
IJSRSET1731102 | Received : 15 Feb-2017 | Accepted : 25 Feb-2017 | January-February-2017 [(3)1: 476-480]

© 2017 IJSRSET | Volume 3 | Issue 1 | Print ISSN: 2395-1990 | Online ISSN : 2394-4099
Themed Section: Engineering and Technology

476

A Novel Approach to Optimize Area of Fused Floating Point Three
Term Adder

C. Yamunarani, M. Indu

Department of Electrical and Communication Engineering, SNS College of Technology, Tamilnadu, India

ABSTRACT

This paper presents an area efficient architecture for fused floating point addition using three terms. The first step of

fused floating point addition is exponent comparison and significand alignment which occupies a major proportion

of area in the overall architecture. Reduction in area is achieved by replacing exponent processing , significand

alignment block and mantissa addition block of the existing fused floating point three term adder architecture with

blocks having reduced area and comparable speed .The blocks proposed utilizes less hardware compared to the

existing blocks without any compromise in the performance. The performance measures are evaluated using a

specific tool and reduction in area is observed from the proposed work.

Keywords: Area Efficient , Exponent Compare, Significand Alignment, Ling Adder.

I. INTRODUCTION

The most preferred standard for floating point

arithmetic is IEEE-754 standard [1]. The need for

uniform treatment of real numbers and efficient

approximation of real numbers lead to the evolution of

IEEE-754 standard and has been adopted universally by

almost all computer manufacturers. It specifies

interchange, arithmetic formats and methods for binary

and decimal floating-point arithmetic in computer

programming environments .Floating point arithmetic

involves single, double and quadruple precision, where

precision refers to number of significant digits it takes

to represent a number. Computing machines are

organized with multi-core computing system, to provide

high floating point computational support. Graphic and

Multimedia applications require intensive single

precision operations in parallel. Hardware

implementations such as PCs based on Intel *87 chips

support only single ,double and double extended, and

most other hardware implementations support only

single and double precision. Floating point DSPs have

offered faster and easier manipulation that outweighs

the importance of floating point units. Addition of

floating point numbers is a basic requirement for DSP

applications involving large dynamic range of data

operands.

There are several works related to fused floating point

arithmetic such as fused multiply-add unit [2] ,fused

add-subtract unit [3,4] and fused dot-product unit

[5].Fused floating point units performs multiple

operations in a single unit. Among the

operations ,floating point addition is frequently used yet

complex operation .Floating point arithmetic includes

processes such as exponent processing and significand

alignment, normalization, addition and rounding. These

operations require increased area, power consumption

and latency for these reasons we tend to prefer

optimizations. In case of floating point two term

addition, there exists several optimized architectures

and very few works related to floating point three term

addition [6, 7, 8].

II. METHODS AND MATERIAL

1. Existing Floating Point Three Term Adders

Discrete design for three term addition employed series

of two term additions, that lead to the loss of accuracy

and takes twice the area, latency and power of two term

adder blocks. To overcome that drawback fused floating

point units [6,7,8] came into existence, these units

shares a common logic to perform two additions at once

with improved accuracy since rounding performed once.

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 477

Traditional fused floating point three term adder [7,8]

takes three operands and perform two additions at once.

There are chances for optimizations with the traditional

architecture as proposed in [6]. The optimizations

proposed in fused floating point three term adder [6]

includes 1)New exponent compare and significand

alignment scheme to compute the maximum exponent

and shifts the significands according to the exponent

differences , 2)Dual-reduction to avoid the need for

complementation after the significand addition, 3)Early

normalization to reduce the adder size while

maintaining precision ,4)Three input LZA in parallel

with significand addition to prevent delay overhead and

5)Compound addition and rounding as in Fig 1.

Figure 1. Existing fused floating point three term adder

Pipelining was employed to achieve high throughput

and reduced delay. Existing and proposed architecture

involves three pipeline stages to produce output at each

cycle with the stages organized as

First Stage : Unpack-Exponent compare-significand

alignment, Second stage : Invert-LZA / LZD-

Normalization, Third stage: Significand addition-Round

select.

III. RESULTS AND DISCUSSION

Proposed Area Efficient Fused Floating Point

Addition

The exponent compare and significand alignment block

of the existing work occupies major proportion of area

in the overall architecture so it is modified with an area

efficient block [7] and different comparison logic is

proposed for the computation of maximum exponent.

The Kogge stone adder for mantissa addition is replaced

with Ling adder [16,17] since ling adder was found to

have reduced computation and comparable speed.

Pipelining is employed in the proposed work to sustain

the advantage of high throughput, reduced delay and to

obtain output at each clock cycle.

1) Exponent compare and significand alignment

Two numbers with unequal exponents can’t be added,

the significands need to be aligned according to

exponent differences and this is performed by exponent

compare and significand alignment block. Finding the

maximum exponent is the first step of floating point

addition. The second step in floating point arithmetic is

to shift the normalized significand corresponding to the

smaller exponent right by the exponent difference

obtained by subtracting the smaller exponent from the

maximum exponent .In general, Exponent difference is

given by

ΔE=E1-E2

The smaller significand is shifted by the difference

amount ΔE i.e., dividing the significand by

 .Implicitly this is compensated by adding ΔE to the

smaller exponent, equalizing it with larger exponent.

