
IJSRSET17345 | Received : 21 June 2017 | Accepted : 30 June- 2017 | May-June-2017 [(3)3: 691-698]

© 2017 IJSRSET | Volume 3 | Issue 3 | Print ISSN: 2395-1990 | Online ISSN : 2394-4099
Themed Section: Engineering and Technology

691

Software Cognitive Complexity Metrics for OO Design:
 A Survey

 Syed Tanzeel Rabani1, K. Maheswaran2

1
Research Scholar, Department of Computer Science, St. Joseph’s College (Autonomous), Tiruchirappalli, Tamil Nadu, India

2
Assistant Professor, Department of Computer Science, St. Joseph’s College (Autonomous), Tiruchirappalli, Tamil Nadu, India

ABSTRACT

Software metric is used to measure the quality of a software. The conventional metric may be categorized as

procedural and Object-oriented metrics. Object-oriented Programming is widely used for software development

from the last three decades. There arises a dire need for metrics to evaluate the quality of software in a better manner.

Number of metrics are already proposed for OO design but their implementation is still very less. Cognitive

Informatics plays an important role in understanding the fundamental characteristics of software. The cognitive

complexity metrics is a better indicator to measure the human effort needed to perform the task and measure the

difficulty in understanding the software. The primary objective of this paper is to throw some light on various

Software cognitive complexity metrics. The classical and modern metrics of software cognitive complexity are

discussed and analysed.

Keywords: Software Metrics, Software Complexity, Cognitive Informatics, Cognitive Complexity

I. INTRODUCTION

Software metric is a quantitative technique to measure

the quality of a software. It is essential to measure the

software Products, Processes and Professionals.

Researchers are working hard to propose various

metrics for development stage so that software could be

properly assessed.

Object oriented programming(OOP) is very much

popular because of its various features as inheritance,

interaction, polymorphism, dynamic binding,

encapsulation etc. It is also easy to implement, modify,

maintain, understand and reuse the software code and

modules by using OOP.

Software complexity metrics in object-oriented

programming refers to the complexity of software code

with respect to understandability, modifiability,

maintainability and reusability, etc. According to IEEE,

Complexity is “the degree to which a system or

component has a design or implementation that is

difficult to understand and verify”. In software,

everything is like un-measurable, as it cannot be

touched and visualized, therefore Software engineering

community is striving for some technique that can

measure the complexity of software more accurately.

Cognitive informatics (CI) is a promising area from last

three decades in the field of research. It is used in

various research fields for obtaining a solution of a

given problem such as software engineering, artificial

intelligence, and cognitive sciences. The CI based on [1]

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

 692

found that the functional complexity of a software

system depends on three factors: input, output and

architectural flow Cognitive complexity plays an

important role in software measurement. Measuring the

complexity of a software using cognitive approach find

a way to fully understand the software in all aspects i.e.

data objects: input, output, constant and variables, loops

and branches so that it reflects difficulty for the

developers to understand the software, can be used to

predict the effort required to develop, test and maintain

the software. The cognitive complexity takes both

internal structure and input/output for the software

processing.

Cognitive complexity metrics are used as a

measurement to quantify human effort needed to

perform a task or difficulty in understanding the

software. The aim of this survey is to list out some of

the existing Cognitive Complexity Metrics, to make the

reader aware of their existence, and to offer references

for further reading.

II. SOFTWARE COGNITIVE COMPLEXITY

METRICS

Wang et al. [5] calculated the cognitive weight of

various Base control structures (BCS’s). Researchers

are proposing new metrics but use the same cognitive

weight for (BCS) as proposed by Wang. The summary

of various BCS’s along with their categorization and

Cognitive weights are described in Table I.

This section presents the description of various existing

cognitive complexity measures along with their

limitations and advantages. Among the various

cognitive complexity metrics discussed below, some

metrics are code level and other are class and coupling

metrics.

.

Message Complexity

Sanjay Misra et al., [3] proposed a metric Message

complexity, which focuses on coupling factor between

classes. Two classes are said to be coupled if there is

message call from one class to another. The metric not

only count the total number of such messages but also

add weight of the called methods. Thus, the Complexity

due to message calls are the sum of weights of call and

the weight of called method as calculated in eq.1.

