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ABSTRACT 
 

The voltage instability occurs in power system when the system is unable to maintain an acceptable voltage profile 

under an increasing load demand and / or configuration changes the operating conditions of the presents day 

distribution systems are closer to the voltage stability boundaries due to the ever increasing load demand. Capacitors 

have long been used in power system for providing reactive power support, which reduces power and energy losses, 

increase the available capacity of the feeders, and improves the feeder voltage profile. In this work, a method 

employing the Ant Colony Search Algorithm (ACSA) has been developed for the capacitor placement in a view to 

enhance voltage stability besides improving voltage profile and reducing losses. The proposed technique has been 

tested on 28 node distribution systems. It has been found that the proposed method provides highly satisfactory 

results. 
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I. INTRODUCTION 

 

The present day electric power systems are operated in 

stressed conditions because the transmission lines of 

the system are operated below the surge impedance 

loading to meet the ever increasing load. Recently, 

there has been a growing interest in optimizing the 

operation of distribution networks, which are in general 

configured radically. These systems have a 

combination of loads like industrial, commercial and 

domestic loads; and distinct changes in load level may 

occur at any time and at any part of the system. The 

main factor causing voltage instability is the inability 

of the system to meet the demand for reactive power in 

the heavily stressed systems, which prevents it from 

maintaining the desired voltages. The other factors 

contributing to voltage collapse are generator reactive 

power/voltage control limits, load characteristics; 

characteristics of reactive compensation devices and 

the actions of voltage control devices such as 

transformer under load tap changers. When a power 

system is operating close to its stability limits, it is 

essential for the system operator have a clear 

knowledge of its operating state. They are looking for 

tools that can enhance their understanding of where the 

system is operating with respect to the point of voltage 

collapse.  

 

A number of approaches besides various indices have 

been suggested for predicting voltage instabilities, such 

as singular value decomposition, L-index, PV, and QV 

curves, eigen value decompositions, V-Q sensitivity 

and energy based method, in the literature. Most of the 

methods require significantly large computations and 

are not efficient enough for real time use in energy 

management systems.  

 

It is therefore essential that efficient and economically 

justified solution techniques for avoiding voltage 

instability problem be developed. Obviously, an 

effective control measure is the most appropriate 

strategy to prevent voltage collapse. 

 

The preventive measures are decreasing the MV 

voltage set point, blocking transformer on-load tap 

changers, offering reacting power support at weak 

buses, curtailing a portion of the load at selected buses: 

etc . A combination of these corrective methods is 

often suggested: eg., tap changer blocking to slow 

down the system degradation and leave some time for 
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another action, may be load shedding. Hence there is a 

need for alternative techniques that can quickly detect 

potentially dangerous situations of voltage instability 

and corrective to steer the system away from voltage 

collapse. 

 

Generally capacitors have been commonly employed to 

provide reactive power compensation in distribution 

system. They are reduces the power loss and to 

maintain the voltage profile within the acceptable 

limits. They benefits of the compensation depend on 

how capacitors are placed in the system, specifically on 

the location on the sides of the added capacitors. 

 

Variety of method have been developed to solving 

optimal capacitor placement problems by employing 

mathematical programming techniques  

1. Ant Colony Search Algorithm  

2. Simulated Annealing  

3. Genetic Algorithm 

4. Evolutionary Programming 

5. Particle Swarm Optimization  

 

In this work, Ant Colony Search Algorithm has been 

used to optimal capacitor    placement. The following 

are the disadvantage of corresponding techniques when 

compared to Ant Colony Search Algorithm. Repeatedly 

annealing with a 1/log k schedule is very slow, 

especially if the cost function is expensive to compute. 

For problems where the energy landscape is smooth, or 

there are few local minima, SA is overkill --- simpler, 

faster methods (e.g., gradient descent) will work better. 

But usually don't know what the energy landscape is. 

Heuristic methods, which are problem-specific or take 

advantage of extra information about the system, will 

often be better than general methods. But SA is often 

comparable to heuristics. The method cannot tell 

whether it has found an optimal solution. Some other 

method (e.g. branch and bound) is required to do this.  

 

They shows a very fast initial convergence, followed 

by progressive slower improvements (sometimes is 

good to combine it with a local optimization method). 

In presence of lots of noise, convergence is difficult 

and the local optimization technique might be useless. 