Once the exponents are made equal, their significands

can be directly added. The right shift denormalizes the

smaller significand if the exponent difference ΔE is

greater than zero. The information corresponding to data

loss of significand should be provided for proper

rounding operation that is why sticky logic is performed

during significand alignment process.

Traditional methods finds maximum exponent using

exponent differences. It involves subtraction,

complementation and significand shift resulting in

increased latency .whereas in exponent comparison

method shown in fig. 2 six subtractions are performed in

parallel between all the combination of two exponents.

Need for complementation is eliminated by selecting a

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 478

positive difference from each pair. Difference

computation and significand shift are overlapped since

difference LSBs are produced first.

Figure 2. Existing Exponent comparision and

significand alignment block

This employs another comparator and a multiplexer and

finally the maximum out of the three exponents are

obtained at the output. Subtraction between the

maximum exponent and the other two exponent gives

the exponent difference and this becomes the shift

amount for significand alignment. Since computation of

maximum exponent occurs at the earlier stage prior to

difference computation, there is no way for the

difference to go negative so need for complementation

as well as selection of absolute value of difference is

eliminated.But in case of existing logic, prediction of

maximum exponent takes place only at the last stage so

one may not know whether the difference will be

positive or negative so we use 6 subtractors (two for

each combination) and also we need a multiplexer to

select the positive difference value for alignment. In

addition to that, the existing work compares three pairs

of exponents whereas in proposed work only two

comparisons are done. All these modifications lead to

efficient reduction in area and significance is better

observed with large number of inputs.

Figure 3. Proposed Exponent comparision and

significand alignment block

Sticky logic is performed during this process to

determine guard (G), round(R) and sticky(S) bits. G and

R are the first two bits under LSB, S is set if one of the

over shifted bits are 1.The bit width of aligned

significand is 2f+6 bit wide to guarantee significand

precision. The largest exponent and aligned significands

are found using control logic based on exponent

comparison and is done for each combination of

exponent. With increasing number of inputs the

proposed block for exponent comparison and

significand alignment achieves significant reduction in

area and the extension of the architecture is also very

simple compared to extension of existing work.

This is followed by part of mantissa addition[2]. The

mantissa addition is performed with the reduced

significands using ling adder. Three input leading zero

anticipation[10] is performed in parallel with mantissa

addition.[2,9,11,12,13]. In normal cases the result of

addition is usually normalized with LZD placed after

the adder block. To hide the delay of reduction block,

three input LZA is employed it has 1) Pre encoding

indicator vectors and 2) LZD tree to compute the shift

amount.

The pre_encoding vector is obtained by performing bit

wise operation to generate W vector using four

significands as follows,

W=A+B-C-D

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 479

The W vector is used to find propagate (t), generate(g)

and kill(z) terms and F vector is computed as shown in

equation below.This vector is then passed through LZD

tree for leading zero count.In some cases there may be

error in the anticipated zero count and correction logic

to be incorporated as in [14,15,18] and to select the

positive significand pair significand comparison bit is

generated at this stage.

 (̅̅ ̅̅ ̅ ̅) ̅ (̅̅ ̅̅ ̅ ̅̅ ̅̅ ̅̅)

Signif_comp =

The significand comparison and sign_a are used for

determination for final sign. Sign logic determines the

sign of the result. Both positive and negative reduced

significand pair are obtained using two reduction trees.

Positive pair is selected based on the sign of the

significand sum.

2) Mantissa Addition

The second modification is the adder with Ling adder

for mantissa addition .The aligned significand after

inversion and reduction will be passed to the mantissa

addition block. Parallel prefix adder is employed for

mantissa addition and few stages of addition is

completed before normalization. The delay of an adder

depends on how fast the carry reaches each bit position.

Hence the major bottleneck in the design of binary

addition is the carry chain which computes the carries.

To reduce the delay and to improve the performance,

the parallel prefix adders can be employed. The concept

in parallel prefix adder is to compute a small group of

intermediate prefixes and then find the large group of

prefixes, until all the carry bits are computed. The three

stages of a prefix adder includes

 Pre – Processing stage

 Prefix stage

 Post _ Processing stage

Carry equations of any conventional prefix adder and

ling adder are shown below

Figure 4. Ling adder for mantissa addition

C = gi + pi gi-1+pi pi-1 gi-2+……..pi pi-1 pi-2….g0

 Hi = gi +gi-1+pi-1gi-2+…..+pi-1.pi-2…p1.g0

The ling adder shown in fig 4 can be extended for

increasing inputs.

Rest of the addition and rounding is in the last stage of

significand processing .Compound addition and

rounding [10,19] are performed after normalization for

higher and lower bits respectively. Compound addition

determines higher bits including overflow bits and

rounding determines three LSBs and round decision. A

3 bit adder determines three round up bits and L2, L1

and L0 to determine three LSBs of result, carry-out of

this addition selects result between sum and sum+1

obtained from compound addition.