 (1)

Where the number 2 represents the weight of message

to an external method and MCi is the weight of called

method.

Method Complexity

Wang [4] proposed the Method complexity, which is

used to measure the cognitive weight of a particular

method. It functions by assigning weights to the base

control structures (BCS) inside a method. The BCS

along with their categorizations and corresponding

weights are shown in Table I.

Two different scenarios are possible to calculate the

Weight in each method. Either all BCSs are in

sequential manner or it contains one into another, the

latter scenario is calculated below in eq. 2:

 (2)

Where Wc is the sum of q linear blocks comprises of

individual BCSs. Every block can consist of m nesting

BCSs, and each layer contains n linear BCSs. The

Method complexity excludes some important details of

cognitive complexity such as information that is

contains in identifiers and the operators.

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

 693

TABLE I

COGNITIVE WEIGHTS FOR BCS’s

Category BCS’S Weight(Wc)

Sequence Sequence(SEQ) 1

Branch If-then-else(ITE) 2

Case(CASE) 3

Iteration For-do(Ri) 3

Repeat-until(R1) 3

While-do(R0) 3

Embedded

Component

Function call(FC) 2

Recursion(REC) 2

Concurrency Parallel(PAR) 4

Interrupt(INT) 4

Cognitive Information Complexity Measure

Kushwaha et. al [9] proposed Cognitive information

complexity measure(CICM) which used to calculate

cognitive complexity of each method in a class. This

measure is computationally simple. CICM is defined in

eq. 3

CICM = WICS * Wc (3)

Where WICS stands for Weighted Information Count of

Software and Wc is the weight of BCS’s. WICS is

defined below in eq. 3.1

 (3.1)

Software is a mathematical entity and information

contained in the program is a function of identifiers, and

the operators are used to perform operations on

information.

Information = f (Identifiers, Operators). Information is

supplied to the entire program.

 (4)

In eq. 4 ICS is the information Contained in Software,

LOCs are number of lines in the software. Weighted

Information Count of k
th
 LOC (WICL) of a program,

which is a function of identifiers, operands and LOC. It

is represented in eq. 5

. (5)

The weighted information is calculated of each line

making it very complex to calculate. It is observed that

the information is the function of operators and

operands, but the information is only contained in the

operands. The operators are only used to perform some

operation on operands.

Class Complexity

Mishra [12] suggested a type of metric using cognitive

weights to determine the class complexity in object

oriented system. It functions by associating a particular

weight with each method. After assigning weight it adds

the weights of all methods. Thus, complexity of a whole

class is determined. If the complexity of whole system

is to be determined then weights of classes are added in

the same level. But if they are child classes, then the

weights are multiplied.

Class Complexity (CC) of a system is calculated in eq. 6

 (6)

Where, Wc is the weight of the concerned class, M

represents the depth in object oriented code and n

represents the number of classes.The Calculation of

class complexity was easy and also language

independent, but a well-defined metric not only

considers the number of methods, classes and subclasses

but should also consider the internal structure of the

method.

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

 694

Weighted Class Complexity

Mishra [13] extended the CC metric and proposed a

new metric as Weighted class Complexity (WCC).

Object oriented program structure depend upon the

attributes and methods in a class. The complexity of a

class is calculated by the sum of weights of methods and

attributes as in eq. 7

 (7)

Where Na is the number of attributes in a class. MC

refers to the method complexity as calculated in eq. 2

Weight of individual classes are added as follows

 (8)

TWCC stands for total weighted Class Complexity. It

includes the complexity due to internal structure of

methods and attributes. But a well-defined Object-

oriented metrics must also consider the powerful

concepts of Object Oriented programming like

Inheritance, Encapsulation, Overloading and

Polymorphism.

Attribute Weighted Class Complexity

Aloysius [15] extended the work of EWCC metric [14]

and proposed a new metric as Attribute Weighted Class

Complexity (AWCC). As cognitive load is different for

different attributes, so in AWCC different cognitive

weight are assigned to attributes. These weights were

assigned based on the efforts needed to understand the

different data types. AWCC is calculated below by eq. 9

as under

(9)

Attribute complexity is derived as:

AC = (PDT *Wp) + (DDT *Wd) + (UDDT *Wu) (9.1)

Where PDT is the number of Primary Data Type

attributes; DDT is the number of Derived Data Type

attributes; UDDT is the number of User Defined Data

Type attributes. Wp is the weight of PDT which is 1; Wd

is the weight of DDT which is 2; Wu is the weight of

UDDT which is 3. AWCC only adds the Attribute

complexity to the Extended Weighted Class Complexity

and does not add other object-oriented features.