Models with many parameters are computationally 

expensive. Sometimes not particularly good models are 

better than the rest of the population and cause 

premature convergence to local minima. The fitness of 

all the models may be similar, so convergence is slow. 

Optimal solution cannot be ensured on using 

evolutionary programming methods. Convergence of 

EP techniques is problem oriented. Sensitivity analysis 

should be carried out to find out the range in which the 

model is efficient. Implementation requires good 

programming skill. 

 

Lacking somewhat of a solid mathematical foundation 

for analysis, some limitations in real-time ED 

applications, such as in the 5-minute dispatch with 

constraints, due to relatively longer computation time 

(possibility for the off-line real world problems such as 

in the day-ahead electrically markets). Still having the 

problems of dependency on initial conditions, 

parameter values, difficulty in finding the optimal 

design parameters, stochastic characteristics of the final 

outputs. 

 

Advantage 

 

1. Ant colony search algorithm are parallel search and 

optimization capabilities 

2. Ant colony search algorithm are applied to the 

capacitor placement problems in which switches 

are discrete 

3. The state transition rule, global and local updating 

rules are introduced to ensure the optimal solution 

 

 

II. METHODS AND MATERIAL 
 

1. Literature Review 

 

A variety of methods have been devoted to solving 

optimal capacitor placement problems by employing 

mathematical programming techniques. Grainger et al. 

[1], [2] formulated the problem as a nonlinear 

programming problem by treating the capacitor sizes 

and the locations as continuous variables.Duran [3] 

considered the capacitor sizes as discrete variables and 

used dynamic programming to find the optimal solution. 

 

A simple heuristic numerical algorithm that is based on 

the method of local variation is proposed in [4], and a 

sensitivity-based method to solve optimal capacitor 

placement problems is presented in [5]. Chiang et al. [6] 

used the optimization techniques based on simulated 

annealing (SA) to search the global optimum solution 

to the capacitor placement problem. In [7]–[9], the 

authors used the genetic algorithm (GA) to select 

capacitors for radial distribution systems. 
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In [10], the authors proposed a single dynamic data 

structure for an evolutionary programming (EP) 

algorithm to solve the optimal capacitor allocation. 

Civanlar et al. [11] conducted the early research on 

feeder reconfiguration for loss reduction.. In [12], 

Baran et al. modeled the problem of loss reduction and 

load balancing as an integer programming problem.In 

[13], the authors used a genetic algorithm to look for 

the minimum loss configuration. In [14], the authors 

presented the use of the power flow method based on a 

heuristic algorithm to determine the minimum loss 

configuration for radial distribution networks. In [15], 

[16], the authors proposed a solution procedure which 

employed simulated annealing to search for an 

acceptable non-inferior solution. 

 

 In [17], the authors proposed a mixed-integer hybrid 

differential evolution to solve network reconfiguration. 

In [18], the authors proposed an economic operation 

model to solve distribution network configuration. In 

[19], the authors proposed a tree encoding and two 

genetic operators to improve the EA performance for 

network reconfiguration problems.  

 

In [20], the authors proposed a fuzzy multiobjective 

approach to solve the network reconfiguration problem. 

However, most of the previous studies handled 

capacitor placement problems without consideration of 

feeder reconfigration [1]–[10], or handled feeder 

reconfiguration problems without consideration of 

capacitor placement [11]–[20]. They dealt with the 

feeder reconfiguration and capacitor placement in a 

separate manner [1]–[20], which may result in 

unnecessary losses and cannot yield the minimum loss 

configuration. On the other hand, there are only few 

examples in the literature on loss minimization 

applying heuristic techniques for feeder reconfiguration 

and capacitor placement [21]–[24].  

 

2. Ant Colony Search Algorithm  

 

In this work, Ant Colony Search Algorithm has been 

used to optimal capacitor placement. This algorithm is 

a member of ant colony algorithms family, in swarm 

intelligence methods, and it constitutes some 

metaheuristic optimizations. Initially proposed by 

Marco dorigo in 1992 in his PhD thesis. The first 

algorithm was aiming to search for an optimal path in a 

graph; based on the behavior of ants seeking a path 

between their colony and a source of food. The original 

idea has since diversified to solve a wider class of 

numerical problems, and as a result, several problems 

have emerged, drawing on various aspects of the 

behavior of ants.  

In the real world, ants (initially) wander randomly, and 

upon finding food return to their colony while laying 

down pheromone trails. If other ants find such a path, 

they are likely not to keep traveling at random, but to 

instead follow the trail, returning and reinforcing it if 

they eventually find food.  

