the last interior node of a resolving 

tree cannot be in subtree i for i < k if there is not 

enough leaves in this subtree. This can happen either if 

there are less than 2 leaves in subtree i or if there are 2 

leaves in subtree i and node i has only these two leaves 

as its children. Both cases imply that any parent to 

leaves of sub- tree i in a resolving tree have a lesser 

rank than the rank of node k. Equation (4) explains 

this is why we need to sum only over the elements of 

the set C. 

 

If the last node in a constraint tree has only two 

children, i.e., there are 2 leaves in subtree k, then there 

is one more group of resolving trees, the group that 

consists of resolving trees that have this node as the 

last node according to equation (5). 

 

We generalise these with fully ranked tree and get a 

multifrucated tree in replace of binary tree. An 

example shown below on figure 7. 

 
Figure 7: Matrices m and M. Two trees that resolve a 

constraint tree from Figure 5. The yellow lines 

correspond to the minimal number of intersections and 

the red line, to maximal. Location of a new node 

between the (p − 1)-th and p-th time points. A new 

node can be placed in subtree between the (p − 1)-th 

and p-th time points if the number of green branches is 

greater or equal to 2 and the number of all branches in 

subtree is greater than 2. 
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When comparing the calculated numbers of 

phylogenetic trees (tree counting) for different tree 

shapes and sizes of leaf sets we recognized that the 

result actually depends on the constraint of the tree. 

 

IV. CONCLUSION 

 
For contemporaneous sampling the complexity of tree 

counting algorithm is O(n) and for k constraints O(n
k
), 

which is reasonably fast, particularly when the number 

of sampling points is small. For Serial sampling, it is 

O(mn) with no sampled and O(m
2
n

k
) with k constraints, 

which is possible if k is small, where n is the sample 

size, k is the number of constraints, and m is the 

number of sampling time-points. If we get fossil data 

serially sampled our proposed tree will be more 

promising because of tree counting issue. 
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