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ABSTRACT 
 

Connectome analysis has received increased attention in the field of neurological research. Graph theoretical 

measures are extensively applied to understand the intricate structure of the brain. In this work, resting state 

functional connectome of Autism Spectrum Disorder and Typically Developing brain are investigated to reveal the 

influential regions in the brain. Centrality measures are involved in the detection of global region role identification 

and they are compared against functional cartography. Then, the modular region role is determined from both 

individual functional connectome and group averaged connectome of both Autism Spectrum Disorder and Typically 

Developing subjects. The modular roles are compared using supervised association rule mining. The major 

alterations are identified mostly in visual and frontal regions of Autism Spectrum Disorder functional connectome.  
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I. INTRODUCTION 

 

One of the most common neurodisorder in the present 

world is Autism Spectrum Disorder (ASD) which 

includes disorders namely Asperger’s syndrome and 

pervasive developmental disorders. ASD develops in 

childhood and persisting throughout the life [1]. 

Children with ASD of age 2-3 show behavioural 

changes on comparison with typically developing (TD) 

children [2]. ASD children reveal behavioural issues, 

improper communication, attentional problems, 

reasoning challenges, comprehension issues, etc. [3,4]. 

But these challenges are similar to other neurodisorders 

namely Attention Deficit Hyperactive Disorder 

(ADHD), depression etc. To differentiate the problems, 

skills related to reasoning, language, attention, etc. are 

evaluated [5].  

 

Autism Spectrum Disorder (ASD) has received 

increased notice since considerable number of children 

is affected by the spectrum of developmental disorders. 

Researchers make great efforts to detect the causes of 

the disorder and alterations in the brain region to 

provide better therauptic treatment. During the growth 

of child, ASD should be diagnosed at their early age for 

reducing the severity of the disorder. Individuals 

affected by ASD exhibit the repeated behaviour, loss of 

interaction with other people, loss of concentration, 

poor communication, loss of eye contact, unusual 

response, echolalia, high sensitivity and extreme interest 

in few details like numbers, pictures, movements etc 

[7,8].  

 

The analysis on the ASD is performed either through 

images or network constructed from the images. These 

brain networks are known as connectome. Connectome 

can be formed from the structural or functional MR 

images[8]. Generally, the nodes in the network are 

region of interest or voxel and the edges between the 

nodes indicate structural or functional connectivity. Few 

researches related to the identification of abnormalities 

in ASD affected brain is presented here. 

 

Libero et al. (2015) have used multiple modalities 

namely structural MRI which depicts cortical 

information, Diffusion Tensor Imaging which provides 

white matter connections, proton magnetic resonance 

spectroscopy which reveals neurochemical 

concentration are used to differentiate between ASD 

and TD subjects. They acquired images from 19 ASD 

and 18 TD individuals. It can be understood from the 

analysis that the brain regions namely left cingulum, left 
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inferior temporal cortex, right precuneus part of left 

inferior  frontal gyrus region have increased cortical 

thickness some other regions namely right cuneus and 

right precentral gyrus show decreased cortical thickness 

in ASD individuals compared to TD individuals. 

Similarly, other modalities also reveal some anatomical 

alterations in the ASD subjects [9]. 

 

Deshpande et al. (2013) acquired task based fMRI from 

15 ASD and 15 TD individuals. The subjects are 

provided with comic series and they were asked choose 

the conclusion from three options. Eighteen regions are 

found to be activated from the peprocessed images. 

Fusiform gyrus and middle temporal gyrus show altered 

connections. These regions are mainly involved in 

social communication [10]. 

 

Ecker et al. (2010a) acquired structural MRI obtained 

from the 22 ASD and 22 TD individuals. On analysis, it 

is detected that the networks of ASD and TD are 

differentiated especially in the following regions fronto-

temporal, limbic, cerebellar, fronto-parietal and frontal-

striatal systems[11].  

 

Plitt et al (2014) obtained resting state fmri from 59 

ASD and 59 TD male subjects and data of 89 ASD  and 

TD were obtained from the Autism Brain Imaging Data 

Exchange (ABIDE). Brain regions involved in 

information processing function reveals significant 

alterations in the connections [12]. 

 

Zhou et al.(2014) obtained  structural and resting state 

functional MRI from 127 ASD  and 153 TD individuals. 

Through analysis, it has been found that the increased 

cortical thickness of cerebellum region, decreased white 

matter in frontal and temporal regions and altered 

functional connectivity in default mode network [13].  

 

With the introduction on ASD and the recent works in 

the identification of alterations in brain regions, 

remaining sections are arranged as follows. Section 2 

describes about the dataset utilised for experiments and 

the methodology adopted. Section 3 elaborates on the 

research outcomes and analysis on the results. Section 4 

presents conclusion and future directions in the research. 

 

II.  METHODS AND MATERIAL  
 

This section explains the dataset used for experiments 

followed with methodology involved in the 

identification of changes in brain regions of ASD 

affected subjects. 

 

A. Dataset description 

Dataset consists of information obtained from the ASD 

and TD adults and children through UCLA's Center for 

Autism Research and Treatment (CART) [14] which 

exempts the individuals with neurological complaints. 

Informed consent is received from the subjects as 

approved by UCLA Institutional Review Board (IRB). 

Wechsler Abbreviated Scale of Intelligence [15] and 

full Wechsler Intelligence Scale for Children [16] is 

used to assess the intelligence factor of adults and 

children respectively. Diagnostic and Statistical Manual 

of Mental Disorders is employed to diagnose ASD 

children [17]. 

 

Diffusion Tensor Imaging and functional Resting State 

functional Magnetic Resonance Imaging is acquired 

from 60 ASD (52 - males and 8 – females) and 45 TD 

subjects (38 - males and 7 – females) [14]. For 

experiments, 42 ASD and 37 TD subjects were utilised 

after elimination of improper acquisitions. The subjects 

are gender-matched, age-matched and no significant 

difference found between medicated and unmedicated. 

The resting state images are acquired using the Siemens 

3 T Trio scanner located at UCLA.  

B. RS-fMRI Pre-processing 

 

The images are processed using the FSL version 4.1.4 

(FSL Analysis) [18,19] and AFNI [20] to form the 

functional network (connectivity matrix). Initially, 

extra-cranial tissues in the images are removed followed 

by head motion correction and smoothening. Then, the 

unwanted signals are eliminated through filteration. 

