Development of Special elements in hybrid FEM

Yi Xiao
Research School of Engineering, Australian National University, Acton, ACT 2601, Australia

ABSTRACT
This paper presents an overview on developments of special elements in hybrid finite element method (FEM). Recent developments on special elements of the hybrid FEM are described. Formulations for all cases are derived by means of modified variational functional and fundamental solutions or Trefftz functions. Generation of elemental stiffness equations from the modified variational principle is also discussed. Finally, a brief summary of the approach and potential research topics is provided.

Keywords: Finite Element Method, Fundamental Solution, Special Element.

I. INTRODUCTION
Cellular solids like honeycombs, foams, films, cancellous bone, etc., are of considerable interest in engineering applications due to their superior thermal and mechanical performance [1-6]. It should be mentioned that analytical solutions which are available only for a few problems with simple geometries and boundary conditions [7-21]. Therefore, development of efficient numerical methods is vital for solving engineering problems [22-28]. The first is the so-called hybrid Trefftz FEM (or H-Trefftz method) [29, 30]. Unlike in the conventional FEM, the H-Trefftz method couples the advantages of conventional FEM [31-34] and BEM [35-37]. In contrast to the standard FEM, the H-Trefftz method is based on a hybrid method which includes the use of an independent auxiliary inter-element frame field defined on each element boundary and an independent internal field chosen so as to a priori satisfy the homogeneous governing differential equations by means of a suitable truncated T-complete function set of homogeneous solutions. Since 1970s, H-Trefftz model has been considerably improved and has now become a highly efficient computational tool for the solution of complex boundary value problems. It has been applied to potential problems [38-41], two-dimensional elastics [42, 43], elastoplasticity [44, 45], fracture mechanics [46-48], micromechanics analysis [49, 50], problem with holes [51, 52], heat conduction [53-55], thin plate bending [56-59], thick or moderately thick plates [60-64], three-dimensional problems [65], piezoelectric materials [66-70], and contact problems [71-73].

On the other hand, the hybrid FEM based on the fundamental solution (F-Trefftz method for short) was initiated in 2008 [30, 74] and has now become a very popular and powerful computational methods in mechanical engineering. The F-Trefftz method is significantly different from the T-Trefftz method discussed above. In this method, a linear combination of the fundamental solution at different points is used to approximate the field variable within the element. The independent frame field defined along the element boundary and the newly developed variational functional are employed to guarantee the inter-element continuity, generate the final stiffness equation and establish linkage between the boundary frame field and internal field in the element. This review will focus on the F-Trefftz finite element method.

The F-Trefftz finite element method, newly developed recently [30, 74], has gradually become popular in the field of mechanical and physical engineering since it is initiated in 2008 [30, 75, 76]. It has been applied to potential problems [40, 77-79], plane elasticity [43, 80, 81], composites [82-87], piezoelectric materials [88-90], three-dimensional problems [91], functionally graded materials [92-94], bioheat transfer problems [95-101], thermal elastic problems [102], hole problems [103,
heat conduction problems [74, 105], micromechanics problems [49, 50], and anisotropic elastic problems [106-109].

Following this introduction, the present review consists of 3 sections. Special F-Trefftz elements for plane elasticity with circular holes are described in Section 2. It describes in detail the method of deriving element stiffness equations. Section 3 focuses on the essentials of special elliptical hole elements. Section 4 presented Special elements for plane elasticity with discontinuous loads. Finally, a brief summary of the developments of the hybrid methods is provided.

II. METHODS AND MATERIAL

A. Special Circular Elements

1. Basic equations for plane elasticity

For a well-posed plane elastic problem with circular cutouts in an arbitrary domain Ω, as shown in Figure 1, the corresponding partial differential governing equations under the assumption of small deformation are given in matrix form as

\[
\{\sigma\} = [L]\{\varepsilon\} + \{\vec{b}\} = \{0\}
\]

where \(\{\sigma\} = [\sigma_{11} \; \sigma_{22} \; \sigma_{12}]^T\) and \(\{\varepsilon\} = [\varepsilon_{11} \; \varepsilon_{22} \; \gamma_{12}]^T\) denote stress and strain vectors, respectively, \(\{\vec{b}\} = [\vec{b}_1 \; \vec{b}_2]^T\) body force vector, \(\{u\} = [u_1 \; u_2]^T\) displacement vector, and

\[
[L] = \begin{bmatrix}
\partial_{x_1} & 0 & \partial_{x_2} \\
0 & \partial_{x_2} & 0 \\
\partial_{x_1} & 0 & \partial_{x_2}
\end{bmatrix}
\]

(2)

the differential matrix, in which a comma denotes partial differentiation, i.e. \(\partial_x = \partial / \partial x\), and \(X_i (i=1,2)\) are the global Cartesian coordinates. The stress-strain matrix is given by

\[
[D] = \frac{E}{1-\nu^2} \begin{bmatrix}
1 & \nu' & 0 \\
\nu' & 1 & 0 \\
0 & 0 & 1-\nu'
\end{bmatrix}
\]

(3)

with \(E^* = E \cdot \nu' = \nu\) for a plane stress problem and \(E^* = E/(1-\nu^2)\), \(\nu' = \nu/(1-\nu)\) for a plane strain problem. \(E\) and \(\nu\) denote respectively the elastic modulus and the Poisson’s ratio.

