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ABSTRACT 
 

This paper presents an overview on applications of HFS-FEM to functionally graded materials. Recent 

developments on the hybrid fundamental solution (HFS) based finite element model (FEM) of steady-state heat 

transfer, transient heat conduction, nonlinear heat transfer, and elastic problems of functionally graded materials 

(FGMs) are described. Formulations for all cases are derived by means of modified variational functional and 

fundamental solutions. Generation of elemental stiffness equations from the modified variational principle is also 

discussed. Finally, a brief summary of the approach is provided. 
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I. INTRODUCTION 

 

FGMs are a class of relatively new and promising 

composite materials that have optimized material 

properties by combining different material components 

following a predetermined law [1-4]. They are 

heterogeneous composite materials with graded 

variation of constituents from one material phase to 

another, which results in continuously varying material 

properties. FGMs thus have superior thermal and 

mechanical performance to conventional homogeneous 

materials, and have a wide variety of engineering 

applications especially for the purpose of removing 

mismatches of thermo-mechanical properties between 

coating and substrate and reducing stress level in 

structures. 

 

Recently, two effective numerical methods have beed 

developed for analysing mechanical performance of 

FGMs [5, 6]. The first is the so-called hybrid Trefftz 

FEM  (or T-Trefftz method) [7-9]. Unlike in the 

conventional FEM, the T-Trefftz method couples the 

advantages of conventional FEM [10, 11] and BEM [12, 

13]. In contrast to the standard FEM, the T-Trefftz 

method is based on a hybrid method which includes the 

use of an independent auxiliary inter-element frame field 

defined on each element boundary and an independent 

internal field chosen so as to a prior satisfy the 

homogeneous governing differential equations by means 

of a suitable truncated T-complete function set of 

homogeneous solutions. Since 1970s, T-Trefftz model 

has been considerably improved and has now become a 

highly efficient computational tool for the solution of 

complex boundary value problems. It has been applied to 

potential problems [14-17], two-dimensional elastics [18, 

19], elastoplasticity [20, 21], fracture mechanics [22-24], 

micromechanics analysis [25], problem with holes [26, 

27], heat conduction [6, 28-30], thin plate bending [31-

34], thick or moderately thick plates [35-39], three-

dimensional problems [40], piezoelectric materials [41-

45], and contact problems [46-48]. 

 

On the other hand, the hybrid FEM based on the 

fundamental solution (F-Trefftz method for short) was 

initiated in 2008 [7, 49] and has now become a very 

popular and powerful computational methods in 

mechanical engineering. The F-Trefftz method is 

significantly different from the T-Trefftz method 

discussed above. In this method, a linear combination of 

the fundamental solution at different points is used to 

approximate the field variable within the element. The 

independent frame field defined along the element 

boundary and the newly developed variational functional 

are employed to guarantee the inter-element continuity, 

generate the final stiffness equation and establish 

linkage between the boundary frame field and internal 
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field in the element. This review will focus on the F-

Trefftz method.  

 

The F-Trefftz method, newly developed recently [7, 49], 

has gradually become popular in the field of mechanical 

and physical engineering since it is initiated in 2008 [7, 

50, 51]. It has been applied to potential problems [16, 

52-54], plane elasticity [19, 55, 56], composites [57-60], 

piezoelectric materials [61-63], three-dimensional 

problems [64], functionally graded materials [5, 65-67], 

bioheat transfer problems [68-72], thermal elastic 

problems [73], hole problems [74, 75], heat conduction 

problems [49, 76], micromechanics problems [25, 77], 

and anisotropic elastic problems [78-80].  

 

Following this introduction, the present review consists 

of six sections. T-Trefftz FEM steady-state heat transfer 

in FGMs is described in Section 2. It describes in detail 

the method of deriving element stiffness equations. 

Section 3 focuses on the essentials of F-Trefftz elements 

for transient heat conduction in FGMs. The applications 

of F-Trefftz elements to heat transfer in nonlinear FGMs 

and elastic anaysis are discussed in Sections 4-5. Finally, 

a brief summary of the developments of the Treffz 

methods is provided. 

 

II.  Steady-state heat transfer in FGM 
 

This section is concerned with the application of the T-

Trefftz to the solution of Steady-state heat transfer in 

FGMs. A hybrid graded element model is described and 

used to analyse two-dimensional heat conduction 

problems in both isotropic and anisotropic exponentially 

graded materials. 

II.1 Basic formulations  

Consider a 2D heat-conduction problem defined in an 

anisotropic inhomogeneous media: 

  (1) 

with the following boundary conditions: 

－Specified temperature boundary condition 

  (2) 

－Specified heat flux boundary condition 

  (3) 

where  denotes the thermal conductivity in terms of 

spatial variable  and is assumed to be symmetric and 

positive-definite 

( ).  is the sought 

field variable and  represents the boundary heat flux. 

 is the direction cosine of the unit outward normal 

vector  to the boundary , and  and  

are specified functions on the related boundaries, 

respectively. For convenience, the space derivatives are 

indicated by a comma, i.e. , and the 

subscript index  takes values 1 and 2 in our analysis. 

Moreover, the repeated subscript indices stand for 

summation convention. 