Then, abnormal global intensity changes are removed 

using regressors. It is followed by parcellation that 

specifies the brain regions. Functional regions are 

identified through voxel approaches and atlas based 

approaches (Power et al. 2012). Functional connectivity 

matrix of size 264×264 is obtained by determining 

correlation between the regions. UCLA multimodal 

connectivity database provides the connectivity matrices 

(Brown et al. 2012). The weighted functional 

connectivity matrix is thresholded using sparsity method 

which is explained in next sub-section. The 264 regions 

are listed in Table 6.1. 
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TABLE I. BRAIN REGION NAMES (LIST OF ABBREVIATIONS 

AND FULL FORM OF REGIONS PARCELLATED THROUGH POWER 

NEURON) 

S.No. Abbrevi

ated 

Region 

Name 

Full Form of 

Region Name 

 

R1 ROP1 

Right Occipital 

Pole 

 

R2 ROP2 

Right Occipital 

Pole 

 

R3 LPC1 

Left Precuneous 

Cortex 

 

R4 RPC1 

  Right Precuneous 

Cortex 

.... ... .... 

.... ... .... 

 

R262 LPC3 

Left Precuneous 

Cortex 

 

R263 LPC4 

 Left Precuneous 

Cortex 

 

R264 LTP 

Left Temporal 

Pole 

 

C. Sparsity thresholding 

Generally, thresholding is performed to convert 

weighted functional connectivity matrix into binary 

matrix. Sparsity can be defined as the ratio of the actual 

edge number (K) to the maximum possible edge number 

in a network [i.e. N(N-1)/2]. The value of sparsity is not 

constant and no specific conditions.  

 

Centrality measures are determined from the 

thresholded matrix is detailed in next sub-section. 

D. Centrality estimation 

Complex network analysis has been used to understand 

the modifications occurred in human brain due to 

neurological disorders. They include many measures 

namely measures of segregation, measures of 

integration, centrality measures, etc. In the detection of 

abnormal regions globally, centrality measures are 

employed. Degree, betweenness, eigenvector, leverage 

and weighted leverage variants are estimated from the 

sparsity based thresholded matrix, which could be 

utilised for discriminating the ASD and TD subjects.  

 

Degree centrality [21] indicates the number of 

immediate neighbours of a particular node as defined in 

Equation 1. 

     i  ∑                                          (1) 

 

Where, i and j indicates node and the neighbours 

respectively, aij represents the i
th
 and j

th
 node connection, 

if aij = 1 nodes are connected, else nodes are not 

connected, N is the total number of nodes, Ndc(i) is the 

degree centrality of node i.  

 

Betweenness centrality [22] determines the bridging 

node i.e. node mostly present in the connection between 

two nodes is defined as in Equation 2. 

    i   
 

          
∑

      

   
                                

(2) 

where, h, i and j indicates start, middle and end node, 

Nbc(i) is the betweenness centrality of node i, phi and 

phj(i) represents the number of geodesic paths between h 

and j and between h and j that pass through i 

respectively. 

 

Eigenvector measure [23] estimates the significance of 

node based on connections with neighbours as defined 

as in Equation 3. 

    i  
 


∑     e                                  (3) 

 

where,  is the largest eigenvalue and e is the 

corresponding eigenvector, Nec(i) is the eigenvector 

centrality of the node i.  

 

Leverage centrality [24] determines the influential node 

based on the connections of immediate neighbours is 

estimated as shown in Equation 4. 

 

        
 

      
∑

             

             
  

                (4) 

 

where, Ndc(i) and Ndc(j) is a degree of a node i and j 

respectively, ni is the total number of neighbours of 

node i. The measure may have positive and negative 

value indicating the influence of the node on the 

neighbours and the influence of neighbours on the node 

respectively. 

 

Weighted leverage centrality measure estimates the 

node influence based on the neighbour node’s influence 

in the network. It is a hybrid measure which includes 
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the concept of eigenvector and leverage centrality. Two 

variants of leverage centrality are developed. 

Eigenvector measure is included as weight factor in the 

leverage measure to enhance the node role identification 

in the network. 

 

Initially, the eigenvector value of node is included as 

weightage factor to the degree of the node which is 

called as weighted leverage variant-1. To further 

improve the measure, weighted leverage variant-2 is 

introduced which includes the probability of particular 

node eigenvector’s as weightage to the degree of the 

node. The eigenvector value of the node and its 

neighbours has been added and the weightage factor is 

calculated as shown in Equation 5. Then, the weightage 

is multiplied to the degree as depicted in Equation 6. 

 

        
 

      
∑

                           

                           
  

                    

(5) 

      
      

        ∑               

                       (6) 

 

where, Ndc(i) and Ndc(j) is degree of node i and 

immediate neighbour node j respectively and ni is the 

total number of neighbours of node i. Nec(i) and Nec(j) is 

a eigenvector measure of a neighbours of node i and j 

respectively,  W(i) is the weight factor of the node i. 

The positive value indicates the influence of node on its 

neighbours and negative value indicates the influence of 

neighbours on the node. After estimating the centrality 

measures for each ASD and TD subjects, globally 

influential regions (hub) in brain can be determined. 

  

The methodology applied to determine the global region 

role is discussed in next sub-section. 

E. Methodology for Global Region Role 

Determination in Autism Spectrum Disorder and 

Typically Developing Brain 

 

Generally, in the network structure, the central nodes 

are identified using centrality measures. The node, 

which is central according to one measure, may not be 

central according to another measure. Each measure 

attempts to define the influence of nodes in different 

perspectives of the network. Inspite of all these, there 

are some nodes that could be very significant in all 

aspects. The central nodes in the global network are 

known as hub and others as non-hub. The methodology 

for detecting the possible hubs in the brain network is 

shown in Figure 1. 

 

To detect the hubs in the network, graph measures are 

engaged in the process of analysing the functional 

connectivity matrix constructed from the neuroimages. 

