
IJSRSET3405 | NCRISE | March-April-2017 [(3) 4: 22-25]

 National Conference on Recent Innovations in Science And Engineering (NCRISE)

International Journal of Scientific Research in Science, Engineering and Technology

© 2017 IJSRSET | Volume 3 | Issue 4

22

FPGA Implementation of XTEA
Anto Joy, Antony Paul, Anjana Haridas, Rekha C, Thushara Varghese

Electronics and Communication Engineering, Nirmala College of engineering, Chalakudy, thrissur, India

ABSTRACT

In this age of viruses and hackers of electronic eavesdropping and electronic fraud, security is paramount. A

cryptographic system (or a cipher system) is a method of hiding data so that only certain people can view it. A

cryptographic system typically consists of algorithms, keys, and key management facilities. There are several

algorithms to choose from that vary in the security they provide, their size, the time it takes to encrypt or decrypt a

block of data. In this paper, we analyze and evaluate the development of a cheap and relatively fast hardware

implementation of the extended tiny encryption algorithm (XTEA). Originally the research was split into separate

encipher/decipher units, but these have now been combined into a single unit. The design will start by using finite

state machine (FSMs) and will use Verilog hardware description language to describe the design. Minimizing the

chip area and security transmission of data will be our main goal. The targeted hardware systems are the

reconfigurable Spartan III and Xilinx Virtex IV modern field programmable gate arrays (FPGAs).

Keywords: Encipher, Decipher, Finite State Machines, cryptographic system.

I. INTRODUCTION

The security of symmetric cryptosystem is a function of two

parameters: the strength of the algorithm and the length of the

key. The algorithm must be so secure that there is no better

way to break it than with a brute-force attack. The security of

the algorithm must be resided in the key and delta value we

choose. So therefore, there is balance between choosing long

key, delta and the time required to complete the enciphering

operation. Many encryption algorithms are available in the

market and the selection of a specific one is dependent on the

relatively tight constraints. The selected algorithm should be

small, relatively secure, with a proven history of overcoming

possible well known attacks on it. The Tiny Encryption

Algorithm (TEA) (Wheeler and Needham 1994),and hence its

successor the Extended-TEAs (XTEAs) (Needham and

Wheeler 1997; Russell 2004; Kelsey et al. 1997; Moon et al.

2002) are among the best choices available for security

purpose. The name of block cipher came from the fact that

block cipher encrypts plaintext as

blocks. These blocks differ in size between block cipher

algorithms, for example, in Data Encryption Standard DES

the plaintext is divided into blocks of length 64, but it is 32 in

International Data Encryption Algorithm (IDEA) , if the

length of block cipher equal one them, it will become stream

cipher. This paper uses the Verilog description language to

implement the core function of XTEA and integrate them into

a FPGA chip. XTEA consist of two parts namely encipher

and decipher units but we are developing in a single module.

The unit accepts data in data_in1 and data_in2, a key in key, a

delta in delta and the mode in block („00‟ for encipher, „11‟

for decipher). The all_done wire is raised when the results of

the operation are ready to be read from out_1 and out_2. It

needs to be reset before each use.

II. IDENTIFY, RESEARCH AND COLLECT IDEA

We have studied some research papers and Google it

thoroughly. Till now a key of different 128 bit is required for

both encipher and decipher but we have design it in such a

way that we require same key for both encipher an decipher

module.

III. EXPERIMENTAL DETAILS

XTEA is a symmetric block cipher designed to correct

weakness in TEA . Like TEA, XTEA is a 64-bit block Feistel

network with a 128-bit key and suggested 64 rounds. Several

differences from TEA are apparent, including a somewhat

more complex key-schedule and a rearrangement of the shifts,

XORs and additions (Hong et al. 2003; Ko et al. 2004). Fig.

shows the block diagram of an XTEA.key-schedule and a

rearrangement of the shifts, XORs and additions (Hong et al.

2003; Ko et al. 2004).

Volume 3 | Issue 4 | 2017 | www.ijsrset.com

 23

Figure 1. Block Diagram of XTEA

In this proposed XTEA we are using different value of

DELTA and KEY to increase the security. By doing this only

the sender and receiver knows the value of both delta and key.

And we also use 32 cycles for encrypting and decrypting the

data in Feistel function to increase the security.

A single XTEA round with its normal computational

constructs. The crossed square for the sum, crossed circle for

an XOR, >> for a right shift, << for a left shift.

The two main components of the XTEA such as the encipher

and decipher are described below:

A. Encipher Module

To use the encipher. v, the inputs are two 32-bit U32 data

values, the number of iterations and the 128-bit key value.