Cognitive weighted coupling between objects

Aloysius et al., [18] proposed cognitive weighted

coupling between objects (CWCBO) to overcome the

limitation of Coupling between object (CBO) by C.K.

CBO doesn’t consider the different type of coupling. It

only considers the no. of objects to which the given

class is coupled. Each couple is assigned as a weight 1.

It considers the different types of coupling involved. It

is calculated as follows:

CWCBO = (CC * WFCC) + (GDC * WFGDC)

+ (IDC * WFIDC) + (DC * WFDC)

+ (LC * WFLCC) (10)

Where CC is the total number of modules that contains

Control Coupling; WFCC is the Weighting Factor of

Control Coupling; DC is the count of Global Data

Coupling; WFGDC is the Weighting Factor of Global

Data Coupling and its weight is given as 1. IDC is the

count of Internal Data Coupling; WFIDC is the

Weighting Factor of Internal Data Coupling and its

weight is given as 2; DC is the count of Data Coupling;

WFIDC is the Weighting Factor of Internal Data

Coupling and its weight is given as 2; WFDC is the

Weighting Factor of Data Coupling and its weight is

given as 3; LCC is count of Lexical Content Coupling;

WFLCC is the Weighting Factor of Lexical Content

Coupling and its weight is given as 4.

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

 695

Entire Cognitive Code Complexity

Jakhar et.al [20] proposed cognitive class complexity

for object oriented code. The proposed metric first

calculates the method complexity by using cognitive

weights as per eq. 4. After calculating method

complexity, complexity in all methods is added to get

class complexity. ECCC was calculated by summing the

complexity of all classes in object-oriented code as

shown in eq. 11

 (11)

EWCC represents the Entire cognitive code complexity.

CC is the class complexity defined by eq. 12

 (12)

Information represents the number of operands and

operators. Wc is the cognitive weight of BCS’s. as

shown in Table I. RASP is the ratio of Accessing

similar parameters which is calculated as fallows in eq.

13

 (13)

Where, M represents the methods of a class, i, j are the

method numbers and na is the number of attributes in

the same class.

New weighted method complexity

Jhakhar et al., [19] proposed a metric as New Weighted

Method complexity (NWMC).

The main aim of this metric is to measure the cognitive

complexity, analyse the development time and measure

the understandability of a program. NWMC is defined

in eq. 14

NWMC = Nparameters * Wc (14)

 Nparameters = Ni + No + Nlp +Nfp (14.1)

Where Ni is the individual number of inputs of the main

program and some other program which is called from

the main program and some other program; No is the

individual number of outputs of the main program and

some other program which is called from the main

program and some other program; Nlp is the number of

local parameters other than Ni; Nfp is the number of

formal parameters during function and recursive call;

Wc is the cognitive weight of base control structures as

calculated in eq. 4. Understandability finds the

relationship between the NWMC and difficulty. The

understandability is calculated in eq.14.2

UA = (NWMC
a
) * b (14.2)

Where a and b are constants that are empirically derived

using regression.

Improved Cognitive Complexity Measure

Isola esther et al., [2] proposed a cognitive complexity

metric for object-oriented code. This metric is named as

improved cognitive complexity metric (ICCM). The

naming of variables used in code plays a vital role in

understanding the code. On evaluating the code, it was

found that arbitrarily named variables (ANV) increases

the difficulty of understanding three times more than

meaningfully named variables (MNV). ICCM is shown

in eq. 15

 (15)

Where the first summation represents the total lines of

code. ANV and MNV represent the arbitrarily and

meaningfully named variables. WC is the weight of BCS

as calculated by eq. 2

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

 696

Code Cognitive Complexity(CCC)

Chhabra [21] proposed Code cognitive complexity

(CCC) as a new measure by enhancing Module

Cognitive Complexity (MCC). Cognitive complexity

doesn’t depend alone upon the type of control structures

but on various modules, their parameters and return

values. The weights for BCS are thus refined for

calculating MCC. The two refined categories are shown

in Table II.