The functional connectome data is generally binarized 

to convert it into thresholded matrix, which could avoid 

spurious connections in the network.  The weighted 

functional connectivity matrices are averaged for each 

group. Both the individual and group averaged matrices 

are thresholded using sparsity method. 

 

Sparsity based thresholding is widely used for 

binarization of the matrix. In this study, Sparsity value 

of 10% to 50% is analysed and found that 20% 

thresholded brain network could have reasonable 

number of connections and without any isolated nodes 

in the network. Hence 20% sparsity thresholded matrix 

is used for further analysis.  

 

 

Figure 1:  Methodology for Global Region Role Identification in 

Autism Spectrum Disorder and Typically Developing 

 

Input:  Functional Connectivity Matrix FCi 

Output:  Cent_GRRi = { Hub, Non-Hub}, Clus_GRRi = 
{ Hub, Non-Hub} 

 

Methodology: 
1. Read functional connectome data FC from ASD and TD 

2. Average the functional connectome of ASD group 

(GFCASD) and TD group (GFCTD) 
2. for each group S 

          2a. Binarize the matrix BFCi = Sparsity 

thresholding(GFCi, Svalue) 

               2b. Calculate centrality measures Degree (Deg), 

Betweenness (Bet) Eigenvector (Eig), Leverage (lev) and 

weighted leverage variants (wl1 and wl2) 
3. for each group determine global region role through 

individual centrality measures 

.     3a. If (degi > mean(deg)+std(deg)) 
                 Cent_GRR,= Hub 

             Else Cent_GRRi = Non-hub 

      3b.  Repeat Step 3a for all 264 brain regions.  
      3c. Repeat the steps 3a and 3b for other centrality 

measures 

4. Construct feature vector FV with the centrality measures 
5. Apply clustering on the centrality measures  

            Clusteri =  K-Means Clustering(FV) 

6. Determine global region role using clustering 
             6a. If (Cardinality(Class1)<Cardinality(Class2)) 

                         Cluster1 = Hub and Cluster2 = Non-hub 
              6b. Else 

                         Cluster2 = Hub and Cluster1 = Non-hub 

7. Assign Clus_GRRi to hub or non-hub based on the Cluster 
it belongs to 

8. Determine functional cartography for hub detection and 

compare the outcomes of individual measures and clustering 
of measures 
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Then, the common centrality measures namely degree, 

betweenness, eigenvector, leverage and weighted 

leverage variant - 2 are estimated from the binarized 

functional connectivity matrix. If the computed value of 

centrality measure of a region is greater than the sum of 

mean and standard deviation of particular centrality 

measure, then the region is said to be hub. Otherwise, it 

is considered as non-hub.  

 

To enhance the detection of hubs in the brain network, 

unsupervised learning is utilised that has been detailed 

in next subsection. 

F. Clustering of Centrality Measures 

 

Further, for better prediction of the hub regions in the 

brain network, unsupervised learning model, clustering 

is adopted [25]. Those techniques group the regions into 

two clusters i.e. either hub or non-hub. The centrality 

measures computed are used as features to be fed as 

input to the clustering process. In this case, centrality 

measures are considered as features and each region is 

regarded as instances. Depending upon the dataset, the 

number of instances in the feature vector may vary. The 

number of features is constant as they include the 

estimated centrality measures. K-means clustering, 

farthest first and density based cluster are adopted for 

grouping the regions into two categories.   K-Means 

clustering is well known grouping methodology that 

employs the divisive technique for construction of 

clusters in the dataset. It requires the prior information 

about the probable number of clusters in the group. 

Figure 2 depicts the algorithm of K-Means clustering. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2:  Algorithm of K-Means Clustering 

In K-Means clustering, depending upon the number of 

clusters, instances are randomly chosen and assigned to 

each cluster. Then, the mean of the cluster is determined 

for each cluster and the difference between the each 

instance value and the mean of each cluster is estimated. 

If the difference between the mean of another cluster is 

minimum when compared to current cluster, then the 

instance is reassigned to the cluster. The process is 

repeated until it reaches the condition that the instance 

stay in the same cluster. K-Means clustering is robust 

and has achieved better results in the identification of 

global region role from the functional connectome of 

ASD and TD. The two groups are identified through the 

clustering technique. Group with lesser number of 

regions are considered to be hub and another group is 

considered as non-hub. Generally, it is hypothesized 

that the hub regions are comparatively less than the non-

hub regions in the brain. With that information, hub and 

non-hub regions are determined from the clustering 

procedure. 

      

To evaluate the outcome of the centrality computations 

in the identification of influential nodes in the brain 

network, the utilization of functional cartography is 

generally exploited. The community structure is used 

for the calculation of two metrics namely within-module 

degree and participation coefficient which is involved in 

the estimation of central nodes in the network. These 

nodes are regarded as gold standard and the outcome of 

the centrality measures are evaluated through this 

technique and details are presented in results section. In 

addition to the identification of global region role, 

modular region role is also determined to understand the 

changes at the modular level. The methodology 

involved in the identification of modular region role is 

discussed in next sub-section. 

 

Functional Connectome Analysis for Modular 

Region Role Identification 

 

Human brain networks exhibit the modular organization 

and they can be identified through the graph theoretical 

approaches.  The resting state functional brain network 

of ASD and TD are utilised to extract the changes 

happened in the brain at the modular level in the 

perspective functional connectivity. The identification 

of the modular roles of the regions and the alterations 

occurred due to disorder is detailed in this sub-section. 

 x  is the i
thinst nce from the d t  

Step 1: Randomly choose k instances as cluster centers 

from the given data of size N. 

Step 2: Assign each instance to the cluster  

For each i, from 1 to N do 

   cluster i  min dist x  cJ   

  where   
 

 j indic tes the number of clusters defined by user 

 dist x  c   

M nh tten dist nce between two inst nces   
c lcul ted  s  |x 1 −

c 1| + ⋯+ |x m − c m| 

  m is the number of  ttributes  
Step 3: Update the cluster means  

  For all clusters 

  

 Avg  Me n x  which belongs to cluster j  

Step 4: For all j 

  prevAvg  Avg  

Step 5: Repeat the process until the there is no cluster       

             member changes in each cluster 
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The regions in the human brain may either have a role 

of importance or not depending upon the condition of 

the subject. The region may be highly influential when 

the subject performs some task or when it is disordered. 