II.2 Fundamental solution in FGMs  

For simplicity, we assume the thermal conductivity 

varies exponentially with position vector, for example 

  (4) 

where vector  is a graded parameter and 

matrix  is symmetric and positive-definite with 

constant entries. 

Substituting Eq (4) into Eq (81) yields 

  (5) 

whose fundamental function defined in the infinite 

domain necessarily satisfies following equation 

( , ) 2 ( , ) ( , ) 0ij i j s i ij j s sK N K N      X X X X X X  (6) 

in which  and  denote arbitrary field point and 

source point in the infinite domain, respectively.  is 

the Dirac delta function. 

The closed-form solution to Eq (6) in two dimensions 

can be expressed as [81] 

  (7) 

where , is the geodesic distance defined 

as  and . 

 is the modified Bessel function of the second kind 

of zero order. For isotropic materials, , 

, (5) recasts as 

  (8) 

Then the fundamental solution given by (7) reduces to, 

  (9) 
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which agrees with the result in [82].  

II.3 Generation of graded element 

In this section, the procedure for developing a hybrid 

graded element model is described based on the 

boundary value problem (BVP) defined in Eqs (1)-(4). 

The focus is to fully introduce the smooth variation of 

material properties into element formulation, instead of 

stepwise constant approximation frequently used in the 

conventional FEM  

 

Similar to T-Trefftz FEM, the main idea of the F-Trefftz 

approach is to establish an appropriate hybrid FE 

formulation whereby intra-element continuity is 

enforced on a nonconforming internal displacement field 

formed by a linear combination of fundamental solutions 

at points outside the element domain under 

consideration, while an auxiliary frame field is 

independently defined on the element boundary to 

enforce the field continuity across inter-element 

boundaries. But unlike in the HT FEM, the intra-element 

fields are constructed based on the fundamental solution 

defined in Eq (7), rather than T-functions. Consequently, 

a variational functional corresponding to the new trial 

function is required to derive the related stiffness matrix 

equation. With the problem domain divided into some 

sub-domains or elements denoted by  with the 

element boundary , additional continuities are usually 

required on the common boundary  between any 

two adjacent elements ‘e’ and ‘f’ (see Fig. 1): 

 (10) 

in the proposed hybrid FE approach. 

 

e f

Ief
 

Fig. 1 Illustration of continuity between two adjacent 

elements ‘e’ and ‘f’ 

II.3.1 Non-conforming intra-element field 

Activating by the idea of method of fundamental 

solution (MFS) [4] to remove the singularity of 

fundamental solution, for a particular element, say 

element , which occupies sub-domain , we first 

assume that the field variable within an element is 

extracted from a linear combination of fundamental 

solutions centered at different source points (see Fig. 2), 

that is, 

      
1

,
sn

e e j ej e e

j

u N c


 x x y N x c  (11) 

where  is undetermined coefficients and  is the 

number of virtual sources outside the element . 

 is the required fundamental solution 

expressed in local element coordinates , instead 

of global coordinates (see Fig. 2).  

Evidently, Eq (11) analytically satisfies the heat 

conduction equation (5) due to the inherent property of 

. 

In practice, the generation of virtual source points is 

usually done by means of the following formulation 

employed in the MFS [83-85] 

  (12) 

where  is a dimensionless coefficient,  is the 

elementary boundary point and is the geometrical 

centroid of the element. For a particular element shown 

in Fig. 2, we can use the nodes of element to generate 

related source points for simplicity. 

 

Fig. 2 Intra-element field, frame field in a particular 

element in HFS-FEM, and generation of source points 
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by 

  (13) 

where 

  (14) 

with 

           (15) 

 

II.3.2 Auxiliary conforming frame field 

 

In order to enforce the conformity on the field variable 

, for instance,  on  of any two 

neighboring elements e and f, an auxiliary inter-element 

frame field  is used and expressed in terms of the 

same degrees of freedom (DOF), , as used in the 

conventional finite elements. In this case,  is confined 

to the whole element boundary 

  (16) 

which is independently assumed along the element 

boundary in terms of nodal DOF , where  

represents the conventional FE interpolating functions. 

For example, a simple interpolation of the frame field on 

a side with three nodes of a particular element can be 

given in the form 

  (17) 

where  ( ) stands for shape functions in 

terms of natural coordinate  defined in Fig. 3. 

 

Fig. 3 Typical quadratic interpolation for the frame field 

II.3.2 Graded element 

The fundamental solution for FGM is used as  in Eq 

(11) to approximate the intra-element field. It can be 

seen from Eq (9) that  varied throughout each 

element due to different geodesic distance for each field 

point, so the smooth variation of material properties can 

be achieved by this inherent property, instead of 

stepwise constant approximation frequently used in the 

conventional FEM, for example, Fig. 4 illustrates the 

two models when the thermal conductivity varies along 

direction X2 in isotropic material.  

 

Fig. 4 Comparison of computational cell in the 

conventional FEM and the proposed HFS-FEM 

It should be mentioned here that Eq (4) which describes 

variation of the thermal conductivity is defined under 

global coordinate system. When contriving the intra-

element field for each element, this formulation has to 

be transferred into local element coordinate defined at 

the center of the element, the graded matrix  in Eq (4) 

can, then, be expressed by  

  (18) 

for a particular element e, where  denotes the value 

of conductivity at the centroid of each element and can 

be calculated as follow: 

  (19) 

where  is the global coordinate of the element 

centroid. 