(16)

In eq. (16) Where Wc represents cognitive weight of

control statement from which the module call exists,

Distance represents the spatial distance of module call.

It is equal to the absolute difference in number of lines

between the module definition and the corresponding

call/use. Nip & Nop are the number of input and output

parameters. WPi represents the cognitive weight of

parameter Pi. Considering the possibility of searching

from multiple files for the module’s definition, distance

is defined as follows.

Distance = (Distance of call of the module from the top

of current file) + (Distance of definition of the module

from top of file containing definition) + (0.1 *total lines

of code of remaining files) / 2

The CCC is computed by averaging the MCC values for

all calls below in eq. 17

(17)

Where m is the count of all module calls in the and MCj

represents the j
th
 call

TABLE II

COGNITIVE WEIGHTS OF MEMBERS NEEDING

INTEGRATION WITH SPATIAL DISTANCE

Category BCS’S
Weight

(Wc)

Constant

Data

Constant values 1

Enumerations and

defined constants
1

variables

Atomic 1

Array (1-d) and structure 2

Multi-dimensional array

and pointer based

indirection (single)

3

Multiple indirection,

pointer to structure, etc.
4

III. COMPARATIVE ANALYSIS

This Section briefly analyses various Cognitive

Complexity metrics with respect to class, code,

inheritance and coupling already discussed in the above

section. The comparative analysis of different metrics is

briefly discussed and displayed in a tabular format in

Table III.

TABLE III

ANALYSIS OF VARIOUS OO COGNITIVE

COMPLEXITY METRICS

Object-

oriented

metrics

Various aspects of metrics

C
la

ss

co
m

p
le

x
it

y

C
o

d
e

co
m

p
le

x
it

y

In
h

er
it

a
n

ce

C
o

g
n

it
iv

e

C
o

u
p

li
n

g

CWC X X X  

MC X X X  X

CICM X  X  X

CC  X X  X

WCC  X X  X

AWCC  X   X

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

 697

CWCBO X X X  

ECCC   X  X

NWMC X  X  X

ICCM X  X  X

CCC X  X  X

On analysing the table, it can be found that CC, WCC,

AWCC. ECCC are the metrics that represent Cognitive

complexity at the Class level. Among these metrics,

AWCC include Inheritance feature of OO code. CICM,

ECCC, NWMC, ICCM and CCC represent cognitive

code level metrics. CWC and CWCBO represent

cognitive coupling metrics.

IV. CONCLUSION AND FUTURE DIRECTION

This Survey presents various cognitive complexity

measures, which consider the weight of different BCSs

to measure the complexity. This paper addresses the

various complexity metrics involved in method, class,

code coupling, inheritance and message passing. These

metrics help in finding the cognitive complexities of

Object Oriented System. So far, not all the features of

the OOPs have been fully addressed like abstraction,

packages, etc., The future direction includes some

fundamental issues identified from the Section II.

(a) The metric can be developed that include

complexity at interface or Package level.

(b) There is a need to develop Standard cognitive

complexity measures for Cohesion, modularity,

dynamic binding and method overloading.

(c) Some Exiting metrics need to be modified so that

results that are more accurate could be achieved.

Such as AWCC (Attribute weighted class

complexity) could be modified to include Interface

and package Complexity.

(d) In ICC part of AWCC, C
L
 is not properly defined.

Complexity at various level of inheritance need to

be properly established using well-defined metric.

V. REFERENCES

[1] Y. Wang, "On the Cognitive Informatics

Foundations of Software Engineering", Proc. of

3rd IEEE Int’l Conference on Cognitive

Informatics,2004.

[2] O. I. Esther, O. O. Stephen, O. O. Omidiora, A.G.

rafiu, T.O. Dimple and Y.A. Olajide.

“Development of Improved Cognitive

Complexity Metrics for Object-oriented Code”,

British Journal of Mathematics & Computer

Science, Vol.18, No. 28515, pp. 1-11,2016.

[3] Misra, Sanjay, Murat Koyuncu, Marco Crasso,

Cristian Mateos, and Alejandro Zunino. "A suite

of cognitive complexity metrics." In International

Conference on Computational Science and Its

Applications, Vol.7336, pp.234-247,2012.