The methodology involved in the identification of the 

modular roles of the regions is depicted in Figure  3. 

 

The resting state functional connectome data is obtained 

for AD and TD. These weighted functional connectivity 

matrices are averaged for each group. Then, the 

binarization is applied based on the sparsity level. In 

this research, sparsity value of 20% is utilised for the 

matrix binarization.   

 

 

Figure 3: Methodology for Modular region Role Identification in 

Autism Spectrum Disorder and Typically Developing 

Then, the modules in the ASD and TD network are 

determined through modularity detection algorithm. 

Spectral partitioning algorithm is employed for 

modularity detection [26]. Then, the module degree z-

score and participation coefficient are used to detect the 

modular role of each region in the brain network. The 

modularity is detected for both group averaged matrices 

and individual subject matrices. To analyse the depth of 

matching between the group averaged and individual 

matrices, the modular hub and non-hub roles are 

matched between them. To perform the comparison, the 

individual modular hub and non-hub roles are applied to 

the supervised association rule mining algorithm and 

roles are predicted. Further, the changes in the roles of 

region between the ASD and TD individuals are 

investigated. The methods involved are explained in 

further subsections. 

 

Community detection is an optimization problem where 

the number of connections between the nodes in a single 

module should be higher when compared to the 

connections of those regions with other modular regions 

[27,28] The optimal number of communities is 

determined based on the partition parameter [29].  

 

Within-module degree z-score determines the modular 

region i.e. either it plays a role of hub or non-hub in the 

network. If the z value of a nodeis higher,  it is said to 

be highly influential with increased intra-modular 

connections in the network. Node with Z value greater 

than one are considered as modular hubs and node with 

Z value lesser than or equal to one are considered as 

modular non-hubs in this investigation [30,31] 

 

Further, the role can be sub divided based on 

participation coefficient which evaluates the 

connections of a node between modules in the network. 

The hub nodes can be classified into kinless, provincial 

and connector if they are equally connected, high 

intramodule connections and high intermodule 

connections respectively. Similarly, the non-hub nodes 

are classified as ultra-peripheral, peripheral, non-hub 

connector nodes. The thresholds for participation 

coefficient defined in the functional cartography 

technique are followed to define the regional roles for 

each node.  

 

The modular hub and non-hub roles are determined for 

each region of group average functional connectivity 

matrix of ASD and TD. Similarly, roles are determined 

for individual functional connectivity matrices. Then the 

individual roles are aggregated through the rules derived 

through supervised association rule mining.  

Input:  Functional Connectivity Matrix FCi 

Output:  MRRi = {Hub, Non-Hub}, S_MRRi={Provincial 

hub, Connector hub, Kinless hub, Ultra-peripheral node, 

Peripheral node, Non-hub connector, Kinless node}  

 

Methodology: 

1. Read functional connectome data FC from individual 

and group averaged ASD and TD 

2. for each subject S 

          2a. Binarize the matrix BFCi = Sparsity 

thresholding(FCi, Svalue) 

               2b. Detect modules modi = Spectral_part(FC) 

          2c. Calculate within module degree z-score(Zi) and 

participation coefficient(PCi) 

3. for each subject determine modular region role through 

Functional catography 

.     3a. If (Zi >1 ) 

                 MRRi,= Hub 

                     If(PCi >0.32)        

                           S_MRRi = Provincial hub 

                    ElseIf(0.32<PCi <=0.75)  

                           S_MRRi = Connector hub 

                   Else                         

                            S_MRRi = Kinless hub 

             Else MRRi,= Non-Hub  

                     If(PCi >0.05)        

                           S_MRRi = Ultra-peripheral node 

                    ElseIf(0.05<PCi <=0.6)  

                           S_MRRi = Peripheral nod 

                    ElseIf(0.6<PCi <=0.8)   

                          S_MRRi = Non-hub connector 

                    Else 

                          S_MRRi = Kinless node 

       3b.Repeat Step 3a for all 264 brain regions.  

4. Apply supervised association rule mining on individual 

matrices of ASD and TD and obtain aggregated role 

5. Compare the predicted roles and report the region role 

alterations 
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Supervised association rule mining is used to identify 

the frequent items based on the sample. The roles for 

each brain region of all individuals in ASD and TD 

group are given as input for supervised association rule 

mining. It is compared with the roles determined from 

the group averaged functional network of ASD and TD. 

The outcomes are discussed in next section.  

 

III. RESULTS AND DISCUSSION  

 

The network representation of brain could be analysed 

exhaustively to discover unknown information. In this 

research, resting state functional MRI of the ASD and 

TD provided in the UCLA_Autism study has been 

considered.  The functional connectome of the subjects 

are obtained from the public repository of connectome 

data i.e. UCLA Multimodal Connectivity Database. The 

functional connectivity matrix is constructed from the 

resting state fMR images with the parcellation of 264 

regions defined as Power Neuron. This forms the 

weighted connectivity matrix of size 264*264. The 

weighted connectome has been acquired from the 

dataset and then, the functional connectome is 

thresholded with different sparsity levels from 10% to 

50% and form binarized network structure. The analysis 

on the network at different levels is performed.  

G. Analysis on Global Role determined through 

Centrality Measure 

After thresholding, various centrality metrics namely 

degree, betweenness, eigenvector, leverage and the 

weighted leverage variants have been calculated from 

the binarized functional connectivity matrix. To 

understand and evaluate the regional role identification 

in the brain network, functional cartography is 

employed. The thresholded network is involved in the 

clustering of regions into modules. Spectral partitioning 

algorithm is utilized to form the modules which enable 

to calculate within-module degree z-score. The regions 

which have within-module degree z-score greater than 

one are considered as hubs and other regions as non-

hubs.  

 

In addition to the common centrality measures, leverage 

centrality to determine hubs in the brain network is also 

calculated. Leverage has lower value if the nodes are 

highly interconnected in comparison with other 

measures. It involves the degree of the node and its 

immediate neighbours. The two variants of weighted 

leverage measure have been devised for enhancement of 

the measure. Initially, the eigenvector is utilised as 

weight to the degree of the nodes that has resulted in 

weighted leverage variant-1. Then, instead of utilising 

the direct value, the contribution of the node in 

eigenvector measure is determined through the 

probability score of the node with its neighbours which 

is known as weighted leverage variant-2. The 

performance of weighted leverage variant-1 is not 

significant as compared to weighted leverage variant-2. 