Besides, following boundary displacement and traction conditions should be complemented to keep the system complete

\[
\{u\} = \{\vec{u}\} \quad \text{on } \Gamma_u \\
\{\sigma\} = \{\vec{\sigma}\} \quad \text{on } \Gamma_s
\]

(4)

where the overbar represents a given value, and

\[
[A] = \begin{bmatrix}
n_1 & 0 & n_2 \\
0 & n_1 & n_2
\end{bmatrix}
\]

(5)

with \(n_i\) representing the \(i\)th component of the unit outward normal to the boundary \(\Gamma = \Gamma_u + \Gamma_s\).

Rearranging Eq. (1) leads to the following Cauchy-Navier equations in terms of displacements

\[
[L][D][L]^T \{u\} + \{\vec{b}\} = \{0\}
\]

(6)

2. Fundamental solutions

For plane elastic problems involving holes, it is convenient to express the fundamental solutions in terms of complex variables. In plane elastic theory, all components of elastic fields including the stresses \(\sigma_{11}, \sigma_{22}, \sigma_{12}\), the displacements \(u_1, u_2\) and the resultant forces \(P_1, P_2\) along a curve can be expressed in terms of two complex analytic functions \(\phi(z)\) and \(\psi(z)\) as[110]

\[
\begin{align*}
2G(u_{1i} + u_{2i}) &= \kappa\phi(z) + z\overline{\phi(z)} - z\phi(z) - \overline{\psi(z)} \\
\sigma_{11} + \sigma_{22} &= 4Re[\phi'(z)] \\
\sigma_{22} - \sigma_{11} + 2\sigma_{12} &= 2(\overline{\phi'(z)} + \psi'(z)) \\
P_i + P_{2i} &= 21[\phi(z) + z\overline{\phi'(z)} + \overline{\psi(z)}]
\end{align*}
\]

(7)

where \(G = E/(1+\nu)\), \(\kappa = (3-\nu)/(1+\nu)\) for plane
stress and \(\kappa = 3 - 4\nu\) for plane strain, \(z = x_1 + x_2i\) is the complex coordinate in the \(z\)-plane with \(I = \sqrt{-1}\), the overbar denotes complex conjugation, \(Re\) denotes the real part of the function and prime denotes differentiation with respect to the argument \(z\).

A point force in an infinite plane

If a concentrated force \(F = F_1 + F_2i\) is located at the point \(z_0 = x_0' + x_0''i\) in the infinite plane, the complex functions can be written as[110]

\[
\begin{align*}
\phi(z) &= M \ln(z - z_0) \\
\psi(z) &= N \ln(z - z_0) - M \frac{z_0}{z - z_0}
\end{align*}
\]

(8)

where

\[
M = -\frac{F}{2\pi(1 + \kappa)}, \quad N = -\kappa M
\]

Obviously, the complex functions in Eq. (8) are singular at the point \(z_0\), which can be taken as the basis for constructing more complex fundamental solutions.

By substituting Eq. (8) into Eq. (7), the classical formation of the Kelvin solution can be obtained. For example, for plane strain problems, if \(u_0^*(z, z_0)\) and \(\sigma_0^*(z, z_0)\) are the induced displacements and stresses at \(z\) due to \(l\)-direction unit force at \(z_0\), we have[36]

\[
\begin{align*}
u^*_0 &= \frac{1}{8\pi G(1-\nu)} \left[(3 - 4\nu) \delta_{ij} \ln \frac{1}{r} + r_i r_j \right] \\
\sigma^*_0 &= \frac{1}{4\pi (1 - \nu)} \left[(1 - 2\nu)(r_i \delta_{ij} - r_i r_j \delta_{ij}) - 2r_i r_j \right] r_j
\end{align*}
\]

(9)

where \(r\) stands for the distance between \(z\) and \(z_0\).

A point force in an infinite plane with circular hole

Consider a point force \(F = F_1 + F_2i\) at \(z_0\) in an infinite plane with a centered circular hole of radius \(a\). Using the complex variable formalism above, the fundamental solution sought can be expressed in the form

\[
\begin{align*}
\phi(z) &= \phi_0(z) + \phi_1(z) \\
\psi(z) &= \psi_0(z) + \psi_1(z)
\end{align*}
\]

(10)

where \(\phi_0\) and \(\psi_0\) are the singular terms for the infinite homogeneous body, which is the Kelvin’s solution expressed in terms of complex variable listed above, and \(\phi_1\) and \(\psi_1\) are regular terms to be determined so that the resultant tractions on the surface of the circular hole become zero. Furthermore, the vanishing stress conditions at infinity should also be satisfied.

