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ABSTRACT 
 

The modeling investigation in this paper discusses the system level effects of a toxicant on a three species food 

chain system and the state variables of the models are prey and predator densities, concentration of toxicant in the 

environment and the concentration of toxicant in the prey population. In the models, we have assumed that the 

presence of top predator reduces the predatory ability of the intermediate predator. The stability analysis of the 

models is carried out and the sufficient conditions for the existence and extinction of the populations under the stress 

of toxicant are obtained. Further, it is also found that the predation rate of the intermediate predator is a bifurcating 

parameter and Hopf-bifurcation occurs at some critical value of this parameter. Finally, numerical simulation is 

carried out to support the analytical results. 
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I. INTRODUCTION 

 

Species are regularly exposed to many natural and 

synthetic chemicals which are adversely affecting their 

growth rate directly or indirectly. The direct effects of 

toxicant on the species are alterations in their mortality 

and reproductive rates. The indirect effects are observed 

either through the food chain or through the reduction in 

the carrying capacity of the environment due to the 

degradation of the habitat. It is generally observed in 

nature that the toxicants decrease the growth rate of 

species and also their carrying capacity. The presence of 

toxicants in the environment affects not only the species 

but their resources also. These toxicants have very 

pronounced effects on the species if the availability of 

the resource is limited. There are many instances where 

the toxicants have been the main cause of extinction of 

many species and depletion of resources such as forestry, 

fertile crop and wild life. 

 

Ecologists and mathematicians have often used food 

chain systems to describe the feeding relationships 

between species within ecosystems and there has been 

considerable interest in the predator-prey models, 

especially for systems of three species (Freedman and 

Waltman, 1977; Hastings and Powell, 1991; Gakkhar 

and Naji, 2003; Gakkhar and Singh, 2006; Gakkhar et al., 

2007; Naji and Balasim, 2007; Gomes et al., 2008; 

Wang and Pang, 2008; Zhao and Lv, 2009a; George et 

al., 2010; Naji et al., 2010; Mada et al., 2011; Zhao et al., 

2011; Zhuang and Wen, 2011; Haque et al., 2013; Wang 

and Zhao, 2011; Kumari, 2013; Jana, et al., 2014). 

However, the ecological communities in nature are 

observed to exhibit very complex dynamical behaviors 

and three species continuous time models are reported to 

have more complicated patterns. In (Lv and Zhao, 2008) 

have proposed and examined the dynamic complexities 

of a three species food chain model and found different 

forms of complexities in their model. In (Sun and 

Loreau, 2009) proposed a three-species food chain 

model with dynamically variable adaptive traits in the 

intermediate consumer and from the stability analysis 

they have shown that the positive equilibrium is globally 

stable under specific conditions. However, recently in 

(Gomes et al., 2008) have considered the classical 

fishpond management for tilapia fish culture model and 

studied three levels consisting of young tilapia (prey), 

developed tilapia (predator) and tucunare fish 

(toppredator) in order to describe the dynamical 

behavior of a three-species food chain system. It may be 

noted here that these studies have not incorporated the 



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 

 

494 

effects of toxicants on the survival or extinction of prey 

populations in the food chain systems. 

 

The study of the effects of toxic substances on 

ecological communities is of great interest, both from 

environmental and conservational points of view. 

Species exposed to polluted environment become 

vulnerable to several stresses due to which their 

existence may be threatened in long run. In the 

experiment study of (Smith and Weis, 1997) the authors 

have observed that the fish from the polluted 

environment suffered significantly greater mortality in 

the presence of a predator, the blue crab Callinectes 

sapidus Rathbun, than fish from the unpolluted 

environment. In the study of (Jes et al., 2013) the 

authors evaluated that the during exposure to sublethal 

concentrations of LC (lambda-cyhalothrin) the predator-

prey interactions between G. pulex and L. nigra were 

significantly altered. The relative frequency of 

successful predation by G. pulex on L. nigra decreased 

from nearly 100 percent in the control and the <1 ng L
1

 

treatments to approximately 50 percent in the 6.6 ng L
1

 

treatment, and no predation was observed in the 62.1 ng 

L
1

 treatment during the 60 min observation period. 

These findings probably reflect an increased stress 

response of G. pulex to increasing concentrations of LC 

prompting behavioural hyperactivity that overrules the 

natural instinct of catching the prey. So, in order to use 

and regulate toxic substances wisely, we must asses the 

risk of the populations exposed to toxicants. Some 

investigators have studied the effects of toxicant on one 

and two interacting species systems using mathematical 

models (Hallam and Clark, 1982; Hallam et al, 1983; 

Hallam and Luna, 1984; Luna and Hallam, 1987; 

Freedman and Shukla, 1991; Misra and Saxena, 1991; 

Shukla and Dubey, 1996; Shukla, 2001; Hamilton, 2004; 

Misra and Sinha, 2007; Das et al, 2009; Sinha et al., 

2010; Khare et al., 2011; Agarwal and Devi, 2011; 

Huang et al., 2013). Previously, some research have 

been done on tri-trophic food-chain systems including 

toxicant effects on the survival or extinction of species 

in the system (Hallam and Luna, 1984; Thomann et al., 

1984; Misra and Babu.A, 2014).  

 

In this paper therefore we have studied the dynamical 

behaviour of a three-species food-chain system under 

toxicant stress considering modified Smith model for 

prey species (Hallam and Luna, 1984) and predatory 

interference by top predator using mathematical model.  

 

II. MATHEMATICAL MODEL 

 

The model formulation has been carried out in the light 

of the research papers of (Lv and Zhao, 2008) and 

(Hallam and Luna, 1984). In the model, the underlying 

food chain system consists of a prey population, an 

intermediate predator population and a top predator 

population with Holling type-II functional responses. It 

is assumed in the model that the presence of the top 

predator reduces the predatory ability of the intermediate 

predator (Lv and Zhao, 2008). In the model, the growth 

equation for the prey population in the absence of 

predator is assumed to be governed by a modified 

Smith-type differential equation (Hallam and Luna, 

1984). The state variables of the model are x(t), the 

density of the prey population; y(t), the density of the 

intermediate predator population; z(t), the density of the 

top predator population; C0(t), the organism toxicant 

concentration in the prey population; and C
E

(t) , the 

environmental toxicant concentration. 

Taking these as state variables, we formulate the 

mathematical model using following system of non 

linear ordinary differential equations in order to study 

the effect of toxicant on a three-species food chain 

system: 

 

Model 1:(with toxicant)  

dx

dt
= x 









 

r(C
0
)B(c+r

0
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0
) 


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y
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zD
2
z                                    (3) 

dC
0

dt
=a

1
C

E
+ 

d
1

a
1
(l

1
+l

2
)C

0
                              (4) 

dC
E

dt
=g

0
+k

1
l
1
C

0
xk

1
a
1
C

E
xk

2
C

E
                     (5) 

 

The initial conditions are  

 

x(0)=x0>0, y(0)=y0>0, z(0)=z0>0, C0(0)=0, 

CE(0)=CE>0. 
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Where, B is the population carrying capacity; r
0

 is the 

intrinsic growth rate of the population; a is a measure of 

the population response to stress effects; D
1

 and D
2

 are 

the death rates of y and z respectively. 

 

We assume that the toxicant concentration  in the 

population is a constant;  is the average rate of food 

intake per unit organismal mass; l
1

 and l
2

 are egestion 

and depuration rates respectively; k
1

l
1
C

0
x  is the total 

toxicant ingested; k
1
a
1

C
E

x is the total toxicant uptake 

from the environment; k
2
C

E
 is the term which describes 

the loss due to detoxifying process such as hydrolysis, 

volatilization, etc.; The exogenous input to the body 

burden C
0

 is assumed to be from the environment at a 

rate proportional to the environmental concentration: 

a
1
C

E
, where a

1
 is the population rate of toxicant uptake 

per unit mass; g
0
 represents exogenous input of toxicant 

into the environment; d
1

 is a constant numerically less 

than or equal to the numerical value of a
1
; c is the rate 

of replacement of mass in the population at saturation. 


i
(C

0
)  is the biomass conversion rate, i=1,2., where 


i
(0)=

i0
 and 

'

i
(C

0
)<0. 