However, leverage is computationally easier as they 

involve only simple calculation from the degree 

measure whereas eigenvector involves intensive 

computation. In the aspect of identifying hubs, the 

appropriate determination of region role especially hub 

regions is very essential rather than complexity.   In this 

study, the regions which have value greater than the 

threshold are considered as hubs and others as non-hubs. 

The threshold value is assigned to sum of the average 

value and the standard deviation of the measure. The 

regions identified as hubs are compared to the hubs 

determined by the functional cartography [30,31].  

 

The analysis on the resting state functional connectome 

of autism spectrum disorder and typically developing 

individuals are performed. The weighted functional 

connectivity matrix of 42 ASD individuals is averaged. 

Similarly, the functional connectivity matrix of 37 TD 

individuals is also averaged. Thus, it results in 2 group 

averaged functional connectivity matrices. Then, the 

centrality measures are calculated and results are 

presented. The mean sensitivity (%) in determination of 

global hubs of each measure of the 10% to 50% sparsity 

level of the group averaged ASD and TD subjects are 

presented in the Table II.  

TABLE III. AVERAGE PERFORMANCE EVALUATION METRICS 

OF THE CENTRALITY MEASURES IN GROUP AVERAGED ASD 

AND TD 

 

Centrality  ASD TD 

Degree 66.94 71.13 

Betweenness 64.96 60.93 

Eigenvector 60.66 67.31 

Leverage 65.74 72.16 

Weighted Leverage variant-1 59.76 66.33 

Weighted Leverage variant-2 68.68 73.80 

 

From the Table 6.4, it can be found that the performance 

of weighted leverage variant is appreciable in 

identifying the global region role in group averaged 
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subjects of ASD and TD. As the performance of 

weighted leverage variant-1 is not found to be 

appreciable. Hence, it has not been considered in further 

analysis. The mean accuracy of identifying the hub and 

non-hub in the group averaged matrix of ASD and TD 

of 10% to 50% sparsity level is shown in Figure 4. 

  

 
 

Figure 4:  Performance of centrality measures in global region role 

identification in group averaged ASD and TD 

 

From the Figure 4, it could be found that the accuracy 

value has increased significantly by the weighted 

leverage variant-2 measure which indicates that the 

hubs and non-hubs are identified appropriately on 

comparison with other measures. The statistical test has 

been performed on the accuracy values of each 

centrality measure. Pairwise T-test has been applied on 

the proposed measure with leverage measure and 

significant difference is found in the performance.  The 

analysis of the centrality measures are also performed 

on the individual subjects and better performance is 

obtained by the weighted leverage variant-2 on 

comparison with other measures. Through the 

experimental results, it can be found that 20% sparsity 

could form the network structure that does not disturb 

the underlying structure of the brain organization. 

Hence, for further analysis, 20% sparsity thresholded 

matrix is utilised in this study. 

 

In the binarized group averaged matrix of ASD at the 

sparsity level of 20%, the degree and betweenness 

measure has identified 44 regions as hubs correctly 

whereas eigenvector has identified 45 regions. Then, 

leverage and weighted leverage variant-2 predicted 41 

and 46 regions as hubs in ASD group.  

 

In TD group, the degree measure has identified 41 

regions as hubs, betweenness has detected 43, 

eigenvector has found 51 as hub regions in the brain 

network.  The leverage has detected 48 regions as hubs 

and the weighted leverage variant-2 has found 45 

regions as important in the brain network of TD subjects. 

It is clearly evident that weighted leverage variant-2 

could able to find the influential regions in the brain 

network better than other measures.   

 

On analysis of the regions identified by the measures, 

the global region role can be determined. The region can 

either take a role as hub or non-hub. Mostly, it has been 

found that left lateral occipital cortex, left angular gyrus, 

superior and middle frontal region, right precuneous and 

right cingulated regions are some of the regions found 

to acquire the top positions in the global network in the 

autism spectrum disorder.  In typically developing 

individuals, the right lateral occipital, superior frontal, 

left precuneous and right paracingulate are some of the 

regions which possess influential role in the brain 

network. 

 

The role of region are determined through the 

examination of various centrality measures namely 

degree, betweenness, eigenvector, leverage centrality 

and weighted leverage variant-2. The number of hub 

nodes identified by weighted leverage variant-2 is 

higher when compared to other measures in both ASD 

brain network.  

 

In terms of degree measure, higher degree node has high 

importance in the brain network. The degree value of 

regions which is greater than the sum of mean and 

standard deviation of degree of all nodes were 

differentiated as global hubs. On comparison with TD 

network, ASD has found to have decreased number of 

connection with the following regions LCGad4, 

LCGad5, LPG19, RCGad3, RFMC2, RFP8, RMTGpd2 

and RMTGpd4 and RPG4 and thus these regions are 

found to be non-hub in ASD. The following regions 

have gained more connections in ASD when compared 

to TD as it has changed its role from non-hub in TD to 

hub in ASD LLOCsd2, LPG16, LSGpd, LSPL2, RAG1, 

RCI3, RLOCsd5, RLOCsd3, RLOCsd8, RSGad, RSPL2 

and RSPL3. The degree of each region for both ASD 

and TD network is depicted in Figure 5 and Figure 6 

respectively.  

 

Classifiers 
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Figure 5:  Degree Centrality of Autism Spectrum Disorder 

 

Figure 6:  Degree Centrality of Typically Developing 

From the figures 5 and 6, it can be inferred that, in 

overall view, the values of degree centrality for regions 

in ASD are comparatively higher than TD. It can be 

seen that the value of region is different in ASD and TD 

eventhough they have similar region role.  