Using the analytical continuation approach, the regular terms (also called imaging terms) can be obtained as

\[
\begin{align*}
\phi_1(z, z_0) &= -z \phi'(z^*, z_0) - \psi'(z^*, z_0) \\
\psi_1(z, z_0) &= -z \phi'(z^*, z_0) - z' \phi'(z, z_0)
\end{align*}
\]

(11)

where \(z^* = a^2 / z\), \(z_0^* = a^2 / z_0^*\).

Substituting the known singular terms and retaining the main parts of Eq. (11) gives the following solutions:

\[
\begin{align*}
\phi_1(z, z_0) &= -\bar{N} \ln(z - z_0^*) - \bar{M} \frac{z - z_0}{z - z_0} \frac{z_0^*}{z_0} \\
\psi_1(z, z_0) &= -\bar{M} \ln(z - z_0^*) + \bar{N} \frac{a^2}{z - z_0} - \frac{1}{z - z_0} \\
&- \frac{z_0^*}{z_0} - \frac{z_0^*}{z} + \frac{M}{z} \frac{z_0}{z} \frac{z_0^*}{z_0}
\end{align*}
\]

(12)

Having determined the two complex functions, the related displacement and stress solutions can be obtained using Eq. (7).

3. Hybrid FE Implementation

In this section, the procedure for developing a hybrid finite element model with the fundamental solutions as the interior trial functions is described for solving the boundary value problem (BVP) defined by Eqs. (1), (4), and Eq. (13) below.

As in the hybrid Trefftz FEM, the main aim of the proposed approach is to establish a hybrid finite element formulation whereby intra-element continuity is enforced on nonconforming internal displacement fields formed by a linear combination of fundamental solutions at source points outside the element domain under consideration, while auxiliary frame displacement fields are independently defined on the element boundary to enforce field continuity across inter-element boundaries. But unlike the hybrid Trefftz FEM, the intra-element fields in the HFS-FEM are constructed based on the fundamental solutions, rather than a truncated T-complete function set. Subsequently, a variational functional associated with the new displacement trial functions inside the element and displacements on the element boundary is required to

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

384
generate the related stiffness matrix equation. As the solution domain is divided into a number of elements denoted by \(\Omega_e \) with the element boundary \(\Gamma_e \), the following inter-element continuity related to displacements and tractions is usually required on the common boundary \(\Gamma_{ef} \) between any two adjacent elements ‘e’ and ‘f’ (see Figure 2):

\[
\begin{align*}
\{u_e\} &= \{u_f\} \\
\{s_e\} + \{s_f\} &= \{0\}
\end{align*}
\tag{13}
\]

Non-conforming intra-element fields

In the absence of body forces, and motivated by the method of fundamental solution (MFS) to remove the singularity of the fundamental solution, for a particular element shown in Figure 3, say element 'e', which occupies the sub-domain \(\Omega_e \), we first assume that the field variable defined in the element domain is approximated by a linear combination of fundamental solutions centered at different source points (see Figure 3) as

\[
\{u_e\} = \sum_{j=1}^{n_s} \left[u_{e1}(x_j, y_j) \right] \{c_j\} = [N]\{c\} \quad (\forall x \in \Omega_e, y \notin \Omega_e)
\tag{14}
\]

where \(n_s \) is the number of virtual sources outside the element domain, \(\{c\} = [c_{11}, c_{12}, \ldots, c_{2n}] \) is an unknown coefficient vector (not nodal displacements), and the coefficient matrix

\[
[N] = \begin{bmatrix}
u_{e11}(x, y) & u_{e21}(x, y) & \cdots & u_{e2n}(x, y) \\
u_{e12}(x, y) & u_{e22}(x, y) & \cdots & u_{e2n}(x, y) \\
\end{bmatrix}
\tag{15}
\]

where \(x \) and \(y \) are the field point and source point defined in the local coordinate system (\(x_i, x_2 \)).

Subsequently, differentiating Eq. (14) and substituting it into Eq. (1) yields the corresponding stress fields

By invoking the divergence theorem

\[
\{\sigma_e\} = [T]\{c\}
\tag{16}
\]

with

\[
[T] = \begin{bmatrix}
\sigma_{11}^e(x, y) & \sigma_{12}^e(x, y) & \cdots & \sigma_{1n}^e(x, y) \\
\sigma_{21}^e(x, y) & \sigma_{22}^e(x, y) & \cdots & \sigma_{2n}^e(x, y) \\
\end{bmatrix}
\]

Furthermore, the element boundary traction vector \(\{s_e\} \) is evaluated by

\[
\{s_e\} = [Q]\{c\} = [A][T]\{c\}
\tag{17}
\]