 

In the modelA
i
u/(B

i
+u), (i=1, 2; u=x and y), account for 

the interactions between two different species, 

representing the Holling type-II functional response. 

This functional response is parameterized by the 

constants A
i
 and B

i
 (i=1, 2), and we verify that B

i
 is the 

value of the prey population level when the predation 

rate per unit prey is half their maximum value (Lv and 

Zhao, 2008). 

 

Exposure to toxicant may lead to changes in fecundity 

and mortality rates of a population. This stress can be 

modelled by assuming that the growth rate of the 

population is a function of the body 

burdenr(C
0
)=r

0
H(C

0
). Here H is a non- decreasing 

function of C
0

 with H(0)=0 and r
0

 is the intrinsic 

growth rate of the population. H(C
0

) is a dose-response 

function, which is assumed to be linear and taken as 

H(C
0

)=r
1
C

0
 (Hallam and Luna, 1984). 

We can reduce the number of parameters in the above 

system by the following scaling transformations, even if, 

for our analytical and numerical tests, we will continue 

to use the original system:  

x 
x

B
1
,y 

A
1
y

T
0

,z 

A
1
z

A
2
T

0
,

C
O
 

r
0
C

O

k
1

,C
E
 

r
0

C
E

a
1

,tD
1
t. 

Thus, system (1)-(5) after re-scaling becomes as follows:  
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=xe

1
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E
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0
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C
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C
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6
C
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The initial conditions are  

x(0)=x0>0, y(0)=y0>0, z(0)=z0>0, C0(0)=0, CE(0)=CE>0. 

Here,  

u
0
= 
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T
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r
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k
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D
1

A
2

, 

 

All these parameters, of course, assume only positive 

values. 

 

Now, if the effect of toxicant is not considered in the 

above Model 1, then we have the following Model 2 for 

three species food chain system: 

Model 2:(without toxicant)  
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dx

dt
= x 








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2

+y
zD

2
z                       (13) 

with the initial conditions as  

x(0)=x
0
>0,y(0)=y

0
>0,z(0)=z

0
>0.  

where, the state variables and parameters are the same as 

defined for the Model 1. 

We can reduce the number of parameters in the above 

system, even if, for our analytical and numerical tests, 

we will continue to use the original system:  

o
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;o

6
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6
e
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;o
7
=e

9
o
1

. 

Rest of the parameters are the same as defined for the 

Model 1. All these parameters, of course, assume only 

positive values. Thus, system (11)-(13) after re-scaling 

becomes as follows:  
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o
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e
4
+x

 

u
1
xy

(1+x)(1+e
5
z)

             (14) 
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=
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 

u
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y                 (15) 

dz
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=

o
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yz

e
8

+y
u

3
z                              (16) 

The initial conditions are  

x(0)=x
0
>0,y(0)=y

0
>0,z(0)=z

0
>0.  

 

III. ANALYSIS OF MODEL 2 

3.1 EQUILIBRIA OF MODEL 2 

The Model 2 has following four non-negative equilibria. 

They are listed below:  

1.E
*

0
=(0,0,0)   

2. E
*

1
=(x ,0,0)  
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0

T
0
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0
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0
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*
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      x =D
1

B
1
/(

10
A

1
D

1
)>0 (18) 

provided 
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and x
*
 is given by  
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3.2 DYNAMICAL BEHAVIOUR OF MODEL 2 

The general variational matrix corresponding to the 

Model 2 is  

J(x,y,z)= 
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1. At E
*

0
, the eigenvalues of the characteristic equation 

are r
0

,D
1
 and D

2
, which shows that E

*

0
 is unstable.  

2. At E
*

1
, the eigen values of the characteristic equation 

are r
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0
) , A

1
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+x )D

1
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2
, which 

shows E
*

1
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       A
1
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1
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1
  (25) 

holds good. We note from (25) that, E
*

1
 of the system is 

locally asymptotically stable if the condition  
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1
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and in this case E
*

2
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*

2
 exists then E
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1
 of 

the system is unstable. 

 

Remark 1: From (27), it may be noted that if predation 

rate of intermediate consumer is less than or equal to the 

ratio of its death rate and its conversion efficiency then 

basal resource will only survive and intermediate 

consumer and top predator will go to extinction.  

3. At E
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2
, one of the eigenvalue of the characteristic 

equation is A
2


20
y /(B
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 and the other two 

eigenvalues are given by the roots of the following 
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From the Routh-Hurwitz’s criteria it is found that E
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locally asymptotically stable if the following conditions 

hold good.  
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Remark 2: From (31), it may be noted that if predation 

rate of top predator is less than the ratio of its death rate 

and its conversion efficiency then basal resource and 

intermediate consumer will survive and top predator 

goes to extinction.  

4.The characteristic equation about E
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 is given by  
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12
N

21
N

23
N

32
, 

F
3
=N

11
N

23
N

32
N

13
N

21
N

32
 

and 

N
11

= 

A
1
x
*
y
*

(B
1
+x

*
)
2
(1+z

*
)
 

ax
*

T
0
(c+r

0
)

(T
0

+ax
*

)
2

, 

N
12

= 

A
1

x
*

(B
1
+x

*
)(1+z

*
)
, N

13
= 

A
1

x
*

y
*

(B
1

+x
*

)(1+z
*

)
2

, 

N
21

= 

A
1

B
1


10
y
*

(B
1
+x

*
)
2
(1+z

*
)
, N

22
= 

A
2
y
*

z
*

(B
2

+y
*
)
2
, 

N
23

=( 

A
1


10
x
*
y
*

(B
1
+x

*
)(1+z

*
)
2

+ 

A
2
y
*

B
2
+y

*
), 

N
32

= 

A
2
B

2


20
z
*

(B
2
+y

*
)
2

. 

According to Routh-Hurwitz criteria E
*

3
 is locally 

asymptotically stable if F
1
>0 , F

2
>0 , F

3
>0  and 

F
1

F
2

>F
3

. It is difficult to interpret the results in 

ecological terms, from these complicated expressions, 

however, numerical examples are taken and graphs are 

plotted to illustrate the dynamical behaviour of the 

system about equilibrium E
*

3
.  
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We are now in a position to make an attempt to find out 

the conditions under which the system undergoes Hopf-

bifurcation. For this purpose, we choose the parameter 

A
1

 as bifurcation parameter as it plays a crucial role in 

Holling type II functional response which describes the 

predation of intermediate consumer. We shall now apply 

the Liu’s criteria, (Liu, 1994) to obtain the conditions for 

small amplitude periodic solution arising from Hopf-

bifurcation. 

 

As the equilibrium population densities are functions of 

A
1

, the coefficients of the characteristic equation (32) 

are functions of the parameter A
1

 and hence we can use 

the notation F
i
=F

i
(A

1
)  for i=1,2,3. Noting that the 

quantities F
i
s are smooth functions of the parameterA

1
, 

we first state in our case, the definition of a simple 

Hopf-Bifurcation. 

 

If a critical value A
*

1
 of parameter A

1
 be found such that 

(i) a simple pair of complex conjugate eigenvalues of 

characteristic equation exists, say, 
1
(A

1
)=u(A

1
)+iv(A

1
), 


2

(A
1
)=u(A

1
)iv(A

1
)=  

1
 (A

1
).  These eigen values 

will become purely imaginary at A
1
=A

*

1
, i.e., 


1

(A
*

1
)=iv

0
, 

2
(A

*

1
)=iv

0
, with v(A

*

1
)=v

0
>0 , and the 

other eigenvalue remains real and negative; and (ii) the 

transversality condition, 

dRe
i
(A

*

1
)/dA

1
|
A1=A

*

1
=du(A

1
)/dA

1
|
A1=A

*

1
0 is satisfied. 