    

Betweenness centrality has also found to have the hub 

regions which are similar to degree measure. The 

central region that stands in between the path of two 

regions can be known through this measure. The region 

which have taken central role in ASD but not in TD are 

LFP7, LLG3, LLOCsd2, LPC2, LSGpd, LSPL1, LSPL2, 

RAG1, RCI3, RFP11, RFP12, RLOCsd3, 

RPC1,RPC2,RPC4, RPG3, RSGpd2 and RSPL1. This 

shows that these regions have obtained new connections 

and found to be important the path of information 

transfer and hence play a role of hub in ASD. Few 

regions have lost their importance in the communication 

path of two regions and hence they are said to be non-

hub in ASD but they act as hub in TD network. The 

regions with lost connections are LCGad4, LCGpd2, 

LFP2, LFP4, LFP10, LOP4, LPG1, LPG3, LSFG2, 

LSFG4, RCGad3, RFP5, RFP8, RLOCsd6, RLOCsd7, 

RPG2 and RTP1. The betweenness centrality measure 

of each region for both ASD and TD network is 

depicted in Figure 7 and Figure 8 respectively. 

 

Figure 7:  Betweenness Centrality of Autism Spectrum Disorder 

 

Figure 8:  Betweenness Centrality of Typically Developing 

From the figures 7 and 8, it can be understood that the 

betweenness centrality value of regions in ASD is 

higher than TD.  

      

Similarly, eigenvector centrality found few regions as 

hub in ASD which deviates from the TD network are 

LSPL2, RAG1, RCI1, RCI3, RCOC1, RLOCsd5, 

RLOCsd8, RSF1 and RSPL2. The hub regions in TD 

network and have not been found in ASD network as 

hubs are LCGad4, LCGad5, LCOC3, LLOCsd1, LPC4, 

LPG19, LV1, RFMC2, RFP8, RMFG3, RMTGpd4, 

RPG4, RSFG2 and RSPL3. The eigenvector centrality 

measure of each region for both ASD and TD network 

is depicted in Figure 9 and Figure 10 respectively. 
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Figure 9:  Eigenvector Centrality of Autism Spectrum Disorder 

 

Figure 10:  Eigenvector Centrality of Typically Developing 

From the figures 9 and 10, it can be inferred that the 

increase in eigenvector centrality value of regions is 

steady in TD compared to ASD. The highest value of 

TD is lesser than 0.1 when compared to ASD which is 

higher than 0.1.  

 

Leverage measure determines the region through the 

connections with neighbours. The hub regions in ASD 

but not in TD in the perspective leverage measure are 

RSPL1, RLOCsd3, LLOCsd2, RLOCsd5, LSGpd, 

RAG1 and RCI3. The regions which have been found as 

hubs in TD but not in ASD are LSFG2, RFP5, RCGad3, 

LCGad4, LCGad5, RFP8, LPG19, RMTGpd2, RPG4, 

LMTGpd4, LPG21, RFMC2, RTP1, and RMTGpd4.  

The leverage centrality measure of each region for both 

ASD and TD network is depicted in Figure 11 and 

Figure 12 respectively. 

 

 

Figure 11:  Leverage Centrality of Autism Spectrum Disorder 

 

Figure 12:  Leverage Centrality of Typically Developing 

From the figures 11 and 12, it can be observed that the 

leverage value of regions in ASD is higher than TD. 

The order of regions in ASD and TD are different. 

Weighted leverage variants utilise the influence on the 

region by the immediate neighbours along with the 

indirect neighbours. The number of connections with 

the neighbours play key role in this measure. Some of 

the regions which have been identified as hubs by these 

measures are similar to the leverage and eigenvector 

measure.  

 

Weighted leverage variant-2 performs better than the 

weighted leverage variant-1 and hence, weighted 

leverage variant-2 is taken for analysis. In addition, it 

could also find few other regions that could have a hub 

role which have not been detected through those 

measures. Some of those regions act as influential 

region in ASD but not in TD are LSPL2, RAG1, 

RLOCsd3, RLOCsd5, LPC1, RSPL1, RSPL3, LSGpd, 

LLOCsd2 and RCI3. Similarly, the regions that act as 

hubs in TD but not in ASD are LCGad4, LCGad5, 

LPG19, RFMC2, RFP8, RMTGpd2, RPG4,  RCGad3, 

RMTGpd2 and RTP1. The weighted leverage variant-2 

centrality measure of each region for both ASD and TD 

network is depicted in Figure 13 and Figure 14 

respectively. 
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Figure 13:  Weighted Leverage Variant-2 Centrality of Autism 

Spectrum Disorder 

 

 

Figure 14:  Weighted Leverage Variant-2 Centrality of Typically 

Developing 

From the figures 13 and 14, weighted leverage variant-2 

generally regarded as weighted leverage that have 

higher values in TD than ASD.  On the whole, the 

number of regions that have gained connections are 

relatively lower when compared to the regions that have 

lost its connections. Frequently identified hub regions 

by the measures in the ASD individuals are Right 

superior parietal lobe, right crus, left superior parietal 

lobe and right central opercular cortex. The part of right 

lateral occipital cortex superior division and right 

temporal gyrus posterior division have shown increased 

connections while some parts of those regions have 

decreased connections. The commonly occurred hub 

regions in typically developing but have not found in 

ASD network are Left cingulated gyrus, left lateral 

occipital cortex superior division, right paracingulate 

gyrus, right temporal pole, right frontal pole, left 

paracingulate gyrus, right cingulated gyrus anterior 

division, left precuneous and right superior parietal lobe. 

The increased and decreased connections are associated 

with the abnormalities shown by autistic people.  

 

H. Analysis on Global Role determined through 

Clustering of Centrality Measures 

 

Further, in the view of aggregating the hubs detected in 

the network, unsupervised learning model is attempted 

on the set of centrality measures. As the exact role of 

brain region would be unknown, no training data is 

available for constructing the supervised learning model. 

Hence, the clustering technique is employed on the 

feature vector consisting of different centrality measures. 

Different clustering algorithms are employed on the 

feature set. K-Means, farthest first and density based 

cluster [32] are attempted to identify the hub and non-

hub clusters in the network of ASD and TD subjects. K-

Means clustering with two clusters could segregate the 

regions in the brain network in a better way. From the 

Table III, it can be found that the sensitivity (%) value is 

quite higher with clustering as they detect more number 

of hubs but this in turn affect the identification non-hubs 

to some extent.  