Auxiliary conforming frame fields

In order to enforce conformity on the displacement vector \(\{u\} \) along the inter-element boundary, for instance \(\{u_e\} = \{u_f\} \) on \(\Gamma_e \cap \Gamma_f \), of any two neighboring elements e and f, auxiliary inter-element frame fields \(\{\zeta\} \) are assumed in terms of the nodal degrees of freedom (DOF), \(\{d\} \), as used in the conventional FEM. For example, for the element shown in Figure 3 containing 10 nodes, the frame fields \(\{\zeta\} \) over the second edge consisting of nodes 3, 4, and 5 are written as

\[
\{\zeta\} = \{d\}
\tag{18}
\]

in which the shape function matrix \(\{\zeta\} \) and the nodal vector \(\{d\} \) are given by
and \(\tilde{\Gamma}_e \), \(i = 1, 2, 3 \) stands for shape functions in terms of the natural coordinate \(\xi \) defined in Figure 4, \(u_i^k \) \(i = 1, 2 \) denotes the nodal displacement at nodal \(k \).

\[
\sigma_e = \sigma_e + \sum_{j=1}^{m} T_{ej} c_{ej} = \sigma_e + T c_e
\]

(21)

as well as the boundary tractions

\[
t_e = \bar{t}_e + \sum_{j=1}^{m} Q_{ej} c_{ej} = t_e + Q c_e
\]

(22)

can be readily deduced from \(\sigma_e = DL^T u_e \) and \(t_e = A\sigma_e \) respectively, where \(L \) is the differential operator matrix, \(D \) contains elastic constants and \(A \) contains components of a unit normal to the element boundary \(\Gamma_e \).

The HT FE formulation for 2D elastic problems may be obtained by means of the following modified variational principle

\[
\Pi_m = \Pi_e - \sum_c \left[\int_{\Gamma_c} (t_e - \bar{t}) \bar{u}_e \, d\Gamma + \int_{\Gamma_c} t_e \bar{u}_e \, d\Gamma \right]
\]

(23)

where \(\Pi_e \) is the total complementary energy, the overhead bar is used to designate specified values.

Applying the stationary condition to Eq. (23) straightforwardly leads to the symmetric element stiffness equation

\[
K_e d_e = P_e
\]

(24)

where

\[
K_e = G_e^T H_e^T G_e
\]

(25)

\[
P_e = G_e^T H_e h_e - g_e
\]

(26)

Here the auxiliary matrices \(H_e, G_e, h_e \) and \(g_e \) are explicitly expressed as

\[
H_e = \int_{\Gamma_c} Q_e^T N_e \, d\Gamma = \int_{\Gamma_c} N_e^T Q_e \, d\Gamma
\]

(27)

\[
G_e = \int_{\Gamma_c} Q_e^T \tilde{N}_e \, d\Gamma
\]

(28)

\[
h_e = \frac{1}{2} \int_{\Gamma_c} (N_e^T \bar{t} + Q_e^T \bar{u}_e) \, d\Gamma + \frac{1}{2} \int_{\Omega_e} N_e^T \bar{b}_e \, d\Omega
\]

(29)

\[
g_e = \int_{\Gamma_c} \tilde{N}_e^T \bar{t} \, d\Gamma - \int_{\Gamma_c} \tilde{N}_e^T \bar{u}_e \, d\Gamma
\]

(30)

in which \(\bar{b}_e \) stand for the body forces.

2. Special Trefftz functions

A key step in constructing an accurate special finite element for a region with a hole is to find a special set of trial functions which reflect the local stress concentration characteristics. To achieve this, the
Muskhelishvili’s complex variable formulation is utilized herein (see Figure 5). The number of Trefftz functions m for elliptical hole elements is suggested here to be equal to the number of elemental degrees of freedom. The derivation of special Trefftz function can be carried out by using following expressions of displacements and stresses.

\[2G(u + iv) = \kappa \phi(z) - z \bar{\phi}(z) - \bar{\psi}(z) \]
\[\sigma_{xx} + i \sigma_{xy} = \tilde{\phi}(z) + \tilde{\bar{\phi}}(z) - z \phi(z) - \bar{\psi}(z) \]
\[\sigma_{yy} - i \sigma_{xy} = \tilde{\phi}(z) + \tilde{\bar{\phi}}(z) + z \phi(z) + \bar{\psi}(z) \]
where \(z = x + iy \), \(i = \sqrt{-1} \), \(\phi(z) \) and \(\psi(z) \) are two analytical functions, \(G = E / (1 + \mu) \), \(\kappa = (3 - \mu) / (1 + \mu) \), \(E \) and \(\mu \) are, respectively, Young’s modulus and Poisson’s ratio, \((\cdot) \) denotes differentiation with respect to \(z \) and \(\Gamma \) represents complex conjugate. The boundary conditions can be given in the complex form as

\[\kappa \phi(z) - z \bar{\phi}(z) - \bar{\psi}(z) = 2G(u + iv) \text{ on } \Gamma_u \]
\[\phi(z) + z \bar{\phi}(z) + \bar{\psi}(z) = i \int (\bar{\tau}_x + i \bar{\tau}_y) d\Gamma \text{ on } \Gamma_t \]

It is tedious to treat structures with holes in arbitrary direction. To bypass this difficulty, a rotated mapping function

\[\phi(\theta) = e^{i\theta} \]
is introduced into the horizontal conformal transformation as (see Figure 5)

\[z = f(\zeta) = \phi(\theta) \xi + \xi^2 = ce^{i\theta} \xi + m \xi^2 \]
where \(c = (a + b) / 2 \), \(m = (a - b) / (a + b) \), \(a \) and \(b \) are, respectively, the semi-major axis and semi-minor axis, \(\theta \) is the angle between the semi-major axis and \(x \) axis.

