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ABSTRACT 
 

This paper presents an area efficient architecture for fused floating point addition using three terms. The first step of 

fused floating point addition is exponent comparison and significand alignment which occupies a major proportion 

of area in the overall architecture. Reduction in area is achieved by replacing exponent processing , significand 

alignment block and mantissa addition block of the existing fused floating point three term adder architecture with 

blocks having reduced area and comparable speed .The blocks proposed utilizes less hardware compared to the 

existing blocks without any compromise in the performance. The performance measures are evaluated using a 

specific tool and reduction in area is observed from the proposed work. 
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I. INTRODUCTION 

 

The most preferred standard for floating point 

arithmetic is IEEE-754 standard [1]. The need for 

uniform treatment of real numbers and efficient 

approximation of real numbers lead to the evolution of 

IEEE-754 standard and has been adopted universally by 

almost all computer manufacturers. It specifies 

interchange, arithmetic formats and methods for binary 

and decimal floating-point arithmetic in computer 

programming environments .Floating point arithmetic 

involves single, double and quadruple precision, where 

precision refers to number of significant digits it takes 

to represent a number. Computing machines are 

organized with multi-core computing system, to provide 

high floating point computational support. Graphic and 

Multimedia applications require intensive single 

precision operations in parallel. Hardware 

implementations such as PCs based on Intel *87 chips 

support only single ,double and double extended, and 

most other hardware implementations support only 

single and double precision. Floating point DSPs have 

offered faster and easier manipulation that outweighs 

the importance of floating point units. Addition of 

floating point numbers is a basic requirement for DSP 

applications involving large dynamic range of data 

operands.  

There are several works related to fused floating point 

arithmetic such as fused multiply-add unit [2] ,fused 

add-subtract unit [3,4] and fused dot-product unit 

[5].Fused floating point units performs multiple 

operations in a single unit. Among the 

operations ,floating point addition is frequently used yet 

complex operation .Floating point arithmetic includes 

processes such as exponent processing and significand 

alignment, normalization, addition and rounding. These 

operations require increased area, power consumption 

and latency for these reasons we tend to prefer 

optimizations. In case of floating point two term 

addition, there exists several optimized architectures 

and very few works related to floating point three term 

addition [6, 7, 8]. 

 

II. METHODS AND MATERIAL 

 

1. Existing Floating Point Three Term Adders 

Discrete design for three term addition employed series 

of two term additions, that lead to the loss of accuracy 

and takes twice the area, latency and power of two term 

adder blocks. To overcome that drawback fused floating 

point units [6,7,8] came into existence, these units 

shares a common logic to perform two additions at once 

with improved accuracy since rounding performed once.  
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Traditional fused floating point three term adder [7,8] 

takes three operands and perform two additions at once. 

There are chances for optimizations with the traditional 

architecture as proposed in [6]. The optimizations 

proposed in fused floating point three term adder [6] 

includes 1)New exponent compare and significand 

alignment scheme to compute the maximum exponent 

and shifts the significands according to the exponent 

differences , 2)Dual-reduction to avoid the need for 

complementation after the significand addition, 3)Early 

normalization to reduce the adder size while 

maintaining precision ,4)Three input LZA in parallel 

with significand addition to prevent delay overhead and 

5)Compound addition and rounding as in Fig 1.  

  
Figure 1. Existing fused floating point three term adder 

 

Pipelining was employed to achieve high throughput 

and reduced delay. Existing and proposed architecture 

involves three pipeline stages to produce output at each 

cycle with the stages organized as  

First Stage : Unpack-Exponent compare-significand 

alignment, Second stage : Invert-LZA / LZD-

Normalization, Third stage: Significand addition-Round 

select. 

 

 

 

 

 

 

III. RESULTS AND DISCUSSION 

 
Proposed Area Efficient Fused Floating Point 

Addition 

The exponent compare and significand alignment block 

of the existing work occupies major proportion of area 

in the overall architecture so it is modified with an area 

efficient block [7] and different comparison logic is 

proposed for the computation of maximum exponent. 

The Kogge stone adder for mantissa addition is replaced 

with Ling adder [16,17] since ling adder was found to 

have reduced computation and comparable speed. 

Pipelining is employed in the proposed work to sustain 

the advantage of high throughput, reduced delay and to 

obtain output at each clock cycle. 

 

1) Exponent compare and significand alignment 

Two numbers with unequal exponents can’t be added, 

the significands need to be aligned according to 

exponent differences and this is performed by exponent 

compare and significand alignment block. Finding the 

maximum exponent is the first step of floating point 

addition. The second step in floating point arithmetic is 

to shift the normalized significand corresponding to the 

smaller exponent right by the exponent difference 

obtained by subtracting the smaller exponent from the 

maximum exponent .In general, Exponent difference is 

given by  

 

ΔE=E1-E2 

The smaller significand is shifted by the difference 

amount ΔE i.e., dividing the significand by 

   .Implicitly this is compensated by adding ΔE to the 

smaller exponent, equalizing it with larger exponent. 

Once the exponents are made equal, their significands 

can be directly added. The right shift denormalizes the 

smaller significand if the exponent difference ΔE is 

greater than zero. The information corresponding to data 

loss of significand should be provided for proper 

rounding operation that is why sticky logic is performed 

during significand alignment process. 

 

Traditional methods finds maximum exponent using 

exponent differences. It involves subtraction, 

complementation and significand shift resulting in 

increased latency .whereas in exponent comparison 

method shown in fig. 2 six subtractions are performed in 

parallel between all the combination of two exponents. 

Need for complementation is eliminated by selecting a 
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positive difference from each pair. Difference 

computation and significand shift are overlapped since 

difference LSBs are produced first. 