Then we find at A
1
=A

*

1
, a simple Hopf-bifurcation. 

Without knowing eigenvalues, (Liu, 1994)  proved that 

(referring the result to the current case): if 

F
1

(A
1

),F
3
(A

1
),(A

1
)=F

1
(A

1
)F

2
(A

1
)F

3
(A

1
)  are 

smooth functions of the parameter ‘ A
1

’ in an open 

interval containing A
*

1


+
 such that following 

conditions hold: 

 

(i
*

) F
1

(A
*

1
)>0, (A

*

1
)=0, F

3
(A

*

1
)>0; 

(ii
*

) d(A
1

)/dA
1

|
A1=A

*

1
0 

then (i
*

) and (ii
*
) are equivalent to conditions (i) and (ii) 

for the occurrence of a simple Hopf-bifurcation at 

A
1

=A
*

1
. Hence we can propose the following theorem: 

Theorem 3.1 If a critical value A
*

1
 of parameter A

1
 be 

found such that F
1

(A
*

1
)>0, F

3
(A

*

1
)>0 and (A

*

1
)=0 and 

further '0 (where prime denotes differentiation with 

respect to A
1

) then system (11)-(13) undergoes Hopf-

bifurcation around E
*

3
. 

In the following theorem we show that the positive 

equilibrium is globally asymptotically stable. In order to 

prove this theorem we need the following lemma which 

establishes a region of attraction for Model 2. 

 

Lemma 3.1 The set  


2

={(x,y,z):0
10

x(t)+y(t)+z(t)/
20
}  

is a region of attraction for all solutions initiating in the 

interior of the positive region, where 

=r
0

T
0


10
(r

0
+1)/ac , T

0
=B(c+r

0
a)  and 

=min{1,D
1
,D

2
} . 

Proof: From Eq. (11) we get,  

     dx/dtx[r
0

T
0
acx]/T

0
 

then by the usual comparison theorem, we get as t,  

      xr
0
T

0
/ac (33) 

where T
0

=B(c+r
0
a). 

Now, let us consider the following function:  

W(t)=
10

x(t)+y(t)+z(t)/
20

  

by using Eqs. (12), (13) and (33) we get  

     dw/dt+W
10

r
0
T

0
(r

0
+1)/ac 

Where =min{1,D
1

,D
2
}   

and then by the usual comparison theorem, we get as 

t, W(t)
10

r
0

T
0
(r

0
+1)/ac and hence,  


10

x(t)+y(t)+z(t)/
20
 

where =
10

r
0
T

0
(r

0
+1)/ac 

This proves the lemma. 

Theorem 3.2 Let the following inequalities hold in the 

region 
2
.  

A
1

y
*

B
1

(B
1
+x

*
)
< 

a(c+r
0
)

T
0
+ax

*
, (34) 
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A
1


10
x
*

B
1

+x
*

< 

A
2

B
2

z
*

(B
2
+)(B

2
+y

*
)
+D

1
, (35) 











 

A
1


10


B
1

+x
*
 

A
1

(1+)(B
1
+)

2

 

<[ 











 

aT
0
(c+r

0
)

(T
0
+a)(T

0
+ax

*
)
 

A
1

y
*

B
1
(B

1
+x

*
)

 

 











 

A
2

B
2
z
*

(B
2

+)(B
2

+y
*

)
+D

1
 

A
1


10
x
*

B
1

+x
*

],  (36) 











 

A
2

G
1


20


B
2

+y
*

 

A
1


10
x
*
y
*

(1+)(B
1

+x
*
)(1+z

*
)

2

 

<G
1

 











 











 

A
2
B

2
z
*

(B
2

+)(B
2
+y

*
)
+D

1
 

A
1


10
x
*

B
1
+x

*
 











D
2
 

A
2


20
y
*

B
2
+y

*
,

 (37) 

where,  

G
1

> 











 

( 

A
1
y
*

(1+z
*
)(B

1
+x

*
)
)
2

( 

aT
0
(c+r

0
)

(T
0

+a)(T
0
+ax

*
)
 

A
1

y
*

B
1
(B

1
+x

*
)
)(D

2
 

A
2


20
y
*

B
2

+y
*

)

 (38) 

then the positive equilibrium E
*

3
 is globally 

asymptotically stable with respect to all solutions 

initiating in the interior of positive region 
2

. (for proof 

see Appendix). 

 

IV. ANALYSIS OF MODEL 1 

 

4.1 EQUILIBRIA OF MODEL 1 

 

The Model 1 has following four non-negative equilibria. 

They are listed below:  

1. E
*

0w
=(0,0,0,0,0)   

2. E
*

1w
=(x ,0,0,C

0
  ,C

E
  )  

        x =r(C
0

  )T
0

/ac>0 (39) 

if r(C
0

  )>0,   

C
E

  =(g
0
(l

1
+l

2
)+d

1
k

1
l
1

x /a
1
)/((k

1
a
1

x +k
2
)l

2
+k

2
l
1

) (40) 

and the C
0

   is given by the positive root of the equation  

              K
1
C

0
  2

K
2

C
0

  +K
3
=0 (41) 

where, 

K
1
=r

1
k
1
l
2
a

2

1
T

0
/ac,  

K
2
=(k

1
l
2
a
2

1
r
0

T
0
+a

1
k
2
(l

1
+l

2
)ac+a

1
r
1
k
1

d
1
T

0
)/ac,  

K
3
=g

0
a
2

1
+(a

1
r
0
k
1
T

0
/ac+k

2
)d

1
. 

3. E
*

2w
=(x ,y ,0,C

0
  ,C

E
  )  

Now, we show the existence of E
*

2w
 as follows: 

Here x , ŷ, C
0

   and C
E

   are the positive solutions of the 

system of algebraic equations given below: 

(3.1a) C
0
= 

g
0
a

2

1
+(k

1
a
1

x+k
2
)d

1


k
1
l
2
a

2

1
x+k

2
a
1
(l

1
+l

2
)

=g
1

(x), 

(3.1b) C
E

= 

g
0
(l

1
+l

2
)+ 

d
1

a
1
k

1
l
1

x

(k
1

a
1

x+k
2
)l

2
+k

2
l
1

=g
2
(x),  

(3.1c) 

y= 

B
1


1
(C

0
)[r(C

0
)T

0
(A

1


1
(C

0
)D

1
)acB

1
D

1
]

(A
1


1
(C

0
)D

1
)[T

0
(A

1


1
(C

0
)D

1
)+aB

1
D

1
]
=g

3
(x),  

substituting the values of y and C
0

 in 

B
1

+x= 

A
1
y(T

0
+ax)

r(C
0
)T

0
acx

, we get 

(3.1d) x= 

A
1
g

3
(x)(T

0
+ag

3
(x))

(r
0
r

1
g

1
(x))T

0
acx

B
1
 

Let (3.2a) M(x)= 

A
1

g
3
(x)(T

0
+ag

3
(x))

(r
0
r

1
g
1
(x))T

0
acx

(B
1

+x) 

To show the existence of E
*

2w
, it suffices to show that 

equation (3.2a) has a unique positive solution for this we 

may note that 

(3.2b) M(0)= 

A
1
g
3
(0)

r
0
r

1
g
1

(0)
)B

1
>0 

(3.2c) M(s
0
)=[ 

A
1
g
3

(s
0

)(T
0
+as

0
)

r
1

g
1
(s

0
)T

0
+B

1
+s

0
]<0 
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where, x=s
0
=r

0
T

0
/ac and 

lim

xs
0

M(x). 

for the unique positive solution x, we must have 

(3.2d) dM/dx=(M
2

(dM
1

/dx)+M
1
(dM

2
/dx)M

2

2
)/M

2

2
<0 

where, M
1

=A
1
g

3
(x)(T

0
+ax) and 

M
2

=(r
0
r

1
g
1
(x))T

0
acx. 

Knowing the value of x , the values of C
0

  , C
E

   and ŷ can 

be computed from equations (3.1a), (3.1b) and (3.1c) 

respectively.  