Substituting the inverse transformation

\[\zeta = f^{-1}(z) = \frac{1}{2ce^{i\theta}} \left(z \pm \sqrt{z^2 + 4c^2me^{2i\theta}} \right) \]

into Eqs. (31)-(33) produces the displacements and stresses in the \(\zeta \)-plane as:

\[2G(u_x + iu_y) = \kappa \phi - f \frac{\partial}{\partial \zeta} \bar{\psi} \]
\[\sigma_{xx} - i \sigma_{xy} = \frac{i \tilde{\phi} - \tilde{\bar{\phi}}}{f^3} - \frac{i \tilde{\phi} - \tilde{\bar{\phi}}}{f^3} \psi \]
\[\sigma_{yy} - i \sigma_{xy} = \frac{i \tilde{\phi} + \tilde{\bar{\phi}}}{f^3} + \frac{i \tilde{\phi} + \tilde{\bar{\phi}}}{f^3} \psi \]

Here, the sign in Eq. (38) is chosen in the similar way with Ref [110].

The transformed boundary conditions along the hole surface can be expressed as

\[\psi(\zeta) = \kappa \phi - f \frac{\partial}{\partial \zeta} \bar{\psi} - 2G(u + iv) \text{ on } \Gamma_u \]
\[\psi(\zeta) = -\phi + \frac{\partial}{\partial \zeta} \bar{\phi} - i \int (\bar{\tau}_x + i \bar{\tau}_y) d\Gamma \text{ on } \Gamma_t \]

In general, it is impossible to find a closed form formulation for \(\phi(\zeta) \) and \(\psi(\zeta) \) for arbitrary geometry and boundary conditions. By expanding the two holomorphic functions in the general expressions of elasticity solutions into two complex Laurent series respectively we have

\[\phi(\zeta) = \sum_{j=N}^{M} \phi_j \zeta^j \]
\[\psi(\zeta) = -\sum_{j=N}^{M} \psi_j \zeta^{-j} - \sum_{j=N}^{M} \sigma_j \zeta^{-j} \]

where \(a_j + ib_j \) are complex coefficients, \(M \) and \(N \) are the upper and lower limits of the Laurent series and \(M \) is generally set to be \(N \) for symmetry. Eq. (45) is obtained according to the traction-free condition along the hole boundary. Therefore, the displacement and stress fields are given in the following form

\[2G(u_x + iu_y) = \sum_{j=m}^{M} \left[(\zeta_1 - \zeta_2) a_j + i(\zeta_1 + \zeta_2) b_j \right] \]
\[\sigma_{xx} - i \sigma_{xy} = \sum_{j=m}^{M} \left[\chi_1 + \chi_2 - \chi_3 - \chi_4 + \chi_1 a_j \right. \]
\[+ \left[\chi_1 - \chi_2 - \chi_3 + \chi_4 + \chi_2 b_j \right] \]
\[\sigma_{yy} - i \sigma_{xy} = \sum_{j=m}^{M} \left[\chi_1 + \chi_2 + \chi_3 + \chi_4 - \chi_1 a_j \right. \]
\[+ \left[\chi_1 - \chi_2 + \chi_3 - \chi_4 + \chi_3 b_j \right] \]

where

\[\zeta_1 = \kappa \zeta^{l-1} + \zeta^{-i} \]
\[\zeta_2 = \frac{je^{i\theta} \zeta^{l-1} - m\zeta^{l-1} - \zeta}{1 - m\zeta^{-2}} \]
\[
X_1 = \frac{j\zeta^{-1}}{ce^{i\theta}(1-m\zeta^{-2})} \tag{51}
\]

\[
X_2 = \frac{j e^{i\theta} \zeta^{-1}}{c(1-m\zeta^{-2})} \tag{52}
\]

\[
X_3 = \frac{j(\zeta + m\zeta^{-1})(j-1)\zeta^{-2} + (j+1)\zeta^{-4}}{ce^{i\theta}(1-m\zeta^{-2})^3} \tag{53}
\]

\[
X_4 = \frac{j\zeta^{1-1}}{ce^{i\theta}(1-m\zeta^{-2})} \tag{54}
\]

\[
X_5 = \frac{j((j-2)-m^2(j+2)\zeta^{-3} - mj\zeta^{-5} + mj\zeta^{-1})}{ce^{i\theta}(1-m\zeta^{-2})^3} \tag{55}
\]