Accordingly, the matrix  is used to replace (see 

Eq (7)) in the formulation of fundamental solution for 

FGM and the construction of intra-element field under 

local element coordinate for each element.  

II.4 Variational principle and stiffness equation 

II.4.1 Modified functional 

For the boundary value problem defined in Eqs (1)-(4), 

since the stationary conditions of the traditional potential 

or complementary variational functional can’t guarantee 

the satisfaction of inter-element continuity condition 
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required in the proposed HFS-FE model, a modified 

potential functional is developed as follows [49] 

 , ,

1
d d d

2e qe e
m i i

e

ku u qu u u q
  

 
       

 
     (20) 

in which the governing equation (81) is assumed to be 

satisfied, a priori, in deriving the HFS-FE model. The 

boundary  of a particular element consists of the 

following parts 

  (21) 

where  represents the inter-element boundary of the 

element ‘e’ shown in Fig. 1. 

 

The stationary condition of the functional (20) can lead 

to the governing equation, boundary conditions and 

continuity conditions, which is shown here briefly. Eq 

(20) gives the following functional defined in a 

particular element: 
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whose first-order variational yields 
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  From the notation  and the Gauss theorem 

  (24) 

for any smooth function  in the domain, we have 
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  For the displacement-based method, the potential 

conformity should be satisfied in advance, that is, 

  (26) 

then, Eq (25) can be rewritten as 
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from which the Euler equation in the domain  and 

boundary conditions on  can be obtained 

  (28) 

using the stationary condition .  

II.4.2 Stiffness equation 

Having independently defined the intra-element field 

and frame field in a particular element (see Fig. 2), the 

next step is to generate the element stiffness equation 

through a variational approach. 

 

The variational functional  corresponding to a 

particular element  of the present problem can be 

written as 
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Appling the Gauss theorem (24) again to the above 

functional, we have the following functional for the 

HFS-FE model 
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Considering the governing equation (8), we finally have 

the functional defined on the element boundary only 

  (31) 

which yields by substituting Eqs (11), (13) and (16) into 

the functional (31) 
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Next, to enforce inter-element continuity on the common 

element boundary, the unknown vector  should be 
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of the functional  with respect to  and , 
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where  stands for the element stiffness 

matrix. 

III.  Transient heat conduction in FGMs 

III.1 Statement of heat conduction problems in 

FGMs 

Consider a two-dimensional (2D) transient heat 

conduction problem: 

  (36) 

with the boundary conditions: 

－Dirichlet boundary condition 

  (37) 

－Neumann boundary condition 

  (38) 

where  denotes the time variable ( ).  is the 

thermal conductivity dependent on the special variables 

.  is the number of dimensions of the 

solution domain  (  in this study).  is the 

mass density.  is the specific heat, and  is the 

unknown temperature field.  represents the boundary 

heat flux defined by , where  is the unit 

outward normal to the boundary .  and 

 are specified temperature and heat flow, respectively, 

on the related boundaries. In addition, an initial 

condition must be given for the time dependent problem. 

In this paper, a zero initial temperature distribution is 

considered, i.e. 

  (39) 

 

The composition and the volume fraction of FGM 

constituents vary gradually with the coordinate X, giving 

a non-uniform microstructure with continuously graded 

macro-properties (conductivity, specific heat, density). 

In the present discussion, to make the derivation is 

tractable, the mass density is assumed to be constant 

within each element and taken the value of  at the 

centroid of the element. The thermal conductivity and 

specific heat have been chosen to have the same 

functional variation so that the thermal diffusivity  is 

constant, that is  

  (40) 

  (41) 

and 

  (42) 

It should be mentioned that the above assumption in 

FGMs leads to a class of solvable problems and can 

provide benchmark solutions to other numerical 

methods, such as FEM, meshless and BEM. Moreover, it 

can provide valuable insight into the thermal behavior of 

FGMs [86]. So this assumption has been followed by a 

lot of researchers in solving transient thermal problems 

in FGMs[4, 86]. 

III.2 LT and fundamental solution in Laplace space 

The LT of a function is defined by 

  (43) 

where  is the Laplace parameter. By integration by 

parts, one can show that: 

   (44) 

The boundary conditions (37) and (38) become 

  (45) 

  (46) 

III.2.1 Exponentially graded material 

First, we consider a FGM with thermal conductivity and 

specific heat varying exponentially in one Cartesian 

coordinate, direction  only, 

  (47) 
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where  is the non-homogeneity graded parameter. 

Substituting Eq. (47) and Eq. (48) into Eq. (36) yields 

  (49) 

where  denotes the derivative of  with respect to 

 ( )  

After performing the LT, Eq. (49) becomes  
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(see Eq.(39)). 
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  (51) 

In this case, the differential Eq.(50) in Laplace space 

becomes  

  (52) 

Obviously, Eq.(52) is the modified Helmholz equation, 

whose fundamental solution is  

  (53) 

Making use of Eq.(51), we obtain the fundamental 

solution of Eq. (50) in Laplace space 

    (54) 

where ,  and  denote arbitrary field 

point and source point in the infinite domain, 

respectively.  is the modified Bessel function of the 

second kind of zero order.  