4. E
*

3w
=(x

*
,y

*
,z

*
,C

*

0
,C

*

E
) 

Now, we show the existence of E
*

3w
 as follows: 

Here x
*
, y

*
, z

*
, C

*

0
 and C

*

E
 are the positive solutions of 

the system of algebraic equations given below: 

(4.1a) C
0
= 

g
0
a

2

1
+(k

1
a

1
x+k

2
)d

1


k
1
l
2
a

2

1
x+k

2
a
1

(l
1

+l
2

)

=f
1

(x), 

(4.1b) C
E

= 

g
0
(l

1
+l

2
)+ 

d
1

a
1
k

1
l
1

x

(k
1

a
1

x+k
2

)l
2

+k
2

l
1

=f
2

(x),  

(4.1c) y= 

B
2
D

2

A
2


2
(C

0
)D

2
=f

3
(x),   

(4.1d) 

z= 


1
(C

0
)

2
(C

0
)x(r(C

0
)T

0
acx)

D
2
((T

0
+ax))

 


2

(C
0
)D

1
y

D
2

=f
4

(x) 

substituting the values of y, z and C
0

 in 

B
1

+x= 

A
1
y(T

0
+ax)

(1+z)[r(C
0
)T

0
acx]

, we get 

(4.1e) x= 

A
1

f
3
(x)(T

0
+ax)

(1+f
4
(x))[(r

0
r

1
f
1
(x))T

0
acx]

B
1
 

Let 

(4.2a) F(x)= 

A
1

f
3
(x)(T

0
+ax)

(1+f
4
(x))[(r

0
r

1
f
1

(x))T
0
acx]

(B
1
+x) 

To show the existence of E
*

3w
, it suffices to show that 

equation (4.2a) has a unique positive solution for this we 

may note that 

(4.2b) F(0)= 

A
1

f
3

(0)

[1+f
4

(0)](r
0
r

1
f
1
(0))

B
1
>0 

(4.2c) F(k
0
)=[ 

A
1

f
3
(k

0
)(T

0
+ak

0
)

(1+f
4
(k

0
))r

1
f
1
(k

0
)T

0
+B

1
+k

0
]<0 

where, x=k
0
=r

0
T

0
/ac and 

lim

xk
0
F(x). 

for the unique positive solution x, we must have 

(4.2d)  

 

M2=(r0r1g1(x))T0acx. 

 

where, G=A
1
f
3
(x)(T

0
+ax)/(1+f

4
(x)) 

Knowing the value of x
*

, the values of C
*

0
, C

*

E
, y

*
 and 

z
*
 can be computed from equations (4.1a), (4.1b), (4.1c) 

and (4.1d) respectively.  

 

where, G=A
1
f
3
(x)(T

0
+ax)/(1+f

4
(x)) 

Knowing the value of x*, the values of C
*

0, C
*

E, y* 

and z*  can be computed from equations (4.1a), 

(4.1b), (4.1c) and (4.1d) respectively.  

4.2 Dynamical behaviour of Model 1 

The general variational matrix corresonding to the 

Model 1:  

 J(x,y,z,C
0
,C

E
)= 











 

v
11

v
12

v
13

v
14

0

v
21

v
22

v
23

v
24

0

0 v
32

v
33

v
34

0

0 0 0 v
44

v
45

v
51

0 0 v
54

v
55

 

where, 

v
11

= 
r(C

0
)T

2

02acxT
0
a

2
cx

2

(T
0
+ax)

2  
A

1
B

1
y

(B
1
+x)

2
(1+z)

, 

v
12

= 
A

1
x

(B
1
+x)(1+z)

,v
13

= 
A

1
xy

(B
1
+x)(1+z)

2, 

v
14

= 
xT

0
r'(C

0
)

T
0
+ax

,v
21

= 
A

1
B

1


1
(C

0
)y

(B
1
+x)2(1+z)

, 

v
22

= 
A

1


1
(C

0
)x

(B
1
+x)(1+z)

 
A

2
B

2
z

(B
2
+y)2D

1
, 

v
23

=y[ 
A

1


1
(C

0
)x

(B
1
+x)(1+z)2+ 

A
2

B
2
+y

], v
24

= 
A

1


1
'(C

0
)xy

(B
1
+x)(1+z)

, 
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v
32

= 
A

2
B

2


2
(C

0
)z

(B
2
+y)2 ,v

33
= 

A
2


2
(C

0
)y

B
2
+y

D
2
, 

v
34

= 
A

2


2
'(C

0
)yz

B
2
+y

,v
44

=(l
1
+l

2
), v

45
=a

1
, 

v
51

=k
1
(l

1
C

0
a

1
C

E
), v

54
=k

1
l
1
x, v

55
=(k

1
a

1
x+k

2
). 

1. At E
*

0w , the eigenvalues of the characteristic 

equation are r
0
,D

1
, D

2
, (l

1
+l

2
) and k

2
, showing 

the instability of E
*

0w.  

2. At E
*

1w , two eigenvalues of the characteristic 

equation are, A
1


1
(C

0
  )x /(B

1
+x )D

1
, D

2
 and the 

other three eigenvalues are given by the roots of the 

following cubic equation  

             3+2S
1
+S

2
+S

3
=0 (42) 

where, 

S
1
=[l

1
+l

2
+k

2
+ 

k
1
a

1
T

0
r(C

0
  )

ac
+ 

cr(C
0

  )

c+r(C
0

  )
], 

S
2
= 

cr(C
0

  )

c+r(C
0

  )
[l

1
+l

2
+k

2
+k

1
a

1
T

0
r(C

0
  )/ac] 

+[l
1
k

2
+l

2
(k

2
+k

1
a

1
T

0
r(C

0
  )/ac)], 

S
3
= 

r(C
0

  )

a(c+r(C
0

  ))
[acl

1
k

2
+k

1
(a

1
l
2
T

0
r(C

0
  )  

+r
1
d

1
)+l

2
(ack

2
a

1
r

1
k

1
C

0
  )]. 

 

According to Routh-Hurwitz criteria E
*

1w is locally 

asymptotically stable if  

          A
1


1
(C

0
  )x /(B

1
+x )<D

1
, (43) 

          C
0

  <ack
2
/a

1
r

1
k

1
 

and S
1
S

2
S

3
>0 which implies 

J
1
J

3
(J

1
+J

3
)+J

3
(l

1
k

2
+l

2
J

2
)+k

1
r

1
(a

1
l
2
C

0
  d

1
)/a>0 

 (44) 

where J
1
=cr(C

0
  )/(c+r(C

0
  )) , J

2
=k

2
+k

1
a

1
T

0
r(C

0
  )/ac 

and J
3
=l

1
+l

2
+J

2
. 

Condition given in equation (44) is satisfied if   

C
0

  >d
1
/a

1
l
2
 

 

We note from (43) that, E
*

1w of the system is locally 

asymptotically stable if the condition  

        r(C
0

  )T
0
(A

1


1
(C

0
  )D

1
)<acB

1
D

1
 (45) 

is being satisfied. The condition (45) is 

automatically satisfied if  

            A
1


1
(C

0
  )D

1
 (46) 

In this case also similar result can be stated as 

mentioned in Remark 1. 

3.At E
*

2w , one of the eigenvalues of the 

characteristic equation is A
2


2
(C

0
  )y /(B

2
+y )D

2
 and 

the other four eigenvalues are given by the roots of 

the following equation is  

           4+3T
1
+2T

2
+T

3
+T

4
=0 (47) 

where, 

T
1
=(l

1
+l

2
+k

1
a

1
x +k

2
) 

A
1
x y 

(B
1
+x )2+ 

aT
0
(c+r(C

0
  ))x 

(T
0
+ax )2 , 

T
2
=l

1
k

2
+l

2
(k

1
a

1
x +k

2
)  

+(k
1
a

1
x +k

2
+l

1
+l

2
)( 

A
1
x y 

(B
1
+x )2 

aT
0
(c+r(C

0
  ))x 

(T
0
+ax )2 )  

+ 
A

2

1B1


1
(C

0
  )x y 

(B
1
+x )3  T

3
=(k

1
a

1
x +k

2
+l

1
+l

2
) 

A
2

1B1


1
(C

0
  )x y 

(B
1
+x )3   

 

+(l1+l2)(l1C0  a1CE 
 ) 

k1A
2

1


'

1
(C0  )(x )2y 

(B1+x )2
. 