TABLE IIIII 

IMPACT OF CLUSTERING OF CENTRALITY MEASURES IN 

GROUP AVERAGED ASD AND TD 

Clustering 

 

Without 

Weighted 

Leverage 

Measure 

With 

Weighted 

Leverage 

Measure 

ASD TD ASD TD 

K-Means Clustering 95.45 100 97.77 100 

Farthest first 88.63 100 90.90 100 

Density based 

Clustering 95.45 100 97.77 100 

 

From the Table III, it can be inferred that the inclusion 

of the weighted leverage variant-2 measure helps in 

identification of the hubs in ASD subjects. In TD 

subjects, the hubs are determined completely with or 

without the inclusion of the measure. Clustering can aid 

in the determination of hubs and it can result in 

aggregation of the centrality measures in hub 

identification. With the overview on the global region 

role detected in ASD and TD through the centrality 

measures, identification of modular region role is 

explained in next section.  

I. Analysis on Modular Region Role Identification 

Modularity is a fundamental property of biological 

networks [33]. Module in a network is defined as set of 

nodes with tighter connections within themselves and 
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sparser with nodes of other group. Modularity of a 

network will decrease with increasing sparsity. Thus, to 

maximize modularity (Q) value, low sparsity is set as 

threshold. Sparsity is set in such a way that it does not 

disturb the underlying backbone structure of a network 

and all the nodes are connected to the network. In this 

study, sparsity level of 20% was employed and spectral 

partitioning algorithm was used to form the modules 

from the brain network. The identified modules and the 

roles of region in the brain network of ASD are 

explained in subsequent subsection. 

1)  Regions and their modular roles in autism spectrum 

disorder subjects: Autism Spectrum Disorder network 

consists of four modules with varying number of 

regions in each group. Module 1, 2, 3 and 4 consists of 

46, 82, 53 and 83 brain regions which belongs to 

various anatomical classes namely primary, association, 

visual, paralimbic cortex and sub-cortical areas. There 

are 9 regions which seem to be influential in the module 

1. All these hub regions are found to be connector nodes 

as they have equal connections with other modules in 

the network.  Module 1 contains 37 non-hub regions; all 

of them play a role of non-hub connector as they have 

equal participation inside and between the modules. 

There are 82 regions in module 2, out of which 15 were 

connector hubs and the remaining 67 regions were non-

hubs. In those 67 regions, 8 regions acts as peripheral 

node which have high intra-mocule connections and 

remaining act as non-hub connectors with high inter-

modular connections. Module 3 consists of 83 regions, 

out of which 10 regions are modular hubs and all of 

them are connector hubs. The remaining regions are 

non-hub connector nodes.  Module 4 includes 53 

regions totally, out of which 10 regions are modular 

hubs which found to be connector. Remaining regions 

are modular non-hub. Among those, modular non-hubs, 

15 are peripheral nodes with high intra-module 

connections and other regions in modular non-hubs are 

connector. The TD brain network and the modules are 

presented in next subsection. 

2)  Regions and their modular roles in autism spectrum 

disorder subjects: Typically developing network 

contains three modules with different number of regions 

in each module. Module 1, 2 and 3 includes 78, 133 and 

53 respectively brain regions which belong to various 

anatomical classes namely primary, visual, auditory, 

association, visual, paralimbic cortex and sub-cortical 

areas. Module 1 contains 78 regions, out of which 12 

regions are nodule hubs which also found to connector 

hub as they possess high number of connections within 

and between modules.  The non-hub regions are 66, out 

of which 13 regions are peripheral nodes and remaining 

regions are non-hub connectors. Module 2 includes 133 

regions out of which 25 regions are modular hub. In the 

modular hubs, all are found to be connector hubs. There 

are 108 non-hub regions in the module 2. In those non-

hub regions, 1 region is ultra-peripheral node, (ROP1), 

90 regions are peripheral nodes and left over regions are 

non-hub connectors. Module 3 contains 52 regions, 9 

regions are connector hubs and remaining regions are 

modular non-hubs. Among modular non-hubs, 3 regions 

are peripheral nodes and 40 regions are non-hub 

connectors.  

3)  Comparison of roles of nodes: To analyse the 

outcomes of group averaged functional connectivity 

matrix are compared with the role determined through 

individual functional connectivity matrices. Within 

module degree z-score is estimated for each region. 

Then, the hubs and non-hubs in each group are 

determined. The modular roles are identified for both 

individual and group functional connectivity matrix. To 

derive single role from the individual functional 

connectivity matrices of each group, a feature vector is 

formed and supervised association rule mining is 

applied. In the feature vector, roles of each region are 

attributes and the last column is target class. Each 

subject is the instance of the feature vector and rule 

mining is applied to obtain rules specific to a group. 

Brain region and its role form antecedent part and the 

target (ASD or TD) form consequent part. Association 

rules are obtained based on the repetitive presence of 

particular for a region of a particular group.  In this 

study, role frequency is determined if it satisfies at least 

20% support i.e. the role of region should be present in 

atleast 20% of instances in the feature vector. Rules are 

constructed only if 50% of instances contain the same 

region role for specific target class. For example, For 

example, brain stem act as non-hub in group averaged 

matrix of ASD and the rule mining derived role from 

the individual matrices also seem to have non-hub role. 

Similarly, it has been obtained for other regions of ASD 

and TD functional connectivity matrices and the 

outcomes are shown in Figure 6.22 and Figure 6.23 

respectively. The value A represents hub and B 

indicates non-hub roles and ‘–‘ no role can be obtained 

through the given set of information. 

With the limited dataset, the role of few regions may not 

have occurred as frequent as possible to construct the 

rule and so they could not form the association rule. On 

comparison of the group averaged and individual 

matrices, it can be known that 70% of role determined 

by ASD group averaged matrix matches with individual 

matrix roles and 30% have mismatched between them. 

In TD group 56% of roles have matched, 2% roles have 

not been derived and 42% have mismatched between 

the group averaged and individual matrices. 

To examine the random grouping of individual 

functional connectivity matrices by blinding the 

information of target group, the matrices have been 

randomly selected and averaged to form group matrix. 

Then, the region roles are identified between these two 
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groups and roles are determined. The region roles of 

both groups are similar and no difference could be 

found. Hence, it does not provide any valuable 

information about the modular organization changes in 

the functional brain network. 