III.2.2 General method for FGMs with different 

variation of properties 

The method can be extended to a broader range of 

FGMs, not only exponential but also quadratic and 

trigonometric material variation, by variable 

transformations [86]. By defining a variable [86] 

  (55) 

Eq.(36) can be rewritten as 

 (56) 

For simplicity, define 

  (57) 

Then, Eq. (56) can be rewritten as 

  (58) 

After performing the LT, the differential equation (58) 

becomes  

  (59) 

When is a constant, Eq.(59) is a modified Helmholz 

equation whose fundamental solution is known. Then 

the fundamental solution of Eq.(36) in Laplace space 

can be obtained by inverse transformation: 

            (60) 

For quadratic material,  

  (61) 

In this case,  in Eq.(59). 

For trigonometric material,  

  (62) 

In this case,  in Eq.(59). 

     For exponential material,  

  (63) 

In this case,  in Eq.(59). Substituting 

 into Eq.(60) and using the exponential law, 

the fundamental solution given by Eq.(60) reduces to 

Eq.(54). 

   Note that for quadratic, trigonometric and exponential 

variations of both heat conductivity and specific heat, 

the FGM transient problem can be transformed into the 

same differential equation which has a simple and 

standard form (Eq.(58)) [86]. 

III.3 Generation of graded element 

As in the conventional FEM, the solution domain is 

divided into sub-domains or elements. For a particular 

element, say element e, its domain is denoted by  and 

bounded by . Since a nonconforming function is used 

for modeling the internal fields, additional continuities 

are usually required over the common boundary  

between any two adjacent elements ‘e’ and ‘f’ (see Fig. 

1)[41]: 

 (64) 

in the proposed hybrid FE approach. 

 III.3.1 Non-conforming intra-element field      

For a particular element, say element e, which occupies 

the sub-domain , the field variable within the 

element is extracted from a linear combination of 

fundamental solutions centered at different source points 

(see Fig. 2), that is, 
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number of virtual sources outside the element e. 

 is the required fundamental solution 

expressed in local element coordinates , rather 

than global coordinates (see Fig. 2). Clearly, 

Eq.(55) analytically satisfies the transformed governing 

equation of Eq.(36) in Laplace space due to the inherent 

property of . 

The fundamental solution for FGMs (  in Eq.(65)) is 

used to approximate the intra-element field for a FGM. 

The smooth variation of material properties throughout 

an element can be achieved by using the fundamental 

solution which can reflect the impact of a concentrated 

unit source acting at a point on any other points. The 

model inherits the essence of a FGM, so it can simulate 

FGMs more naturally than the stepwise constant 

approximation, which has been frequently used in 

conventional FEM. Fig. 3 illustrates the difference 

between the two models when the thermal conductivity 

varies along direction X2.  

Note that the thermal conductivity in Eq.(36) is defined 

in the global coordinate system. When contriving the 

intra-element field for each element, this formulation 

must be transferred into the local element coordinate 

system defined at the center of the element, and the 

graded heat conductivity  in Eq.(40) can then be 

expressed by  

  (66) 

for a particular element e, where  denotes the 

value of conductivity at the centroid of each element and 

can be calculated as follows: 

  (67) 

where  is the global coordinates of the element 

centroid. 

 

Accordingly,  is used to replace  (see Eq.(60)) in 

the formulation of the fundamental solution for the FGM 

and to construct the intra-element field in the local 

element coordinate system for each element.  In practice, 

the generation of virtual sources is usually achieved by 

means of the following formulation employed in the 

MFS [4] 

  (68) 

where  is a dimensionless coefficient,  and  are, 

respectively, boundary point and geometrical centroid of 

the element. For a particular element as shown in Fig. 2, 

we can use the nodes of the element to generate related 

source points for simplicity. 

 

The corresponding normal heat flux on  is given by 

  (69) 

where 

   (70) 

with 

           (71) 

III.3.2 Auxiliary conforming frame field      

In order to enforce conformity on the field variable , 

for instance,  on  of any two 

neighboring elements e and f, an auxiliary inter-element 

frame field  is used and expressed in terms of nodal 

degrees of freedom (DOF), , as used in conventional 

FEM as 

  (72) 

which is independently assumed along the element 

boundary, where  represents the conventional FE 

interpolating functions. For example, a simple 

interpolation of the frame field on the side with three 

nodes of a particular element can be given in the form 

  (73) 

where  ( ) stands for shape functions which 

are the same as those in conventional FEM. 

III.4 Modified variational and stiffness equation 

Having independently defined the intra-element field 

and frame field in a particular element (see Fig. 2), the 

element stiffness equation can be generated through a 

variational approach.  