From Eqs. (39)-(41) the special Trefftz functions \(N_e \) and \(T_e \) may be written as follows

\[
N_e = \frac{1}{2G} \begin{bmatrix}
Re U_{e,N} & \cdots & Re U_{e,N+1} & \cdots & Re U_{e,2(M+N)}
\end{bmatrix}
\tag{56}
\]

\[
T_e = \begin{bmatrix}
Re S_{e,N} & \cdots & Re S_{e,M+N} & \cdots & Re S_{e,2(M+N)}
\end{bmatrix}
\tag{57}
\]

where

\[
U_j = \zeta_1 - \zeta_2 \tag{58}
\]

\[
U_{M+N+j} = i(\zeta_1 + \zeta_2) \tag{59}
\]

\[
S_{1,j} = X_1 + X_2 - X_3 - X_4 + X_5 \tag{60}
\]

\[
S_{1,M+N+j} = X_1 - X_2 - X_3 + X_4 + X_5 \tag{61}
\]

\[
S_{2,j} = X_1 + X_2 + X_3 + X_4 - X_5 \tag{62}
\]

\[
S_{2,M+N+j} = X_1 - X_2 + X_3 - X_4 - X_5 \tag{63}
\]

\[
S_{3,j} = X_3 + X_4 - X_5 \tag{64}
\]

\[
S_{3,M+N+j} = X_3 - X_4 - X_5 \tag{65}
\]

Frame functions

Here we use the 16- and 32-node hole elements (RHOL16 and RHOL32 for short), as shown in Figure 6, to conduct the contact analysis.

For each side of RHOL16 element, the frame functions are of the form

\[
\begin{align*}
\vec{N}_1 &= \frac{2}{3}(\tau^2 - \frac{1}{4}) \tau (\tau - 1) \\
\vec{N}_2 &= \frac{8}{3}(\tau^2 - 1) \tau (\tau - \frac{1}{2}) \\
\vec{N}_3 &= 4(\tau^2 - 1) \tau (\tau - \frac{1}{4}) \\
\vec{N}_4 &= \frac{8}{3}(\tau^2 - 1) \tau (\tau + \frac{1}{2}) \\
\vec{N}_5 &= \frac{2}{3}(\tau^2 - \frac{1}{4}) \tau (\tau + 1)
\end{align*} \tag{66}
\]

Analogously, for each side of RHOL32 element, the frame functions may be written as

\[
\begin{align*}
\vec{N}_1 &= \frac{512}{315}(\tau^2 - \frac{9}{16}) \left(\tau^2 - \frac{1}{4}\right) \tau (\tau - 1) \\
\vec{N}_2 &= \frac{-4096}{315}(\tau^2 - 1) \left(\tau^2 - \frac{1}{4}\right) \tau (\tau - \frac{3}{4}) \\
\vec{N}_3 &= \frac{2048}{45}(\tau^2 - \frac{9}{16}) \left(\tau^2 - \frac{1}{4}\right) \tau (\tau - \frac{1}{2}) \\
\vec{N}_4 &= \frac{-4096}{45}(\tau^2 - 1) \left(\tau^2 - \frac{1}{4}\right) \tau (\tau - \frac{1}{4}) \\
\vec{N}_5 &= \frac{-1024}{9}(\tau^2 - \frac{9}{16}) \left(\tau^2 - \frac{1}{4}\right) \tau (\tau - \frac{1}{2}) \\
\vec{N}_6 &= \frac{-4096}{45}(\tau^2 - 1) \left(\tau^2 - \frac{1}{4}\right) \tau (\tau + \frac{1}{4}) \\
\vec{N}_7 &= \frac{2048}{315}(\tau^2 - \frac{9}{16}) \left(\tau^2 - \frac{1}{4}\right) \tau (\tau + \frac{2}{4}) \\
\vec{N}_8 &= \frac{-4096}{315}(\tau^2 - 1) \left(\tau^2 - \frac{1}{4}\right) \tau (\tau + \frac{3}{4}) \\
\vec{N}_9 &= \frac{512}{315}(\tau^2 - \frac{9}{16}) \left(\tau^2 - \frac{1}{4}\right) \tau (\tau + 1)
\end{align*} \tag{67}
\]