 

Over time, however, the pheromone trail starts to 

evaporate, thus reducing its attractive strength. The 

more time it takes for an ant to travel down the path 

and back again, the more time the pheromones have to 

evaporate. A short path, by comparison, gets marched 

over faster, and thus the pheromone density remains 

high as it is laid on the path as fast as it can evaporate. 

Pheromone evaporation has also the advantage of 

avoiding the convergence to a locally optimal solution. 

If there were no evaporation at all, the paths chosen by 

the first ants would tend to be excessively attractive to 

the following ones. In that case, the exploration of the 

solution space would be constrained. 

 

Thus, when one ant finds a good (i.e., short) path from 

the colony to a food source, other ants are more likely 

to follow that path, and positive feedback eventually 

leads all the ants following a single path. The idea of 

the ant colony algorithm is to mimic this behavior with 

"simulated ants" walking around the graph representing 

the problem to solve. 

 

A. ANT Colony Behavior 

The ACSA imitates the behaviors of real ants. As is 

well known, real ants are capable of finding the 

shortest path from food sources to the nest without 

using visual cues. Also, they are capable of adapting to 

changes in the environment, For example, finding a 

new shortest path once the old one is no longer feasible 

due to a new obstacle. Moreover, the ants manage to 

establish shortest paths through the medium that is 

called “pheromone.” The pheromone is the material 

deposited by the ants, which serves as critical 

communication information among ants, thereby 

guiding the determination of the next movement. Any 

trail that is rich of pheromone will thus become the 

goal path. 

 

The process is illustrated by Fig. 3.1. In Fig. 3.1(a), the 

ants are moving from food Source A to the nest B on a 

straight line. Once an obstacle appears as shown in             

Fig. 3.1(b), the path is cut off. The ants will not be able 

to follow the original trail in their movements. Under 

this situation, they have the same probability to turn 

right or left. But after some time the path CD will have 

more pheromones and all the ants will move in the path 

ACD. As the ants from C to reach F through D will 

reach quicker than that of the ants through E, i.e., CEF. 

Hence ant at F from B will find pheromone a path 

FDCA and will go through it, where Fig. 3.1(c) depicts 

that the shorter path CDF will collect larger amount of 

pheromone than the longer path CEF. Therefore, more 

ants will be increasingly guided to move on the shorter 
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path. Due to this autocatalytic process, very soon all 

ants will choose the shorter path. This behavior forms 

the fundamental paradigm of the ant colony search 

algorithm.  

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Example of the Real Ant’s Behaviour 

 

As illustrated in Fig. 3.1, by the guidance of the 

pheromone intensity, the ants select preferable path. 

Finally, the favorite path rich of pheromone becomes 

the best tour, the solution to the problem. This concept 

develops the emergence of the ACSA method. At first, 

each ant is placed on a starting state. Each will build a 

full path, from the beginning to the end state, through 

the repetitive application of state transition rule. While 

constructing its tour, an ant also modifies the amount 

of pheromone on the visited path by applying the local 

updating rule. Once all ants have terminated their tour, 

the amount of pheromone on edge is modified again 

through the global updating rule.  

 

In other words, the pheromone updating rules are 

designed so that they tend to give more pheromone to 

paths which should be visited by ants. In the following, 

the state transition rule, the local updating rule and the 

global updating rule are briefly introduced. 

 

B. State Transition Rule 

 

The state transition rule used by the ant system, called 

a random-proportional rule, is given by the following, 

which gives the probability with which ant k in node i 

chooses to move to node j : 
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Where, 

 

τ - The pheromone which deposited on the edge between 

node i and node j. 

η - The inverse of the edge distance. 

Jk (i) - The set of nodes that remain to be visited by ant k 

positioned on node i. 

 β -Parameter which determines the relative importance 

of pheromone versus distance. 

 Equation indicates that the state transition rule favors 

transitions toward nodes connected by shorter edges and 

with large amount of pheromone. 

 

C Local Updating Rule  

While constructing its tour, each ant modifies the 

pheromone by the local updating rule. This can be written as 

follows: 

 (   )  (   )  (   )         
Where, 

τo - The initial pheromone value. 

ρ -A heuristically defined parameter. 