The final functional defined only on the element 

boundary is 

  (74) 

Substituting Eqs.(65), (69) and (72) into the functional 

(74), yields 

  (75) 

where 
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T T T q
d ,  d ,  d

e e qe
e e e e e e e e

s  
       H Q N G Q N g N  (76) 

  Next, to enforce inter-element continuity on the 

common element boundary, the unknown vector  

must be expressed in terms of nodal DOF . The 

minimization of the functional  with respect to  

and , respectively, yields 

 T

T T
,   e e

e e e e e e e

e e

 
      

 
H c G d 0 G c g 0

c d
 (77) 

from which the optional relationship between  and 

, and the stiffness equation can be produced in the 

form 

  (78) 

where  stands for the element stiffness 

matrix. 

III.5. Numerical inversion of LT 

In this section, we present a brief review of the 

inversion of the LT used in this work. In general, once 

the solution for  in the Laplace space is found 

numerically by the method proposed above, inversion of 

the LT is needed to obtain the solution for in the 

original physical domain. There are many inversion 

approaches for LT algorithms available in the literature 

[87]. A comprehensive review on those approaches can 

be found in [88]. In terms of numerical accuracy, 

computational efficiency and ease of implementation, 

Davies and Martin showed that Stehfest’s algorithm 

gives good accuracy with a fairly wide range of 

functions [89]. Therefore, Stehfest’s algorithm is chosen 

in our study. 

If  is the LT of , an approximate value  

of the function  for a specific time  is given 

by 

  (79) 

where 
/2min( , /2)
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in which  must be taken as an even number. In 

implementation, one should compare the results for 

different N to investigate whether the function is smooth 

enough, and determine an optimum N [87]. Stehfest 

suggested  and other researchers have found no 

significant change for [89]. Therefore, 

 is adopted here. That means that for each 

specific time  it is necessary to solve different 

boundary value problems with different corresponding 

Laplace parameters  in Laplace 

space 10 times, then weight and sum the solutions 

obtained in Laplace space. 

 

IV.  F-Trefftz method for Nonlinear  FGMs 

IV.1 Basic formulations 

Consider a two-dimensional (2D) heat conduction 

problem defined in an anisotropic inhomogeneous 

media: 

 

2

, 1

( )
( ( ,u) )=0       ij

i j i j

u
K

X X

 
 

 


X
X X  (81) 

For an inhomogeneous nonlinear functionally graded 

material, we assume the thermal conductivity varies 

exponentially with position vector and also be a function 

of temperature, that is 

 
~

( , ) ( ) exp(2 )ij ijK u u K X β X  (82) 

where ( ) 0u   is a function of temperature which may 

be different for different materials, the vector 

1 2( , ) β  is a dimensionless graded parameter and 

matrix 1 , 2[ ]ij i jK  K  is a symmetric, positive-definite 

constant matrix ( 2

12 21 11 22 12,det 0K K K K K K    ). 

The boundary conditions are as follows: 

－Dirichlet boundary condition 

                                         on  uu u   (83) 

－Neumann boundary condition 

 

2

, 1

                   on  ij i q

i j j

u
q K n q

X


   


  (84) 

where
~

ijK denotes the thermal conductivity which is the 

function of spatial variable X  and unknown temperature 

field u . q  represents the boundary heat flux. jn  is the 

direction cosine of the unit outward normal vector n  to 

the boundary u q    . u  and q  are specified 

functions on the related boundaries, respectively.  

 

IV.2 Kirchhoff transformation and iterative method 
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Two methods are employed here to deal with the 

nonlinear term ( )u , one is Kirchhoff transformation 

[90] and another is the iterative method. 

(1) Kirchhoff transformation  

 ( ) ( ( )) ( )u u u du   X     (85) 

Making use of Eq.(85), Eq.(81) reduces to 

 

2
*

, 1

( )
( ( ) )=0   ij

i j i j

K
X X

 
 

 


X
X X  (86) 

where 

                     
*( ) exp(2 )ij ijK K X β X    (87) 

Substituting Eq.(87) into Eq.(86) yields 

 
22

, 1
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2 ( ( )) exp(2 ) 0ij

i j i j

K
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X
β K X β X  (88) 

where 

 
1( )u     (89) 

It should be mentioned that the inverse of  in Eq.(89) 

exists since ( ) 0u  . 

  The fundamental solution to Eq.(88) in two dimensions 

can be expressed as [90] 

 0 ( )
( , ) exp{ ( )}

2 det
s

K R
N




     sX X β X X

K
 (90) 

where  β Kβ , R is the geodesic distance defined 

as ( )R R   -1

sX,X r K r  and 
sr = X- X  in which X  

and sX  denote observing field point and source point in 

the infinite domain, respectively. 0K  is the modified 

Bessel function of the second kind of zero order. For 

isotropic materials, 12 21 0K K  , 

11 22 0 0K K k   , then the fundamental solution 

given by (90) reduces to 

 0

0

( )
( , ) exp{ ( )}

2

K R
N

k




   s sX X β X+X  (91) 

which agrees with the result in [82].  

 

Under the Kirchhoff transformation, the boundary 

conditions (83)-(84) are transformed into the 

corresponding boundary conditions in terms of  .  