From the Routh-Hurwitz’s criteria it is found that 

E
*

2w is locally asymptotically stable if the following 

conditions hold good.  

 

        A
2


2
(C

0
  )y /(B

2
+y )<D

2
, (48) 

T
i
>0, i=1,2,3,4, T

1
T

2
>T

3
 and T

1
T

2
T

3
>(T

2

3+T
2

1T4
). 

Condition (48) is satisfied automatically if  

          A
2


2
(C

0
  )<D

1
 (49) 

In this case similar result is observed as given in 

Remark 2.  

4.The characteristic equation of E
*

3w is  

   5+4W
1
+3W

2
+2W

3
+W

4
+W

5
=0 (50) 

where, 

W
1
=l

1
+l

2
+k

1
a

1
x

*
+k

2
P

1
y

*
z

*
x

*
(P

2
P

3
y

*
aP

4
(c+r(C

*

0))), 

W
2
=(l

1
k

2
+l

2
(k

1
a

1
x

*
+k

2
))(k

1
a

1
x

*
+k

2
)(P

1
y

*
z

*
x

*
(P

2
P

3
y

*
aP

4
(c+r(C

*

0))))

P
1

y
*

z
*

(l
1

+l
2

)+x
*

(P
2

P
3

y
*

aP
4

(c+r(C
*

0)))(P
1

y
*

z
*

(l
1

+l
2

))+y
*

(P
2

P
5


1

(C
*

0)x
*
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+P
1

(B
2

+y
*

))P
1
B

2


2
(C

*

0
)z

*
+P

2

2
P

3
B

1


1
(C

*

0
)x

*
y
*

 

W
3

=(l
1

+l
2
+k

1
a

1
x
*
+k

2
)[P

1
x
*
y
*
z
*

(P
2

P
3
y
*
aP

4
(c+r(C

*

0
)))  

+(P
2
P

5


1
(C

*

0)x
*
+P

1
(B

2
+y

*
))P

1
B

2


2
(C

*

0)y
*
z

*
+P

2

2P
3
B

1


1
(C

*

0)x
*
y

*
]  

(P
2
P

3
y

*
aP

4
(c+r(C

*

0)))(P
2
P

5


1
(C

*

0)x
*
+P

1
(B

2
+y

*
))P

1
B

2


2
(C

*

0)x
*
y

*
z

*
 

P
1
P

2

2B
2
P

3
P

5


1
(C

*

0)
2
(C

*

0)x
*
y

*2
z

*
+a

1
k

1
r

1
x

*
P

4
(T

0
+ax

*
)(l

1
C

*

0a
1
C

*

E)  

[x
*

(P
2
P

3
y
*
aP

4
(c+r(C

*

0
)))+P

1
y
*
z
*
](l

1
k
2
+l

2
(k

1
a
1

x
*
+k

2
))  

W
4
=(l

1
k

2
+l

2
(k

1
a

1
x

*
+k

2
))[y

*
(P

2
P

5


1
(C

*

0)x
*
+P

1
(B

2
+y

*
))P

1
B

2


2
(C

*

0)z
*

 

+(P
2
P

3
y

*
aP

4
(c+r(C

*

0)))P
1
x

*
y

*
z

*
+P

2

2P
3
B

1


1
(C

*

0)x
*
y

*
] 

and P
1
=A

2
/(B

2
+y

*
)
2

,P
2
=A

1
/((B

1
+x

*
)(1+z

*
)) , 

P3=1/(B1+x*),P4=T0/(T0+ax*)2,P5=1/(1+z*).  

 

According to Routh-Hurwitz’s criteria, the 

equilibrium point E
*

3w  is locally asymptotically 

stable if W
i
>0 , i=1,2,3,4,5, W

1
W

2
>W

3
, 

W
1
W

2
W

3
>(W

2

3+W
2

1W4
)  and 

(W
3
W

4
W

2
W

5
)(W

1
W

2
W

3
)>(W

1
W

4
W

5
)2. 

 

It is difficult to interpret the results in ecological 

terms from these complicated expressions, however, 

numerical examples are taken and graphs are ploted 

to illustrate the dynamical behaviour of the system 

about equilibrium E
*

3w.  

 

Again, in the similar way the equilibrium 

population densities are functions of A
1

 and the 

coefficients of the characteristic equation (50) are 

functions of the parameter A
1
. Now we can use the 

notation W
i
=W

i
(A

1
) for i=1,2,3,4,5. Now noting that 

the quantities W
i
s  are smooth functions of the 

parameter A
1
. As we have explained the definition 

of Hopf-bifurcation in previous section. Without 

knowing eigenvalues, (Liu, 1994) proved that 

(referring the result to the current case):if Wi(A1),  

1(A1)=W1(A1)W2(A1)W3(A1), 


2
(A

1
)=W

1
(A

1
)W

2
(A

1
)W

3
(A

1
)(W

2

3
(A

1
)+W

2

1
(A

1
)W

4
(A

1
)), 


3
(A

1
)=[W

3
(A

1
)W

4
(A

1
)W

2
(A

1
)W

5
(A

1
)][W

1
(A

1
)W

2
(A

1
)W

3
(A

1
)]

[W1(A1)W4(A1)W5(A1)]2 

are smooth functions of the parameter ‘A
1
’ in an 

open interval containing A
*

1
+ such that following 

conditions hold: 

(iii
*
)W

1
(A

*

1)>0,
1
(A

*

1)>0, 
2
(A

*

1)>0 and 
3
(A

*

1
)=0; 

(iv
*
) d

3
(A

1
)/dA

1
|
A

1
=A

*

1

0 

then (iii
*
) and (iv

*
) are equivalent to conditions (i) 

and (ii) mentioned in section 3.2, for the occurrence 

of a simple Hopf-bifurcation at A
1
=A

*

1. Hence, in 

the similar way, we can propose the following 

theorem: 

 

Theorem 4.1 If a critical value A
*

1 of parameter A
1
 be 

found such that W
i
(A

*

1
)>0 , 

1
(A

*

1
)>0 , 

2
(A

*

1)>0 , 
3
(A

*

1)=0 

and further 
3
'0  (where primes denotes 

differentiation with respect to A
1
) then system (1)-

(5) undergoes Hopf-bifurcation around E
*

3w. 

 

In the following theorem we show that the positive 

equilibrium is globally asymptotically stable. In 

order to prove this theorem we need the following 

lemma which establishes a region of attraction for 

Model 1. 

 

Lemma 4.1 All the solutions of Model 1, will lie in 

the region 
1
, where 

Ω1={(x,y,z,C0,CE): 0≤β1(C0l)x(t))+y(t)+z(t)/ 

β2(C0l)≤Ψ1, 0≤C0(t)+CE(t) ≤ Ψ2}, 

where 
1
=T

0
r(C

0l
)

1
(C

0l
)(r(C

0l
)+1)/ac

1
, 

2
=

1
/

1
, 

T
0
=B(c+r

0
a), 

1
=min{1,D

1
,D

2
} , 


1
=g

0
+d

1
/a

1
 and 


1
={k

2
a

1
,(l

1
+l

2
)k

1
l
1
T

0
r(C

0l
)/ac}. 