 

 The local updating rule is intended to shuffle the search 

process. Hence the desirability of paths can be dynamically 

changed. The nodes visited earlier by a certain ant can be 

also explored later by other ants. The search space can be 

therefore extended. Furthermore, in so doing, ants will make 

a better use of pheromone information. Without local 

updating all ants would search in a narrow neighborhood of 

the best previous tour. 

 

D Global Updating Rule 

When tours are completed, the global updating rule is 

applied to edges belonging to the best ant tour. This rule is 

intended to provide a greater amount of pheromone to 

shorter tours, which can be expressed as follows: 

 (   )  (   ) (   )         

Where, 

δ- The distance of the globally best tour from the 

beginning of the trail. 

σ Є [0,1]- The pheromone decay parameter. 

 

This rule is intended to make the search more directed; 

therefore the capability of finding the optimal solution can 

be enhanced through this rule in the problem solving process. 

 

E ALGORITHM FOR PROPOSED METHOD 

 

The main computational processes are briefly stated below.  

 

Step 1) Initiation 

 

At first, the colonies of ants are randomly selected and which 

estimated the initial fitness in the different permutations. A 

random number generator can be employed to generate the 

number of ants within the feasible search space. In addition, 

these ants are positioned on different nodes, while the initial 

pheromone value of τo is also given at this step. 

 

Step 2) Estimation of the fitness 

 

When all ants have finished a tour, the fitness of each ant is 

estimated. Usually, fitness function is defined to estimate the 

performance of each ant. In this step, the fitness of all ants is 

assessed based on the corresponding objective function, 

which is expressed as (1). Then, the pheromone can be added 

to the particular direction in which the ants have chosen. At 

this stage, a roulette selection algorithm can be employed 

based on the computed fitness. Then, by spinning this 

designated roulette, a new permutation of pheromone 

associated with different paths is formed. In other words, 

based on a roulette selection method, a path (fitness) with 

higher amount of pheromone will easily be selected as a new 

path. Hence, it would be more suitable for guiding the ants to 

the direction. 
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Step 3) Ant Placement and Reconfiguration  

 

The ant placement and reconfiguration are based on the level 

of pheromone and distance. As (4.1) shows, each ant selects 

the next node to move taking into account the    (i,j) and   

(i,j) values. A greater   (i,j) means that there has been a lot 

of traffic on this edge; hence, it is more desirable to approach 

the optimal solution. On the other hand, a greater   (i,j) 

indicates that the closer node should be chosen with a higher 

probability.   In the capacitor placement and network 

reconfiguration study, this can be seen as the difference 

between the original total power loss and the new total 

power loss. Therefore, in this step, the ant placement and 

reconfiguration process helps convey ants by selecting 

directions based on these two parameters. 

 

Step 4) Local/Global Updating Rule 

 

While constructing a solution of the capacitor placement and 

network reconfiguration problem, ants visit edges and 

change their pheromone level by applying the local updating 

rule of (10). Its purpose is not only broadening the search 

space, but dynamically increasing the diversity of ant colony. 

After n iterations, all ants have completed a tour; the 

pheromone level is updated by applying the global updating 

rule of (11) for the trail that belongs to the best selected path. 

Therefore, according to this rule, the shortest path found by 

the ants is allowed to update its pheromone. Also, this 

shortest path will be saved as a record for the later 

comparison with the succeeding iteration. 

 

Step 5) Termination of the Algorithm 

 

End the process if “the maximum iteration number is 

reached” or “all ants have selected the same tour” is satisfied; 

otherwise repeat the outer loop. In addition, the number of 

ants and the number of iterations were experimentally 

determined. All the tour visited by ants in each iteration 

should be evaluated. If a better path found in the process, it 

will be saved for later reference. 

 

III. RESULTS AND DISCUSSION 
 

 

PROPOSED METHOD 

 

A simple capacitor placement example is 

employed to illustrate how the system be deployed 

in a distribution company using the ACSA method. 

Here, a node in the ACSA represents a different 

selection of capacitor addition for a bus in the 

capacitor placement problem; the edge distance of 

the edge connecting node i and node j represents 

the cost of the capacitor added at bus j(j=i+1) . A 

particular bus is bus 1, the edge distance of the 

edge connecting the s/s bus (i.e., bus=0 ) and bus 1 

represents the cost of the capacitor added at bus 1. 

Assume that there is a five-bus (not including 

secondary substation bus s/s) distribution feeder as 

shown in Fig. 8, and each bus has five available 

capacitor sizes to choose from. Consequently, a 5* 

5 matrix can be formed, as shown in Fig. 9, to 

express what is mentioned above.  