 ( )    on  uu    (92) 

2 2
*

, 1 , 1

  on  ij i ij i q

i j i jj j

u
p K n K n q q

X X 

 
      

 
   (93) 

Therefore, by Kirchhoff transformation, the original 

nonlinear heat conduction equation (81), in which the 

heat conductivity is a function of coordinate X and 

unknown function u , can be transformed into the linear 

equation (86) in which the heat conductivity is just a 

function of coordinate X . At the same time, the field 

variable becomes  in Eq.(86), rather than u  in 

Eq.(81). The boundary conditions (83)-(84) are 

correspondingly transformed into Eqs.(92)-(93). Once 

 is determined, the temperature solution u can be 

found by the reversion of transformation (89), i.e. 
1( )u    .  

(2) Iterative method  

Since the heat conductivity depends on the unknown 

function u , an iterative procedure is employed for 

determining the temperature distribution. The algorithm 

is given as follows: 

1. Assume an initial temperature 
0u .  

2. Calculate the heat conductivity in Eq.(82) using 
0u . 

3. Solve the boundary value problem defined by 

Eqs.(81)-(84) for the temperature u 

4. Define the convergent criterion 
0u u 

(=10
-6

 in our analysis). If the criterion is 

satisfied, output the result and terminate the 

process. If not satisfied, go to next step. 

5. Update 
0u  with u  

6. Go to step 2. 

 

IV.3 Generation of graded element  

 

In this section, an element formulation is presented to 

deal with materials with continuous variation of physical 

properties. Such an element model is usually known as a 

hybrid graded element which can be used for solving the 

boundary value problem (BVP) defined in Eqs.(86) and 

(92)-(93). As was done in conventional FEM, the 

solution domain is divided into sub-domains or elements. 

For a particular element, say element e, its domain is 

denoted by e  and bounded by e . Since a 

nonconforming function is used for modeling intra-

element field, additional continuities are usually 

required over the common boundary Ief  between any 

two adjacent elements ‘e’ and ‘f’ (see Fig. 1): 
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 on  

0  (reciprocity)
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in the proposed hybrid FE approach. 

 

IV.3.1 Non-conforming intra-element field 

For a particular element, say element e, which occupies 

sub-domain , the field variable within the element is 

extracted from a linear combination of fundamental 

solutions centered at different source points (see Fig. 2) 

that  

     
1

,  ,
sn

e e j ej e e e j e

j

N c


     x x y N x c x y

 (95) 

where  is undetermined coefficients and  is the 

number of virtual sources outside the element e. 

 is the required fundamental solution 

expressed in terms of local element coordinates , 

instead of global coordinates  (see Fig. 2). 

Obviously, Eq. (95) analytically satisfies the heat 

conduction equation (88) due to the inherent property of

. 

 

The fundamental solution for FGM (  in Eq.(95)) is 

used to approximate the intra-element field in FGM. It is 

well known that the fundamental solution represents the 

filed generated by a concentrated unit source acting at a 

point, so the smooth variation of material properties 

throughout an element can be achieved by this inherent 

property, instead of the stepwise constant approximation, 

which has been frequently used in the conventional 

FEM. For example, Fig. 4 illustrates the difference 

between the two models when the thermal conductivity 

varies along direction X2 in isotropic material.  

 

Note that the thermal conductivity in Eq. (87) is defined 

in the global coordinate system. When contriving the 

intra-element field for each element, this formulation has 

to be transferred into local element coordinate system 

defined at the center of the element, the graded matrix 

 in Eq. (87) can, then, be expressed by  

  (96) 

for a particular element e, where  denotes the value 

of conductivity at the centroid of each element and can 

be calculated as follows: 

  (97) 

where  is the global coordinates of the element 

centroid. 

Accordingly, the matrix  is used to replace K (see 

Eq.(90)) in the formulation of fundamental solution for 

FGM and to construct intra-element field in the 

coordinate system local to element.  

     In practice, the generation of virtual sources is 

usually done by means of the following formulation 

employed in the MFS [4] 

  (98) 

where  is a dimensionless coefficient ( =2.5 in our 

analysis[4]),  and  are, respectively, boundary 

point and geometrical centroid of the element. For a 

particular element shown in Fig. 2, we can use the nodes 

of element to generate related source points. 

The corresponding normal heat flux on  is given by 

  (99) 

where 

   (100) 

with 

           (101) 

IV.3.2 Auxiliary conforming frame field 

In order to enforce the conformity on the field variable 

, for instance,  on  of any two 

neighboring elements e and f, an auxiliary inter-element 

frame field  is used and expressed in terms of nodal 

degrees of freedom (DOF), , as used in the 

conventional finite elements as 

  (102) 

which is independently assumed along the element 

boundary, where  represents the conventional FE 

interpolating functions. For example, a simple 

interpolation of the frame field on the side with three 

nodes of a particular element can be given in the form 

  (103) 

where  ( ) stands for shape functions in 

terms of natural coordinate  defined in Fig. 3. 

 

IV.4 Modified variational principle and stiffness 

equation 
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IV.4.1 Modified variational functional 

For the boundary value problem defined in Eqs.(86) and 

(92)-(93), since the stationary conditions of the 

traditional potential or complementary variational 

functional can’t guarantee the satisfaction of inter-

element continuity condition required in the proposed 

HFS-FE model, a modified potential functional is 

developed as follows [7] 
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 (104) 

in which the governing equation (86) is assumed to be 

satisfied, a priori, in deriving the HFS-FE model (For 

convenience, the repeated subscript indices stand for 

summation convention). The boundary  of a 

particular element consists of the following parts 

  (105) 

where  represents the inter-element boundary of the 

element ‘e’ shown in Fig. 1. 