The key is represented as a four 32-bit hexadecimal values.

Key values can be created using a 128-bit key generator. The

output from the system is two 32-bit values that are the

encrypted version of the input. The Feistel function is used

for encrypting the data and which is shown below in .

B. Decipher Module

To use the decipher.v the inputs are two 32-bit U32 data

values, the number of iterations, and the 128-bit key value.

The key is represented as four 32-bit hexadecimal values. The

input data should be the encrypted data from the encipher.v

and having the same 128-bit key value which is used in the

encryption process. In this module an additional delta value

i.e. also called magical value is included in the project and is

used to implement the logic of the algorithms but in this

programming we can use any hexadecimal value of 32-

bit.The Feistel function is used to decrypt the data and shown

below in Fig

Volume 3 | Issue 4 | 2017 | www.ijsrset.com

 24

IV. RESULTS AND DISCUSSIONS

The proposed XTEA has been simulated on the

ModelSim SE 10.0a and has been synthesized on the

Xilinx ISE 10.1. The figure 1 shows the generalized

block diagram of XTEA with the maximum frequency

of 129.099 MHz in case of Virtex4 and 71.114MHz in

case of Spartan3 In Fig, we show the waveforms of

testing the encryption process. The reset signal was

activated at first to insure that all the registers are

cleared before starting any operation, note that the

asynchronous reset is active high once. After that low

the reset and select the block to set the module. Now,

the module is ready to either encrypt or decrypt. One

can distinguish between these two by the control signal

i.e. block provided as an input to the system. After

engaging the Encrypt signal, the system will enter the

state s1, and will finish the encryption after busy signal

goes Low (x>32).

Testing the Encryption Process (shows the starting

Portion of the waveform).

In Figure, we depict the waveforms of decryption state

transition testing. The encryption and the Decryption

processes are quite the same in architecture, but the

decryption operates in a reverse manner on the data, and

uses a subtract or rather than an adder. This test shows

the transition of the state from the S0 to S9, because

block is selected for decryption and here the input given

is same as of output of encryption module, and will

finish the decryption after busy signal goes high.

Testing the Decryption Process (shows the starting Portion of the

waveform)

V. SYNTHESIS RESULT

The synthesis result contains a table which shows the

comparison between the old research and the proposed

XTEA. While doing comparison we will find that our

research shows great significance as our all the

parameters are consuming less area and consumes less

power to operate.

VI. CONCLUSIONS

This uses Verilog description language to get the

modules of XTEA. After studying the comparative

analysis with we conclude that there is a difference in

between the number of slices, LUTs, GCLKs and the

maximum frequency. While synthesizing our

optimization goal is speed. The results are quiet stable

and reliable and has great flexibility with high

integration.

VII. REFERENCES

[1]. Extended TEA Algorithm proposed by Tom St

Denis, April 20th 1999.

[2]. Julio C. Hernandez, Pedro Isasi "New results on

the Genetic Cryptanalysis of TEA Reduced

Round versions of XTEA" 2000 IEEE.

[3]. Steven M. Aumack, Michael D. Koontz Jr.

"Hardware Implementation of XTEA".

[4]. Derek Williams CPSC 6128 Network Security

Columbus State University "The Tiny Encryption

Algorithm (TEA)" April 26, 2008.

[5]. Gaidaa Saeed Mahdi, "A Modification of TEA

Block Cipher Algorithm for Data Security

(MTEA)", Eng. & Tech., Journal, vol.29, No.5,

2011.

[6]. Wheeler, David J. and Needham, Roger M. TEA,

"a Tiny Encryption Algorithm" Computer

Volume 3 | Issue 4 | 2017 | www.ijsrset.com

 25

Laboratory, Cambridge University, England.

November, 1994

[7]. Wheeler, David J. and Needham, Roger M. TEA

Extensions. Computer Laboratory, Cambridge

University, England. October, 1997.

[8]. Scheier, Bruce." A Self-Study Course in Block-

Cipher Cryptanalysis", Crypto logia, Vol.24

(1).January 2000.

[9]. Feistel, Horst." Cryptography and Computer

Privacy", Scientific American. Vol. 228(5). May

1973.

[10]. Ke Wang," An Encrypt and Decrypt Algorithm

Implementation on FPGAs", Semantics,

Knowledge and Grid, 2009. SKG 2009. Fifth

International Conference, Page(s): 298 – 301. B.

Smith, "An approach to graphs of linear forms

(Unpublished work style)," unpublished.

[11]. Biham, Eli and Shamir, Adi," Differential

Cryptanalysis of the Data Encryption Standard",

Springer Verlag, 1993. ISBN 0-387-97930-1,

ISBN.