 

Proof: From Eq. (4) we get,  

dC
0
/dtd

1
/a

1
(l

1
+l

2
)C

0
 

then by the usual comparison theorem, we get as 

t  

C
0l
d

1
/(a

1
(l

1
+l

2
)) 

From Eq. (1) we get,  
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dx/dtx(r(C
0l

)T
0
acx)/T

0
 

then by the usual comparison theorem, we get as 

t  

xr(C
0l

)T
0
/ac                (51) 

where T
0
=B(c+r

0
a) 

 

Now, let us consider the following function:  

w(t)=
1
(C

0l
)x(t)+y(t)+z(t)/

2
(C

0l
) 

by using Eqs. (2), (3) and (51) we get  

dw/dt+
1
wT

0
r(C

0l
)

1
(C

0l
)(r(C

0l
)+1)/ac 

where 
1
=min{1,D

1
,D

2
}   

then by the usual comparison theorem, we get as 

t, wT
0
r(C

0l
)

1
(C

0l
)(r(C

0l
)+1)/ac

1
 and hence  


1
(C

0l
)x(t)+y(t)+z(t)/

2
(C

0l
)

1
 

where 
1
=T

0
r(C

0l
)

1
(C

0l
)(r(C

0l
)+1)/ac

1
 

Finally, let us consider the following function:  

w
1
(t)=C

0
(t)+C

E
(t) 

by using Eqs. (4), (5) and (51) we get,  

dw
1

dt
(g

0
+d

1
/a

1
)[(l

1
+l

2
)k

1
l

1
T

0
r(C

0l
)/ac]C

0
(k

2
a

1
)C

E

  

if k
2
>a

1
,(l

1
+l

2
)>k

1
l
1
T

0
r(C

0l
)/ac 

dw
1
/dt+

1
w

1


1
 

where 
1
=g

0
+d

1
/a

1
 and 


1
={k

2
a

1
,(l

1
+l

2
)k

1
l
1
T

0
r(C

0l
)/ac} 

then, by the usual comparison theorem, we get as 

t 

w
1
(t)

1
/

1
=

2
 and hence  

C
0
(t)+C

E
(t)

2
 

This proves the lemma. 

 

Theorem 4.2 Let the following inequalities hold in 

the region 
1
:  

A
1
y*

B
1
(B

1
+x*)

< 
aT

0
(c+r(C

*

0))

(T
0
+a

1
)(T

0
+ax*)

, (52) 

A
1


1
(C

*

0)x
*

B
1
+x* < 

A
2
B

2
z*

(B
2
+

1
)(B

2
+y*)

+D
1
, (53) 











 
A

1
E

1


1
(C

*

0)1

B
1
+x*  

A
1

(1+
1
)(B

1
+

1
)

2

 

 < 
E

1

3
[ 










 
aT

0
(c+r(C

*

0))

(T
0
+a

1
)(T

0
+ax*)

 
A

1
y*

B
1
(B

1
+x*)

 











 
A

2
B

2
z*

(B
2
+

1
)(B

2
+y*)

+D
1
 

A
1


1
(C

*

0)x
*

B
1
+x* ],  (54) 











 
A

2
E

2


2
(C

*

0)1

B
2
+y*  

A
1
E

1


1
(C

*

0)x
*y*

(1+
1
)(1+z*)(B

1
+x*)

2

 

 

< 

4E
1

E
2

9
 









 









 

A
2

B
2

z
*

(B
2

+
1

)(B
2

+y
*

)
+D

1

 

A
1


1

(C
*

0)x
*

B
1

+x
*  









D
2

 

A
2


2

(C
*

0)y
*

B
2

+y
* , (55) 

 

[ ]a
1
E

3
+E

4
k

1
l
1


1

2

< 
E

3
E

4

2
 [ ](k

1
a

1
x

*
+k

2
)(l

1
+l

2
)  (56) 

 

where  

 

E
1
< 









 

E
3
( 

A
2
B

2
z*

(B
2
+

1
)(B

2
+y*)

+D
1
 

A
1


1
(C

*

0)x*

B
1
+x* )(l

1
+l

2
)

4( 
A

1
(

2
)

2

1

B
1

)2

 (57) 

E
2
> 











 

3( 
A

1
y

*

(1+z
*
)(B

1
+x

*
)
)

2

( 
aT

0
(c+r(C

*

0))

(T
0
+a

1
)(T

0
+ax

*
)
 

A
1
y

*

B
1
(B

1
+x

*
)
)(D

2
 

A
2


2
(C

*

0)y
*

B
2
+y

* )

 (58) 

E
3

>max 









 

4(
2

)
2

( 

aT
0

(c+r(C
*

0))

(T
0

+a
1

)(T
0

+ax
*

)
 

A
1

y
*

B
1

(B
1

+x
*

)
)(l

1

+l
2

)

, 

3E
2

( 

A
2

(
2

)
2

1

B
2

)
2

(D
2

 

A
2


2

(C
*

0)y
*

B
2

+y
* )(l

1

+l
2

)

(59) 

and  

E
4
< 











 

( 

aT
0

(c+r(C
*

0
))

(T
0

+a
1
)(T

0
+ax

*
)
 

A
1
y
*

B
1
(B

1
+x

*
)
)(k

1
a

1
x
*
+k

2
)

2(k
1

l
1

C
*

0
)
2

 (60) 

 

then the positive equilibrium E
*

3w  is globally 

asymptotically stable with respect to all solutions 

initiating in the interior of the positive region 
1
. (for 

proof see Appendix). 
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V. NUMERICAL EXAMPLE 

 

In this section, we demonstrate the dynamical 

behavior of a three species food chain system with 

toxicant and without toxicant with the help of 

numerical examples.  

5.1 NUMERICAL EXAMPLE FOR MODEL 2 

 

We choose the following values of parameters for E
*

1
: 

r
0
=0.41; c=0.1;A

1
=1.5;B

1
=43.1;

10
=0.6; D

1
=0.9;

B=153.3;a=0.5;A
2
=0.5; B

2
=8.9; 

20
=0.1;D

2
=0.01.

 

 

It is found that under the above set of parameters, the 

equilibrium point E1
*
 (12.5706,0,0) is locally 

asymptotically stable (see Fig.1). 

 

 
Figure 1: Time graph for the Model 2 (without toxicant) around the 

equilibrium point E
*

1, showing the stability behavior. 

 

We choose the following values of parameters for E
*

2
: 

B=130.3; A
1

=0.8; B
1

=5.1;
10

=0.003;

D
1

=0.001;A
2
=0.003;B

2
=6.5; 

20
=0.02.

 

With the above values of parameters and taking the 

remaining parameters to be the same as considered for 

E
*

1
, it is found under the above set of parameters that the 

equilibrium E2
*
 (3.6744,1.225,0) is locally 

asymptotically stable (see Fig.2). 

 
Figure 2: Time graph for the Model 2 (without toxicant) around the 

equilibrium point E
*

2, showing the stability behavior. 

 

We choose the following values of parameters for E
*

3
:  

D1=0.001, A1=1.35, A2=0.501, B2=12.0. 

With the above values of parameters and taking the 

remaining parameters to be the same as considered for 

E
*

1
, it is found that the interior equilibrium E3*=(9.5375, 

2.2163, 1.3688) is locally asymptotically stable (see 

Figs.3 and 4). 

 

 
Figure 3: Time graph for the Model 2 (without toxicant) around the 

equilibrium point E
*

3, showing the stability behavior 

 

 
 

Figure 4: Phase graph for the Model 2 (without toxicant) around the 

equilibrium point E
*

3, showing the stability behavior. 
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Figure 5: Time graph for the Model 2 around the equilibrium point 

E
*

3, showing the bifurcation behavior. 

 

Now, we study the Hopf-bifurcation of the Model 2, 

taking A
1

 as the bifurcating parameter. The 

transversality condition holds with the above set of 

parameters when A
1

=A
*

1
=0.6377 . It is clear that the 

interior equilibrium point E
*

3
 of Model 2 is stable when 

A
1

>A
*

1
 and unstable when A

1
A

*

1
 for which Hopf-

bifurcation occurs (see Figs. 5 and 6).  

 

 
Figure 6: Phase graph for the Model 2 around the equilibrium point 

E
*

3
, showing the bifurcation behavior. 