C. Special elements for discontinuous loads

1. Basic equations of plane elasticity

In this section, the plane elasticity is briefly reviewed for establishing notation and formulation used in later sections. Let us consider a well-posed elastic problem in a domain denoted by \(\Omega \) bounded by its boundary \(\Gamma \). The corresponding partial differential governing equations and boundary conditions are given by

\[
\begin{align*}
\sigma_{ij,j} + b_i &= 0 \\
\varepsilon_{ij} &= \frac{1}{2}(u_{i,j} + u_{j,i}) \quad \text{in } \Omega \tag{68}
\end{align*}
\]

and

\[
\begin{align*}
\sigma_{ij} &= \lambda \delta_{ij} \varepsilon_{kk} + 2\mu \varepsilon_{ij} \\
\sigma_{ij} &= \lambda \delta_{ij} \varepsilon_{kk} + 2\mu \varepsilon_{ij} \quad \text{on } \Gamma_u \tag{69}
\end{align*}
\]

where \(\sigma_{ij} \) is the stress tensor, \(b_i \) is the body force component, a comma denotes partial differentiation and
the Einstein summation convention over repeated indices is used. \(\varepsilon_{ij} \) denotes the elastic strain tensor, \(u_i \) is the displacement field component and \(\delta_{ij} \) is Kronecker’s delta, \(\lambda \) and \(\mu \) are respectively the Lame elastic constants and usually can be expressed in terms of Young’s modulus \(E \) and Poisson ratio \(\nu \) as
\[
\lambda = \frac{2\kappa - \kappa}{\kappa - 1} \mu, \quad \mu = \frac{E}{2(1+\nu)} \tag{70}
\]
with \(\kappa = 3 - 4\nu \) for plane strain state and \(\kappa = (3-\nu)/(1+\nu) \) for plane stress state. \(\vec{u}_i \) and \(\vec{\delta}_i \) are imposed boundary displacement and traction components, respectively, \(\Gamma = \Gamma_u \cup \Gamma_q \) is the boundary of the solution domain \(\Omega \). \(n_i \) represents the \(i \) th component of outward normal vector to the boundary \(\Gamma \).

Eq. (68) can be written in one equation as
\[
\left\{ \lambda + \mu \right\} u_{j,b}(x) + \mu u_{i,bj}(x) + b_i = 0 \tag{71}
\]
which is the classic Navier-Cauchy equations in terms of displacement fields.

When the body force becomes a unit concentrated force applied at point \(x' \) in an infinite domain, the solutions of Eq. (71) is known as fundamental solutions or Green’s functions. This physical definition of fundamental solution can be used in the present hybrid finite element model to construct local solutions employed in the proposed special elements to effectively deal with internal discontinuous forces.

2. Local solutions of discontinuous loads

We focus on local solutions induced by internal point, line and patch loads, as displayed in Figure 7. All these internal loads can be regarded as generalized body forces from the view point of mechanics such that their effects can be represented by the fundamental solutions as follows.

Let’s consider a plane elastic problem in an infinite domain subjected to a pair of internal concentrated forces \((P_1, P_2)\), as shown in Figure 8. In this case, the concentrated force can be regarded as the generalized body forces with intensity \(P_i \delta(x - x') \) (\(i = 1, 2 \)) at the point \(x' = (x'_i, x'_j) \), thus the Navier-Cauchy equation (71) can be written as
\[
\left\{ \lambda + \mu \right\} u_{j,b}(x) + \mu u_{i,bj}(x) + P_i \delta(x - x') = 0 \tag{72}
\]

![Figure 8. Concentrated forces in an infinite plane](image)

Using the physical definition of fundamental solutions, the general solutions of Eq. (72) at any point \(x = (x_i, x_j) \) can be expressed as
\[
u_i(x, x') = U^*_i(x, x') P_i \tag{73}
\]
where the kernel functions
\[
U^*_i(x, x') = \frac{1}{2\pi\mu(1+\kappa)} \left\{ \kappa \delta_{ij} \ln r_i + \frac{P_i r_i}{r^2} \right\} \tag{74}
\]
are the fundamental solutions of the problems. In Eq.(74), \(r \) is the distance between the points \(x \) and \(x' \), i.e.
\[
r = r_{i} \quad \text{with} \quad r_i = x_i - x'_i \tag{75}
\]
The substitution of Eq. (73) into the strain-displacement relation, and then into the constitutive equation given in Eq. (68) yield the following local stress fields induced by the imposed point loads \((P_1, P_2)\)
\[
\sigma_{ij}(x, x') = S^*_i(x, x') P_i \tag{76}
\]
with the stress fundamental solutions in the form as
\[
S^*_i(x, x') = \frac{1}{2\pi(1+\kappa)} \left\{ \frac{(1-\kappa)(\delta_{ij} r_i + \delta_{ji} r_j - \delta_{ij} r_j)}{r^2} - \frac{4\kappa P_i r_i}{r^4} \right\} \tag{77}
\]
Local solutions due to line loads

For the case of arbitrarily distributed line loads as shown in Figure 9 with distributed load intensity \(p_i \)

![Figure 7. Sketch of plane elastic domain under internal discontinuous loads](image)

Local solutions due to point loads

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)
and \(p_2 \) respectively parallel to \(x_1 \) and \(x_2 \) axis, the resultant forces on the differential element of arc length \(dL \) are given by
\[
d\mathbf{P} = \left\{ p_1(x^i) \right\}^T \delta(x, x^i) dL
\]
which leads to the generalized boy forces as
\[
b(x) = \int_{L_{AB}} \left\{ p_1(x^i) \right\}^T \delta(x, x^i) dL
\]