  The stationary condition of the functional (104) can 

lead to the governing equation (Euler equation), 

boundary conditions and continuity conditions, details of 

the derivation can refer to Ref. [7]. 

 

IV.4.2 Stiffness equation 

Having independently defined the intra-element field 

and frame field in a particular element (see Fig. 2), the 

next step is to generate the element stiffness equation 

through a variational approach and to establish a linkage 

between the two independent fields. 

 

The variational functional  corresponding to a 

particular element e of the present problem can be 

written as 
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Appling the Gauss theorem to the above functional, we 

have the following functional for the HFS-FE model 
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   Considering the governing equation (86), we finally 

have the functional defined on the element boundary 

only 

 

 (108) 

which yields by substituting Eqs (95), (99) and (102) 

into the functional (108) 

  (109) 

with 

T T Td , d , qd
e e qe

e e e e e e e e
  

       H Q N G Q N g N

 (110) 

 

V.  Elastic problems in FGMs 

 

V.1 Formulation of the problem 

In this section, basic equations and the corresponding 

fundamental solutions for FGMs presented in [91] are 

briefly reviewed to provide notations and references for 

the subsequent sections. 

V.1.1 Basic equations 

For a 2D linear elastic problem, the governing equations 

of force equilibrium in the absence of body forces are 

given by 

  (111) 

where  are the components of the Cauchy stress 

tensor. For plane problems, all indices range from 1 to 2 

and an index followed by a comma stands for partial 

differentiation with respect to the spatial coordinate. The 

summation convention is implied for repeated indices. 

For the functionally graded materials considered in 

this study, the elastic stiffness tensor 
 
is associated 

with the spatial variable ; that is, 

. Therefore, the linear elastic strain-stress 

relation is written as 

  (112) 

The components of stiffness tensor 
 
must satisfy the 

usual symmetric condition 

  (113) 

Specially, for isotropic inhomogeneous elastic media, 

the elastic stiffness tensor 
 
is written as 

  (114) 

e

e ue qe Ie    

Ie

e

1
d d d

2 e qe e
me p q p

  
          

T T T1

2
e e e e e e e e e    c H c d g c G d

, 0ij j 

ij

ijklC

1 2( , )x xx

( )ijkl ijklC C x

( )ij ijkl klC  x

ijklC

ijkl klij ijlk jiklC C C C  

ijklC

 ( ) ( ) ( )ijkl ij kl ik jl il jkC          x x x
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where  is Kronecker’s delta, the Lame elastic 

parameters  and 
 
are the functions of spatial 

coordinate variable  and can be expressed in terms of 

elastic modulus , and Poisson ratio  as  

  (115) 

with  for plane strain and  

for plane stress. 

 

Therefore, the constitutive law Eq. (112) can be 

simplified as 

  (116) 

 

As well, the infinitesimal strain tensor  related to the 

displacement field is expressed as 

  (117) 

 

Substituting Eq. (117) into the constitutive equation (116) 

and then into the equilibrium equation (111) we have 

          

          
, , ,

, , , , 0

i j j j ji

i jj j i j j i

u u

u u u

  

 

 

   

x x x x x

x x x x x
 (118) 

 

If the material is homogeneous, i.e., the Lame 

parameters are independent of the spatial variable , Eq. 

(118) becomes 

      , , 0j ji i jju u    x x  (119) 

which is the classic Navier-Cauchy equation with 

respect to displacements. 

The boundary conditions have the same form as those of 

homogeneous materials:   

  (120) 

where  represents the ith component of the 

boundary traction, and  is the ith component of 

outward normal to the boundary. 
 
and  are the 

boundaries on which the displacement and the traction 

are prescribed respectively. An overbar denotes that the 

variable is specified. 

V.1.2 Fundamental solutions for quadratic variation of 

elasticity 

In this work, the Lame constants  and  are assumed 

to be quadratic variation of the spatial variable , that is 

 (121) 

where ,  and  are the corresponding material 

constants,  is a graded parameter, which has a 

dimension of . In particular, if the graded parameter 

 
is equal to zero, the Lame constants in Eq. (121) will 

be reduced to two constants, and then the system of 

partial differential equations (118) will be the standard 

Navier-Cauchy equations for homogeneous isotropic 

elastic materials. 

According to the work of [92], when the Poisson 

ratio  is equal to 0.25 (a rather common value for rock 

materials) and the plane strain state is considered, one 

obtains 

  (122) 

which can significantly simplify the derivation of 

fundamental solutions. 

Generally, the free space fundamental displacement 

solution for an isotropic inhomogeneous elastic 

continuum must satisfy the following equation system 

              

        
, , , ,

, , , 0

i j j j ji i jj

s

j i j j i i

u u u

u u e

   

 

  

    

x x x x x x x

x x x x x
 (123) 

where  is a field point in the infinite plane,  is a 

source point at which the unit force  along the i-

direction is applied, and  is the Dirac delta function. 