[4] J. Shao and Y. Wang, “A new measure of

Software Complexity based on cognitive

Weights”, Canadian journal of Electrical and

Computer engineering, Vol. 28, No.2,2003.

[5] Y. Wang and J. Shao, “Measurement of the

Cognitive Functional Complexity of Software”,

The 2nd IEEE International Conference on

Cognitive Informatics (ICCI'03), IEEE CS Press,

pp. 67-74,2003.

[6] C. A. R. Hoare, I. J. Hayes, J. He, C. C. Morgan,

A. W. Roscoe, J. W. Sanders, I. H. Sorensen, J.

M. Spivey and B. A. Sufrin, “Laws of

Programming”, Communications of the ACM,

Vol. 30, No. 8, pp. 672-686,1987.

[7] Y. Wang, “The Real-Time Process Algebra

(RTPA)”, Annals of Software Engineering: An

International Journal, Vol. 14, pp. 235- 274,2003.

[8] Y. Wang, “Using Process Algebra to Describe

Human and Software Behaviors”, Brain and

Mind: A Trans. Disciplinary Journal of

Neuroscience and Neuro philosophy, Vol. 4, No.

2, pp. 199-213, 2003.

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

 698

[9] D. S. Kushwaha and A. K Mishra, "Robustness

Analysis of Cognitive Information Complexity

Measure using Weyuker Properties", ACM

SIGSOFT SEN, Vol. 31, No. 1, pp. 1-6, 2006.

[10] S. Mishra, “Modified Cognitive Complexity

Measure”, Computer and Information Sciences –

ISCI, pp. 1050-1059, 2006.

[11] S. Mishra, “Cognitive Program Complexity

Measure”, Proc. of 6th IEEE Int’l Conf. on

Cognitive Informatics, pp. 120-125,2007.

[12] Sanjay Misra and K. Ibrahim Akram, “A new

Complexity Metric Based on cognitive

informatics”, Proceedings of 3rd international

Conference on Rough Sets and Knowledge

Technology, pp.620-627,2008.

[13] Sanjay Misra and K. Ibrahim Akram, “Weighted

Class complexity: A Measure of Complexity for

Object Oriented System”, Journal of Information

Science and Engineering, pp.1689-1708,2008.

[14] L. Arockiam, A. Aloysius and J. Charles Selvaraj

“Extended Weighted Class Complexity: A new

measure of software complexity for objected

oriented systems”, Proceedings of International

Conference on Semantic E-business and

Enterprise computing SEEC, pp. 77 – 80, 2009.

[15] L. Arockiam and A. Aloysius, “Attribute

Weighted Class Complexity: A new Metric for

Measuring Cognitive Complexity of OO

Systems”, International Journal of Computer,

Electrical, Automation, Control and Information

Engineering, Vol.5, No.10, pp. 1151-1156, 2011.

[16] T. Francis Thamburaj and A. Aloysius,

“Cognitive Weighted Polymorphism Factor: A

Comprehension Augmented Complexity Metric”,

International Journal of Computer, Electrical,

Automation, Control and Information Engineering

Vol:9, No.11, pp 2342-2374, 2015.

[17] T. Francis Thamburaj and A. Aloysius,”

Cognitive Perspective of Attribute Hiding Factor

Complexity Metric”, International Journal of

Engineering and Computer Science, ISSN: 2319-

7242 Volume 4 Issue 11. pp, 14973-14979 Nov

2015.

[18] L. Arockiam and A. Aloysius,” Coupling

Complexity Metric: A Cognitive Approach”, I.J.

Information Technology and Computer Science,

pp. 29-35,2012.

[19] Jakhar and Kumar Rajnish. “Measuring

Complexity Development time and

understandability of Program A

cognitive approach”. International Journal of

Information Technology and Computer Science

(IJITCS), Vol. 6, No. 12, pp.53-60,2014.

[20] Jakhar and Kumar Rajnish, “A cognitive

measurement of Complexity and Comprehension

for Object -oriented Code”, International Journal

of Computer, Electrical, Automation, Control and

Information Engineering, vol.10, No.3, pp.643-

650,2016.

[21] Chhabra, “Code Cognitive Complexity”,

Proceedings of the World Congress on

Engineering(WCE11), Vol.2, pp 2-6, London,

2011.