Exponent adjustment logic uses the maximum exponent

from exponent comparison block, and is adjusted by

subtracting shift amount and adding the carry-

out(overflow bits) of significand addition. Exceptions

specified in IEEE-754 standard such as overflow,

underflow and inexact are found using this block.

IV. FUTURE SCOPE

There are chances for optimizations of delay in addition

to area. Area optimization will be better observed when

the architecture is improved for handling many inputs.

V. CONCLUSION

The proposed architecture is obtained by applying

modification to significand alignment and mantissa

addition of the existing work and the proposed

architecture handles both single and double precision. In

addition to this it can also handle exceptions .The

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 480

architecture utilizes pipelining stages to obtain reduced

delay. The proposed architecture for three term addition

has achieved reduction in area compared to its previous

work. The performance metrices such as area, power

and delay are evaluated using a tool for the existing and

proposed work, these measures are tabulated for better

understanding.

VI. REFERENCES

[1]. IEEE Standard for Floating-Point Arithmetic,

ANSI/IEEE Standard 754-2008, IEEE, Inc., 2008.

[2]. T. Lang and J.D. Bruguera, "Floating-point fused

multiply-add with reduced latency," IEEE Trans.

Computers, vol. 53, pp. 988–1003, 2004.

[3]. H. H. Saleh and E. E. Swartzlander, Jr., "A

floating-point fused add subtract unit," in Proc.

51st IEEE Midwest Symp. Circuits Syst.,

2008,pp. 519–522.

[4]. J. Sohn and E. E. Swartzlander, Jr., "Improved

architectures for a fused floating-point add-

subtract unit," IEEE Trans. Circuits Syst. I, Reg.

Papers, vol. 59, no. 10, pp. 2285–2291, Oct. 2012.

[5]. H. H. Saleh and E. E. Swartzlander, Jr., "A

floating-point fused dot product unit," in Proc.

IEEE Int. Conf. Computer Des., 2008, pp.427–

431.

[6]. J. Sohn and E. E. Swartzlander, Jr., "A fused

floating-point three-term adder," in IEEE Trans.

Circuits Syst. I, Reg. Papers, vol. 61, no. 10, pp.

2842–2850, Oct. 2014.

[7]. A. Tenca, "Multi-operand floating-point

addition," in Proc. 21st Symp. Computer

Arithmetic, 2009, pp. 161–168.

[8]. Y. Tao, G. Deyuan, F. Xiaoya, and R. Xianglong,

"Three-operand floating-point adder," in Pro. 12th

IEEE Int. Conf. Comput. Inf Technol., 2012, pp.

192–196.

[9]. Jongwook Sohn, "Improved architecture for fused

floating-point arithmetic units," Ph.D.

dissertation, University of Texas, Austin,2013.

[10]. P. M. Seidel and G. Even, "Delay-optimized

implementation of IEEE floating-point addition,"

IEEE Trans. Computers, vol. 53, no. 2, pp.97–

113, Feb. 2004.

[11]. M. S. Schmookler and K. J. Nowka, "Leading

zero anticipation and detection-a comparison of

methods," in Proc. 15th IEEE Symp. Computer

Arithmetic, 2001, pp. 7–12.

[12]. V. G. Oklobdzija, "An algorithmic and novel

design of a leading zero detector circuit

comparison with logic synthesis," IEEE Trans.

VLSI Syst., vol. 2, no. 1, pp. 124–128, Mar. 1994.

[13]. G. Dimitrakopoulos, K. Galanopoulos, C.

Mavrokefalidis, and D.Nikolos , "Low- power

leading zero counting and anticipation logic for

high-speed floating point units," IEEE Trans.

VLSI Syst., vol. 16, no. 7, pp. 837–850, Jul. 2008.

[14]. J. D. Bruguera and T. Lang, "Leading-one

prediction with concurrent position correction,"

IEEE Trans. Computers, vol. 48, no. 10, pp.1083–

1097, Oct. 1999.

[15]. R.Ji.Z.Ling,X.Zeng,B.Sui,L.Chen,J.Zhang,Y.

Feng, and G. Luo, "Leading-one prediction with

concurrent position correction," IEEE Trans.

Comput., vol. 58, no. 12, pp. 1726–1727, Dec.

2009.

[16]. N.Poornima, V.S.Kanchana Bhaskaran, "Area

efficient hybrid parallel prefix adders".

[17]. Giorgos Dimitrakopoulous,Dimitris Nikolos,

"High-speed parallel prefix VLSI ling adders,"

IEEE Trans. Comput., vol. 54, no. 2, pp. 225–231,

Feb. 2005.

[18]. P. Kornerup, "Correcting the normalization shift

of redundant binary representations," IEEE Trans.

Computers, vol. 58, pp. 1435–1439,2009.

[19]. G. Even and P.M. Seidel, "A comparison of three

rounding algorithms for IEEE floating-point

multiplication," IEEE Trans. Comput., vol. 49,pp.

638–650, 2000.