Figure 9. Effect of local line loads in an infinite plane

Hence, the induced displacement, strain and stress fields can be obtained by integrating the point-load solutions given in Eqs. (73)-(76) along the curved line segment \(L_{AB} \) and this leads to the following line integrals with respect to arc length along the curve \(L_{AB} \)
\[
\begin{align*}
\mathbf{u}(x) &= \int_{L_{AB}} U^+(x, x^i) p_1(x^i) dL \\
\mathbf{\sigma}(x) &= \int_{L_{AB}} S^+(x, x^i) p_1(x^i) dL
\end{align*}
\]

If the smooth curve \(L_{AB} \) can be expressed in the form
\[
x^i = f(x^i) \quad \text{for} \quad a \leq x^i \leq b
\]
then the differential element of arc length \(dL \) can be written as
\[
dL = \sqrt{(dx_1^s)^2 + (dx_2^s)^2} = \Lambda(x^i) \, dx^i
\]
where
\[
\Lambda(x^i) = \sqrt{1 + \left(\frac{df}{dx^1} \right)^2}
\]

Consequently, the line integrals above can be converted into general integrals in terms of single variable \(x_i \)
\[
\begin{align*}
\mathbf{u}_i(x) &= \int_a^b \left[U^+(x, x^i) p_1(x^i) \Lambda(x^i) \right] \, dx^i \\
\mathbf{\sigma}_i(x) &= \int_a^b \left[S^+(x, x^i) p_1(x^i) \Lambda(x^i) \right] \, dx^i
\end{align*}
\]
which can be evaluated by numerical integration techniques.

3. Hybrid finite element and special elements

If an arbitrary polygonal element \(e \) is taken into consideration, as shown in Figure 10, the hybrid variational functional \(\Pi_{me} \) at element level based on two-field approximations is given by
\[
\Pi_{me} = \frac{1}{2} \int_{\Gamma_e} \mathbf{\sigma}^T \mathbf{e} \, d\Omega - \int_{\Gamma_e} \mathbf{b}^T \mathbf{u} \, d\Omega - \int_{\Gamma_e} \mathbf{f}^T \mathbf{e} \, d\Omega
\]
(87)
where \(\Omega_e \) is the element domain under consideration and \(\Gamma_e \) is its boundary, and
\[
\mathbf{u} = \begin{bmatrix} u_1 & u_2 \end{bmatrix}^T, \quad \mathbf{\sigma} = \begin{bmatrix} \sigma_{i1} & \sigma_{i2} \end{bmatrix}^T, \quad \mathbf{e} = \begin{bmatrix} e_{i1} & e_{i2} \end{bmatrix}^T, \quad \mathbf{s} = \begin{bmatrix} s_1 & s_2 \end{bmatrix}^T
\]
(88)

Figure 10. Schematic of arbitrary polygonal element

In Eq. (88), \(\mathbf{u}, \mathbf{\sigma} \) and \(\mathbf{g} \) are respectively displacement, stress, and strain column vectors defined within the element domain \(\Omega_e \), while \(\mathbf{s} \) is an independent displacement vector defined along the element boundary \(\Gamma_e \). \(\mathbf{s} \) denotes the element traction vector, and \(\mathbf{f} \) is the specified value of it applied on the portion \(\Gamma^s_e \) of the element boundary. Besides, in Figure 10, \(\Gamma^e_e \) and \(\Gamma^n_e \) are common boundaries of adjacent elements, for instance, elements \(e \) and \(f \) or \(g \), and the boundary with specified displacement constraint. For a well-posed element, we have
\[
\Gamma_e = \Gamma^e_e + \Gamma^n_e + \Gamma^s_e
\]
(89)

If the interior element approximation is required to satisfy exactly the governing Eq. (71), then applying the Gaussian theorem to the functional above we have the following simplified expression of the functional
development in the future. Among those developments one could list the following:

1. Development of efficient F-Trefftz FE-BEM schemes for complex engineering structures containing heterogeneous materials and the related general purpose computer codes with preprocessing and postprocessing capabilities.
2. Generation of various special-purpose elements to effectively handle singularities attributable to local geometrical or load effects (holes, cracks, inclusions, interface, corner and load singularities). The special-purpose functions warrant that excellent results are obtained at minimal computational cost and without local mesh refinement.
3. Development of F-Trefftz FE in conjunction with a topology optimization scheme to contribute to microstructure design.
4. Extension of the F-Trefftz FEM to elastodynamics and fracture mechanics of FGMs.

IV. REFERENCES

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)
International Society for Optics and Photonics, 2013, pp. 879320-879320-879326.

[26]. N. Bavi, Q.H. Qin, B. Martinac, Finite element simulation of the gating mechanism of mechanosensitive ion channels, in: Fourth International Conference on Smart Materials and Nanotechnology in Engineering, International Society for Optics and Photonics, International Conference on Smart Materials and Nanotechnology in Engineering, International Society for Optics and Photonics, 2013, pp. 87931S-87931S-87937.