 

 

Fig.2 Five-Bus Distribution Feeder 

 

The path indicated means capacitor sizes 3, 2, 3, 1, 

and 4 have been chosen for buses 1, 2, 3, 4, and 5, 

respectively. In terminology of the ACSA, it is 

described that each bus has five nodes (i.e., five 

available capacitor sizes) and from each bus to its 

next bus there are five edges. For example, the 

path indicated in Fig. 9 has five edges, there are 

edge (s/s→ node 3 of bus 1) (not indicated in the 

figure), edge (node 3 of bus 1→ node 2 of bus 2), 

edge (node 2 of bus 2→  node 3 of bus 3), edge 

(node 3 of bus 3 → node 1 of bus 4), and edge 

(node 1 of bus 4→  node 4 of bus 5), Thus, there 

are five edge distances and five amounts of 

pheromone corresponding to these five edges. 

 

 

Fig.3 A  5*5 Capacitor Placement Space 

Assume that there are five ants moving from bus 1 

to bus 5 with five different paths indicated as [2 1 

2 1 3; 2 1 3 2 5; 1 2 3 4 3; 3 5 4 1 1; 4 1 3 5 4]. For 

example, the path for ant 1 is node 2 of bus 1→ 

node 1 of bus 2→ node 2 of bus 3 → node 1 of 

bus 4 → node 3 of bus 5. In the capacitor 

placement problem, this path means that buses 1 to 

5 choose capacitor sizes 2, 1, 2, 1, and 3, 

respectively. Furthermore, assume that the path 

distances for these five paths are 200, 250, 300, 

350, and 400, indicated as [200 250 300 350 400]. 
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Here, the path distance is the sum of the edge 

distances of itself. For example, path 1 has a path 

distance of 200, which is the sum of the edge 

distances of edge (s/s → node 2 of bus 1), edge 

(node 2 of bus 1 node 1 of bus 2), edge (node 1 of 

bus 2 node 2 of bus 3), edge (node 2 of bus 3 → 

node 1 of bus 4), and edge (node 1 of bus 4 → 

node 3 of bus 5). In the capacitor placement 

problem, path 1 having a path distance of 200 

means that the for the capacitor placement [2 1 2 1 

3] is 200.The average edge distances for these five 

paths are calculated as [200; 250; 300; 350; 400] / 

5 = [40; 50; 60; 70; 80], because each path has five 

edge distances. The inverse of the average edge 

distance is subsequently determined as η = [1/40; 

1/50; 1/60; 1/70; 1/80] .And the distance of the 

globally best tour is δ = [200 250 300 350 400]. 

Moreover, let the initial τ(i,j) = 0,τo = 0.1,ρ = 0.05, 

σ = 0.1 and β = 1. 

 By applying the local updating rule of , the 

local τ(i,j)  is determined. This local τ(i,j) is then 

substituted into the global updating rule of  to 

obtain the global . Finally, this global τ(i,j), η , and 

β are substituted into the state transition rule of  to 

determine the probability of these five available 

capacitor sizes to be selected for placement by 

these five buses.  

Fig.4 Probability Matrix of Capacitor Placement. 

 

From the probability matrix shown above, it can be seen that 

path [2 1 3 1 3] has the highest probability to be selected. 

Moreover, path [2 1 3 1 3] is very close to path [2 1 3 1 3] , 

which has the lowest cost of 200 assumed above. Similar 

search procedures are repeated to reach a final convergent 

solution. 

 

CASE STUDY 

The Ant Colony Search Algorithm has based tested on 28 

node test systems. The one line diagram of the test systems 

are given in below.  

 

Fig 5 

Flow chart for Proposed Method 
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The results are obtained and presented in table1. The 

analysis of these results indicates that the Ant Colony Search 

Algorithm provides optimal locations of capacitor support to 

be provided to improve voltage stability. This method not 

only enhances voltage stability but also minimizes the losses 

and improves voltage profile. This method is suitable for 

practical implementation. 

 

 

IV. CONCLUSION 
 

A simple optimal capacitor placement for voltage stability 

enhancement of distribution system by using Ant Colony 

Search Algorithm has been suggested in this Paper. This 

method is simple and is based on a voltage stability index. 

This method not only improves voltage stability but also 

reduces network losses and enhances voltage profile 

effectively. This Algorithm is suitable for practical 

implementation on systems of any size.  
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