 

 
 

Figure 2. Existing Exponent comparision and 

significand alignment block 

 

This employs another comparator and a multiplexer and 

finally the maximum out of the three exponents are 

obtained at the output. Subtraction between the 

maximum exponent and the other two exponent gives 

the exponent difference and this becomes the shift 

amount for significand alignment. Since computation of 

maximum exponent occurs at the earlier stage prior to 

difference computation, there is no way for the 

difference to go negative so need for complementation 

as well as selection of absolute value of difference is 

eliminated.But in case of existing logic, prediction of 

maximum exponent takes place only at the last stage so 

one may not know whether the difference will be 

positive or negative so we use 6 subtractors (two for 

each combination) and also we need a multiplexer to 

select the positive difference value for alignment. In 

addition to that, the existing work compares three pairs 

of exponents whereas in proposed work only two 

comparisons are done. All these modifications lead to 

efficient reduction in area and significance is better 

observed with large number of inputs. 

 
Figure 3. Proposed Exponent comparision and 

significand alignment block 

 

Sticky logic is performed during this process to 

determine guard (G), round(R) and sticky(S) bits. G and 

R are the first two bits under LSB, S is set if one of the 

over shifted bits are 1.The bit width of aligned 

significand is 2f+6 bit wide to guarantee significand 

precision. The largest exponent and aligned significands 

are found using control logic based on exponent 

comparison and is done for each combination of 

exponent. With increasing number of inputs the 

proposed block for exponent comparison and 

significand alignment achieves significant reduction in 

area and the extension of the architecture is also very 

simple compared to extension of existing work.  

 

This is followed by part of mantissa addition[2]. The 

mantissa addition is performed with the reduced 

significands using ling adder. Three input leading zero 

anticipation[10] is performed in parallel with mantissa 

addition.[2,9,11,12,13]. In normal cases the result of 

addition is usually normalized with LZD placed after 

the adder block. To hide the delay of reduction block, 

three input LZA is employed it has 1) Pre encoding 

indicator vectors and 2) LZD tree to compute the shift 

amount.  

 

The pre_encoding vector is obtained by performing bit 

wise operation to generate W vector using four 

significands as follows, 

W=A+B-C-D 
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The W vector is used to find propagate (t), generate(g) 

and kill(z) terms and F vector is computed as shown in 

equation below.This vector is then passed through LZD 

tree for leading zero count.In some cases there may be 

error in the anticipated zero count and correction logic 

to be incorporated as in [14,15,18] and to select the 

positive significand pair significand comparison bit is 

generated at this stage. 

 

       (      ̅̅ ̅̅ ̅     ̅   )   ̅   (      ̅̅ ̅̅ ̅        ̅̅ ̅̅ ̅̅ ) 

Signif_comp =                      

                

 

The significand comparison and sign_a are used for 

determination for final sign. Sign logic determines the 

sign of the result. Both positive and negative reduced 

significand pair are obtained using two reduction trees. 

Positive pair is selected based on the sign of the 

significand sum.  

 

2) Mantissa Addition  

The second modification is the adder with Ling adder 

for mantissa addition .The aligned significand after 

inversion and reduction will be passed to the mantissa 

addition block. Parallel prefix adder is employed for 

mantissa addition and few stages of addition is 

completed before normalization. The delay of an adder 

depends on how fast the carry reaches each bit position. 

Hence the major bottleneck in the design of binary 

addition is the carry chain which computes the carries. 

To reduce the delay and to improve the performance, 

the parallel prefix adders can be employed. The concept 

in parallel prefix adder is to compute a small group of 

intermediate prefixes and then find the large group of 

prefixes, until all the carry bits are computed. The three 

stages of a prefix adder includes 

 

 Pre – Processing stage 

 Prefix stage 

 Post _ Processing stage  

Carry equations of any conventional prefix adder and 

ling adder are shown below  

 
 

Figure 4. Ling adder for mantissa addition 

 

C = gi + pi gi-1+pi pi-1 gi-2+……..pi pi-1 pi-2….g0  

 Hi = gi +gi-1+pi-1gi-2+…..+pi-1.pi-2…p1.g0  

 

The ling adder shown in fig 4 can be extended for 

increasing inputs.  

 

Rest of the addition and rounding is in the last stage of 

significand processing .Compound addition and 

rounding [10,19] are performed after normalization for 

higher and lower bits respectively. Compound addition 

determines higher bits including overflow bits and 

rounding determines three LSBs and round decision. A 

3 bit adder determines three round up bits and L2, L1 

and L0 to determine three LSBs of result, carry-out of 

this addition selects result between sum and sum+1 

obtained from compound addition. 

 

Exponent adjustment logic uses the maximum exponent 

from exponent comparison block, and is adjusted by 

subtracting shift amount and adding the carry-

out(overflow bits) of significand addition. Exceptions 

specified in IEEE-754 standard such as overflow, 

underflow and inexact are found using this block. 

 

IV. FUTURE SCOPE 
 

There are chances for optimizations of delay in addition 

to area. Area optimization will be better observed when 

the architecture is improved for handling many inputs. 

 

V. CONCLUSION 

 
The proposed architecture is obtained by applying 

modification to significand alignment and mantissa 

addition of the existing work and the proposed 

architecture handles both single and double precision. In 

addition to this it can also handle exceptions .The 
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architecture utilizes pipelining stages to obtain reduced 

delay. The proposed architecture for three term addition 

has achieved reduction in area compared to its previous 

work. The performance metrices such as area, power 

and delay are evaluated using a tool for the existing and 

proposed work, these measures are tabulated  for better 

understanding. 
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