4)  Nodal role alterations in autism spectrum disorder: 

The existence of modular organization can be 

comprehended through the resting state functional 

network through the formation of functional 

connectivity. Spectral partitioning algorithm is applied 

to divide the regions into community or modules. The 

algorithm managed to determine 4 modules in ASD and 

3 modules in TD group. This study utilised spectral 

partitioning to obtain major functional modules. The 

parcellation has derived 264 regions and they are 

grouped into modules. Since, the single regions have 

multiple divisions within them, based upon the 

connections; their presence can be found in different 

groups. So, modules have regions which are mixture of 

different networks namely default mode network 

(DMN), visual network, sensorimotor network, 

subcortical regions in ASD and TD group. But, 4 

modules could be identified in ASD whereas only 3 

modules are obtained in TD group. In TD group, 

module 2 consists of most of the regions from DMN, 

visual network, sensorimotor network and regions from 

other networks also. The dysconnectivity has lead to 

divide the regions into 4 modules in ASD group. With 

comparison to TD group, it can be observed that 

connectivity variations are significantly higher in the 

ASD group. Hence, the grouping of regions in the 

modules is considerably varied. The alterations in the 

modular organization in the ASD group have resulted in 

the modular role played by the regions.  The modular 

hubs in ASD are found to be connector hubs and no 

provincial and kinless hubs are determined.  

 

Similarly, regions in TD group are connector hubs. No 

role in the perspective of participation within and 

between modules has been found between ASD and TD. 

But, many hub regions in TD have changed it activities 

and formed into non-hub in ASD. Fifteen regions which 

act as connector hub in TD have changed into non-hub 

connector in ASD. One region (LLOCsd7) has changed 

its role from connector hub to peripheral node in ASD. 

Left lateral occipital cortex superior division has lost 

many of its connections between other modules and thus 

major alteration is created.  Right occipital pole has 

changed its condition from ultra peripheral node in TD 

to non-hub connector in ASD with increased number of 

connections between the modules. Four superior 

divisions of right lateral occipital cortical region has 

gained more number of connections and changed its role 

from non-hub connector in TD to connector hub in ASD. 

Other than occipital region, few regions in frontal lobe 

(right frontal pole and left frontal operculum) and right 

paracingulate regions has changed its role from non-hub 

connector in TD to connector hub in ASD with 

increased number of inter- module connections. Left 

cuneal and right cuneal region, along with the few 

regions in right frontal pole, right precuneous, right 

superior temporal gyrus region, right superior frontal 

region has altered its role from peripheral node to 

connector hub since it has high number of connections 

in ASD than TD 

 

The thirteen regions that have played a role of non-hub 

connector in TD have changed to peripheral node in 

ASD and most of them have lost their connections and 

few of them retained the same role. Forty six percent of 

region that holds the role of peripheral node in TD has 

varied its role to non-hub connector in ASD due to 

decrease in the number of connections. The outcomes 

reveal that the alterations in ASD group are extremely 

evident from the analysis of the resting state functional 

brain network.  

 

Major changes are identified in the occipital and frontal 

regions of the brain which is in accordance with earlier 

studies [34]. From the literature, it can be understood 

that the reduction in the volume of white matter in the 

left occipital region [35]. In another study, it shows that 

hyperconnectivity is present between the frontal and 

occipital regions, frontal and parietal and temporal and 

parietal lobes. It is very well known that the visual 

related functionalities are performed by the regions in 

the occipital cortex. The local over connectivity is 

evident in temporo-occipital regions in the previous 

studies. In this study also, it has been observed that the 

occipital region has lost its connection with other 

modules and highly connected within the modules. The 

changes in the functional connectivity of those regions 

results in the abnormalities of visual processing of ASD 

subject [36]. Changes in the cuneus region are also 

exhibited in the study which is greatly involved in the 

visual processing in the human.  

 

The superior temporal gyrus is an important region as 

they involve in acoustic processing which is primarily 

required for language production and comprehension 

[37]. It will also indulge in non-social cognition and 

these regions have shown abnormalities in the existing 

works. In this study also, it has been observed that the 
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region has gained higher number of connections and 

changed its natural connectivity with other regions [38].  

 

The alterations in frontal region of the ASD subjects can 

be inferred from this study which is inline with the 

previous works. It has been observed that the frontal 

regions have increased functional connectivity [39]. 

Frontal regions are mostly related to the social cognition 

and it is also known that the autistic people have very 

poor social communication when compared to typically 

developing people. Similarly, the other regions also 

exhibit the hypo and hyper-connectivity between 

various brain regions in the literature.  

 

IV.CONCLUSION 

 
The global region role of the ASD and TD subjects are 

analysed based on the binarized resting state functional 

connectivity matrices. The connectivity matrices of 

ASD and TD subjects are averaged and utilised for the 

analysis of global region role in the brain network. 

Different sparsity values from 10% to 50% are utilised 

for thresholding the matrix and the thresholded network 

of 20% sparsity value is considered for further analysis 

as all regions in the network are connected  To identify 

the global hubs in the brain network, different centrality 

measures are utilised along with the weighted leverage 

variants. Weighted leverage variant-2 show significant 

improvement in the detection hubs in ASD and TD. In 

the higher prediction of global hubs, clustering is 

applied on the centrality measure. As expected, it 

determines increased number of hubs whereas non-hub 

regions are also considered as hubs which resulted in 

lower accuracy. Thus, the weighted leverage variant-2 

determines the hub and non-hub regions in the brain 

network of ASD and TD appropriately than other 

measures. The comparison is performed with the hubs 

identified through functional cartography technique. 

 

Further, the modular region role and the alterations in 

the region role of ASD and TD are determined through 

the thresholded group averaged matrices of ASD and 

TD. The modular role is determined through functional 

cartography technique in group averaged and individual 

matrices. Then, the role of each in individual matrices is 

aggregated through supervised association rule mining 

and compared with the group averaged role to 

understand the reliability of group averaged matrices in 

the analysis of functional connectome. Then, the role 

changes are discussed and it has been found that major 

alterations are present in occipital and frontal regions of 

the brain in the ASD subjects. The outcomes are 

strongly supported by the existing literature. 
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