 

5.2 NUMERICAL EXAMPLE FOR MODEL 1 

 

To explain the applicability of the results discussed 

above, we consider the following particular forms of 

r(C
0

), 
1
(C

0
) and 

2
(C

0
) in two cases as follows: 

Case One:  

r(C
0

)=r
0
r

1
C

0
, 

1
(C

0
)=

10


11
C

0
 & 


2

(C
0

)=
20


22
C

0
  

We choose the following values of parameters for E
*

1w
:  

r1=0.081, β11=0.5, β22=0.031, a1=2.8, d1=0.01, β=0.8, 

θ=0.31, l1=1.2, l2=0.55, g0=0.2, k1=0.1, k2=0.12, r0=0.41, 

B=153.3, c=0.1, a=0.5, A1=1.5, B1=43.1, β10=0.6, 

D1=0.9, A2=0.5, B2=8.9, β20=0.1, D2=0.01. 

It is found that under the above set of parameters, 

the equilibrium point E1w
*
 

(11.8853,0.0000,0.0000,0.1723,0.2758) is locally 

asymptotically stable (see Fig.7).  

Now, we choose the following values of parameters 

for E
*

2w:  

 
Figure 7: Time graph for the Model 1, Case One (with toxicant) 

around the equilibrium point E
*

1w
, showing the stability behavior. 

 

With the above values of parameters and taking the 

remaining parameters to be the same as considered for 

E
*

1w
 of Model 1 (Case One), it is found that the 

equilibrium E2w
*
 (2.7181,0.9084,0,0.6886,0.7867) is 

locally asymptotically stable (see Fig.8). 

 
Figure 8: Time graph for the Model 1, Case One (with toxicant) 

around the equilibrium point E
*

2w
, showing the stability behavior. 

 

Now, we choose the following values of parameters for 

E
*

3w
:  

r
1
=0.2; 

11
=0.08;a

1
=1.00;A

1
=1.1;

D
1

=0.001; B
2
=9.0; A

2
=0.6.

 

With the above values of parameters and taking the 

remaining parameters to be the same as considered for 
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E
*

1w
 of Model 1 (Case One), it is found that the interior 

equilibrium E3w
*
 (8.1611,2.0321,0.9378,0.535,0.3070) is 

locally asymptotically stable (see Figs. 9 and 10). 

 
Figure 9: Time graph for the Model 1, Case One (with toxicant) 

around the equilibrium point E
*

3w
, showing the stability behavior 

 

 
Figure 10: Phase graph for the Model 1, Case One (with toxicant) 

around the equilibrium point E
*

3w
, showing the stability behavior. 

 
Figure 11: Time graph for the Model 1 (Case One) around the 

equilibrium point E
*

3w
, showing the bifurcation behavior. 

 

Now, we study the Hopf-bifurcation of the Model 1, 

taking A
1

 as the bifurcating parameter. The 

transversality condition holds with the above set of 

parameters when A
1

=A
*

1
=0.7015 . It is clear that the 

interior equilibrium point E
*

3w
 of Model 1 is stable when 

A
1

>A
*

1
 and unstable when A

1
A

*

1
 for which Hopf-

bifurcation occurs (see Figs. 11 and 12). 

 
Figure 12: Phase graph for the Model 1 (Case One) around the 

equilibrium point E
*

3w
, showing the bifurcation behavior 

 

Case Two:  

r(C
0
)=r

0
r

1
C

0
, 

1
(C

0
)=

10
/(1+

11
C

0
), 


2

(C
0
)=

20
/(1+

22
C

0
)  

We choose the following values of parameters for E
*

1w
: 

All the parameters to be the same as considered for E
*

1w
 

of Model 1 (Case One), it is found that the equilibrium 

E1w
*
 (11.8853,0,0,0.1722,0.2759) is locally 

asymptotically stable (see Fig.13).  

 
Figure 13: Time graph for the Model 1, Case Two (with toxicant) 

around the equilibrium point E
*

1w
, showing the stability behavior. 

 

Now, we choose the following values of parameters for 

E
*

2w
:  

r1=0.03, β11=0.5, β22=0.021, a1=1.60, g0=0.18, A1=1.5. 

With the above values of parameters and taking the 

remaining parameters to be the same as considered for 

E
*

2w
 of Model 1 (Case One), it is found that the 

equilibrium E2w
*
 (2.2030,0.8456,0,0.7809,0.7155) is 

locally asymptotically stable (see Fig.14).  
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Figure 14: Time graph for the Model 1, Case Two (with toxicant) 

around the equilibrium point E
*

2w
, showing the stability behavior. 

 

Now, for E
*

3w
, all the parameters to be the same as 

considered for E
*

3w
 of Model 1 (Case One), it is found 

that the interior equilibrium E3w* 

(8.4443,1.8201,0.9556,0.5226,0.3002) is locally 

asymptotically stable (see Figs. 15 and 16).  

 

 
Figure 15: Time graph for the Model 1, Case Two (with toxicant) 

around the equilibrium point E
*

3w
, showing the stability behavior. 

 

 
Figure 16: Phase graph for the Model 1, Case Two (with toxicant) 

around the equilibrium point E
*

3w
, showing the stability behavior. 

 
Figure 17: Time graph for the Model 1 (Case Two) around the 

equilibrium point E
*

3w
, showing the bifurcation behavior. 

 

Now, we study the Hopf-bifurcation of the Model 1, 

taking A
1

 as the bifurcating parameter. The 

transversality condition holds with the above set of 

parameters when A
1
=A

*

1
=0.753 . It is clear that the 

interior equilibrium point E
*

3w
 of Model 1 is stable when 

A
1

>A
*

1
 and unstable when A

1
A

*

1
 for which Hopf-

bifurcation occurs (see Figs. 17 and 18). 

 
Figure 18: Phase graph for the Model 1 (Case Two) around the 

equilibrium point E
*

3w
, showing the bifurcation behavior. 

5.3 EFFECT OF TOXICANT ON MODEL 1 AND 

COMPARISON WITH MODEL 2: 

 

Now, we compare the equilibrium levels of the 

population for both the models. From the Table 1 to 

Table 3 and figures (19 - 24), we can see that the 

populations are decreasing under the stress of toxicant.  

 

Table 1: Numerical values of equilibrium points of 

Model 2 
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Table 2: Numerical values of equilibrium points of 

Model 1, Case One 

 

 

 

Figure 19: Time graph for basal resource population of Model 2 

compared with Model 1 (Case One) around the equilibrium points E
*

1
 

and E
*

1w
 respectively, showing the stability behavior. 

 
 

Figure 20: Time graph for basal resource population of Model 2 

compared with Model 1 (Case Two) around the equilibrium points 

E
*

1
 and E

*

1w
 respectively, showing the stability behavior. 

 

Table 3: Numerical values of equilibrium points of 

Model 1, Case Two 

 
  

 
Figure 21: Time graph for basal resource and intermediate consumer 

populations of Model 2 compared with Model 1 (Case One) around 

the equilibrium points E
*

2
 and E

*

2w
 respectively, showing the stability 

behavior. 

  
 

Figure 22: Time graph for basal resource and intermediate consumer 

populations of Model 2 compared with Model 1 (Case Two) around 

the equilibrium points E
*

2
 and E

*

2w
 respectively, showing the stability 

behavior. 
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Figure 23: Time graph for Model 2 compared with Model 1 (Case 

One) around the equilibrium points E
*

3
 and E

*

3w
 respectively, 

showing the stability behavior. 

 
Figure 24: Time graph for Model 2 compared with Model 1 (Case 

Two) around the equilibrium points E
*

3
 and E

*

3w
 respectively, 

showing the stability behavior. 

 

VI. CONCLUSION 

In this paper we have proposed and analyzed a nonlinear 

mathematical model to study the effect of toxicant on a 

three species food chain system. The local stability 

analysis of all the equilibrium points of the Model 1 and 

2 has been carried out. The global stability analysis of 

only the non-trivial positive equilibrium points of both 

the Models has been conducted. From the stability of E
*

1
 

of Model 2, it is concluded that only the prey population 

will survive and both the predator populations would 

tend to extinction. From the stability of E
*

1w
 of Model 1 

we derive the same dynamical behavior of prey and 

predator populations as observed for E
*

1
 of Model 2 with 

the only difference that equilibrium level of prey 

population reduces due to the presence of toxicant (see 

Figs.1, 7, 13, 19 and 20). From the stability of E
*

2
 of 

Model 2, it is concluded that only prey and intermediate 

predator populations would survive and the top predator 

population may die out. Similar dynamical behavior has 

been observed for prey and predator populations from 

the stability analysis of E
*

2w
 as being observed from the 

stability analysis of E
*

2
. However, in this case also the 

equilibrium level of prey and predator populations 

decrease due to the presence of toxicant (see Figs.2, 8, 

14, 21 and 22). The interior equilibrium points of both 

the Models are locally stable showing the same 

dynamical behavior and co-existence of all the three 

populations of prey and predator species. However, from 

the equilibrium values it is seen that the equilibrium 

density of top predator reduces due to the presence of 

toxicant in prey and intermediate predator. It may be 

also noted from the equilibrium of the intermediate 

predator population that the level of intermediate 

predator population may increase due to the presence of 

toxicant in the top predator. 

 

The interior equilibrium points of both the Models are 

globally asymptotically stable in the regions 
1

 and 
2
. 

Looking at 
1

 and 
2

, it may be concluded that the 

region of global stability shrinks when the toxicant is 

introduced in the underlying system of prey and predator 

species. It is noted from the stability conditions of the 

equilibrium of the models that the system with toxicant 

seems to be more stable than that of the system with no 

toxicant effects. It is further concluded that the system 

with toxicant moves faster towards equilibrium after 

given perturbation than that of the system without 

toxicant for same parametric values. Finally, we have 

demonstrated the dynamical behavior of a three species 

food chain system with toxicant and without toxicant 

with the help of numerical simulation to support 

analytical results. 

 

VII. APPENDIX 

APPENDIX A (Proof of Theorem 3.2) 

We consider the following positive definite 

function about E
*

3:  

V=(xx*x*ln(x/x*))+(1/2)(yy*)2+(G
1
/2)(zz*)2  
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Differentiating V with respect to time t, we get  

V =(xx*/x)(dx/dt)+(yy*)(dy/dt)+G
1
(zz*)(dz/dt)  

Using system of equations (11)-(13), we get after 

some algebraic manipulations  

V =(xx*)2 








 
aT

0
(c+r

0
)

(T
0
+ax)(T

0
+ax*)

 
A

1
y*

(1+z)(B
1
+x)(B

1
+x*)

 

 

(yy*)2 








 
A

2
B

2
z*

(B
2
+y)(B

2
+y*)

+D
1
 

A
1


10
x*

(1+z)(B
1
+x*)

 

(zz*)2G
1
 








D
2
 

A
2


20
y*

B
2
+y*  

+(xx
*
)(yy

*
) 








 
A

1
B

1


10
y

(1+z)(B
1
+x)(B

1
+x

*
)
 

A
1

(1+z)(B
1
+x)

+(xx
*
)(zz

*
) 








 
A

1
y

*

(1+z)(1+z
*
)(B

1
+x

*
)

 

+(yy*)(zz*)[ 
A

2
B

2
G

1


20
z

(B
2
+y)(B

2
+y*)

( 

A
1


10
x
*
y
*

(1+z)(1+z
*
)(B

1
+x

*
)
+ 

A
2
y

B
2

+y
)] 

Now, V   can further be written as sum of the 

quadratic forms as  

 

V [((a
11

/2)(xx*)2a
12

(xx*)(yy*)+(a
22

/2)(yy*)2) 

 

+((a
11

/2)(xx*)2a
13

(xx*)(zz*)+(a
33

/2)(zz*)2) 

 

+((a
22

/2)(zz*)2a
23

(yy*)(zz*)+(a
33

/2)(zz*)2)] 

where, 

a
11

= 










 
aT

0
(c+r

0
)

(T
0
+ax)(T

0
+ax*)

 
A

1
y*

(1+z)(B
1
+x)(B

1
+x*)

, 

a
12

= 










 
A

1
B

1


10
y

(1+z)(B
1
+x)(B

1
+x*)

 
A

1

(1+z)(B
1
+x)

, 

a
13

=( 
A

1
y*

(1+z)(1+z*)(B
1
+x*)

), 

a
22

= 










 
A

2
B

2
z*

(B
2
+y)(B

2
+y*)

+D
1
 

A
1


10
x*

(1+z)(B
1
+x*)

, 

a
23
= 








 
A

2
B

2
G

1


20
z

(B
2
+y)(B

2
+y*)

( 
A

1


10
x*y*

(1+z)(1+z*)(B
1
+x*)

+ 
A

2
y

B
2
+y

) , 

a
33

=G
1
 








D
2
 

A
2


20
y

*

B
2
+y

* , 

Sufficient conditions for V  to be negative definite 

are that the following inequalities hold:  

a
11

>0 (61) 

a
22

>0      (62) 

a
11

a
22

>a
2

12 (63)  

a
11

a
33

>a
2

13 (64)  

a
22

a
33

>a
2

23  (65) 

We note that the fourth inequality, i.e., a
11

a
33

>a
2

13 is 

satisfied due to the proper choice of G
1
, (34)(61), 

(35)(62), (36)(63) and (37)(65). Hence V is 

a Lyapunov function with respect to E
*

3 , whose 

domain contains the region of attraction 
2

, 

proving the theorem. 

 

APPENDIX B (Proof of Theorem 4.2) 

We consider the following positive definite 

function about E
*

3w:  

V=(x-x
*
-x

*
ln(x/x

*
))+(E1/2)(y-y

*
)
2
 +(E2/2)(z-

z
*
)
2
+(E3/2)(C0-C0

*
)
2 
+(E4/2)(CE-CE

*
)
2
 

Differentiating V with respect to time t, we get  

V =(x-x
*
)/x(dx/dt)+E1(y-y

*
)(dy/dt) +E2(z-

z
*
)(dz/dt)+E3(C0-C0

*
)(dC0/dt) +E4(CE-

CE
*
)(dCE/dt) 

Using system of equations (1)-(5), we get after 

some algebraic manipulations  

V =(xx
*
)

2
 







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0
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1
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2
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

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

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2
z

*

(B
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2
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 
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
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
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(C

*

0)y
*

B
2
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*

0)
2
E
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(l
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+l
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) 
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Now, V   can further be written as sum of the 

quadratic forms:  

where, 
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*

0)y
*

B
2
+y*  

, a
34

=[ 
A

2
E

2
(C

0
)yz

B
2
+y

], a
44

= 
E

3

2
(l

1
+l

2
), 

a
45

=a
1
E

3
+E

4
k

1
l
1
x, a

55
=E

4
[k

1
a

1
x*+k

2
]. 

Sufficient conditions for V  to be negative definite 

are that the following inequalities hold:  

a
11

>0 (66) 

a
22

>0 (67)  

a
11

a
22

>a
2

12 (68)    

a
11

a
33

>a
2

13 (69) 

a
11

a
44

>a
2

14 (70) 
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a
11

a
55

>a
2

15 (71) 

a
22

a
33

>a
2

23 (72) 

a
22

a
44

>a
2

24 (73) 

a
33

a
44

>a
2

34 (74)a
44

a
55

>a
2

45 (75) 

We note that the fourth, fifth, sixth, eighth and ninth 

inequalities, i.e., a
11

a
33

>a
2

13
,a

11
a

44
>a

2

14
,a

11
a
55

>a
2

15
, 

a
22

a
44

>a
2

24
 and a

33
a
44

>a
2

34
 are satisfied due to the 

proper choice of E
1
,E

2
,E

3
, E

4
 and other inequalities, 

(52)(66), (53)(67), (54)(68), (55)(72) and 

(56)(75). Hence V is a Lyapunov function with 

respect to E
*

3w
, whose domain contains the region of 

attraction 
1
, proving the theorem.  
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