To obtain the fundamental displacement solution 

for the equilibrium equations (123) the following 

transformation is established for the displacement vector 

[91] 

  (124) 

from which we have 

  (125) 

and then the stress component can be given by 

   

 

0 , 0 , ,

0 0

ij l l ij k k i j j i

ij k k i j j i

c x w w w
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    
 

   
 

 (126) 

Substituting Eqs. (124) and (121) into Eq. (123), we 

obtain 

 
 

 0
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1
2 0s
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If the concentrated force acts at the origin, using the 

logarithmic potential, Yuan and Yin [91] obtain 

  (128) 

where  denote the generalized displacement solutions 

at the field point  along the i-direction when a unit 

point force is applied at the origin along the l-direction. 

After this, with the inverse transformation of Eq. (124), 

and at the same time moving the point force from the 

origin to an arbitrary source point , the displacement 

components can be written as 

  
*

2

0

2 ln
6

i l
li lis

k k k k

r rc
u r

rc x c x


  

 
   

   
 (129) 

where some useful quantities related to the distance  

are 

 

 
1/2

, , , ,

,    

,    1,    

s

i i i i i

i
i i i i j ij

r rr r x x

r
r r r r

r


  

  
 (130) 

Based on the displacement formulation (129) [91], 

we obtain the strain components by differentiating the 

solution (129) with respect to the spatial variable  

   
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   

 

  (131) 

and then, the stress components are given by 
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  (132) 

It is obvious that the fundamental solutions (129) 

and (132) can easily be reduced to the homogeneous 

fundamental solutions, when the graded parameters

and . For example, for 

homogeneous isotropic materials with Poisson ratio 

, , we have 

  (133) 

and 

  (134) 

which are same as the formulations used in BEM for 

homogeneous materials. 

V.2  Hybrid finite element formulation 

V.2.1 Hybrid functional and element stiffness equation 

The initial concept of the hybrid finite element method 

features two independent fields (interior and frame fields) 

assumed in a given element. In the present work, the 

variables  and  respectively represent the interior 

and frame field variables. In the absence of body forces, 

the variational functional for any given element, say 

element e, used in the present model can be constructed 

as[7]  

 
1

d d d
2 e te e

me ij ij i i i i it u t u u 
  

          (135) 

where  is the domain of element e, 
 
and 

 
are 

boundaries, where the traction and displacement are 

respectively  specified, and  denotes the whole 

element boundary. The inter-element boundary is 

denoted by . Clearly, for the hybrid element shown 

in  Fig. 2 we have 

  (136) 

Making use of Gauss theorem, the first-order 

variational of the functional can be further written as 
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 (137) 

in which the first integral gives the equilibrium equation 

, and the second integral enforces the 

reciprocity condition by co-considering those from 

neighboring elements. The traction boundary condition 

can be enforced by the third integral, and the final 

integral enforces equality of  and  along the 

elemental frame boundary . 

In the present hybrid formulation, in order to obtain 

the element stiffness equation involving element 

boundary integrals only, the element interior 

displacement field is approximated by the linear 
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combination of the fundamental solutions at a series of 

source points 
s

mx
 
located outside the element domain as 

      * , , , 1,2,   1,2, ,s

i lm li m i eu c u i l m M   x x x N c (138) 

where M  is the number of virtual sources outside the 

element domain,    
T

11 21 1 2e M Mc c c cc  is  

an unknown coefficient vector (not nodal displacement), 

and the interpolation matrix 

         * * * *

1 1 2 1 1 2, , , ,s s s s

i i i i M i Mu u u u 
 

N x x x x x x x x  

  (139) 

consists of the fundamental solutions  * , s

liu x x
 
at M 

source points. 

It is noted that the constructed displacement field 

(138) can analytically satisfy the inhomogeneous elastic 

governing equation (123), since the fundamental 

solutions (129) of the problem are used as the 

interpolation functions. 

Making use of the strain-displacement equation 

(117) and the stress-strain relationship (112), the 

corresponding stress and traction components are 

expressed as 

     * , , , , 1,2,   1,2, ,s

ij lm lij m ij ec i j l m M       x x x S c  

  (140) 

and 

      * , , , 1,2,   1,2, ,s

i lm li m i et c t i l m M   x x x Q c  (141) 

in which 

       * * * *

1 1 2 1 1 2, , , ,s s s s

ij ij ij ij M ij M         
S x x x x x x x x  

  (142) 

         * * * *

1 1 2 1 1 2, , , ,s s s s

i i i i M i Mt t t t 
 

Q x x x x x x x x  

  (143) 

with the traction kernels being defined by 

    * *

1, ,s s

li lij m jt nx x x x  (144) 

To enforce conformity of the displacement field on 

the common interface of any two neighboring elements, 

frame displacement fields iu
 
are separately assumed on 

the element boundary as  

     , [ ] , , 1,2,   1,2, ,i lk li k i eu d N i l k K   x x x N d (145) 

where [ ]iN  denotes the interpolation vector relating the 

boundary displacement to the nodal displacement vector

 ed . 

To obtain the element stiffness equation and the 

optional relationship of unknown coefficient  ec and 

 ed , the application of Gauss theorem to the 

functional (135) gives 
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 (146) 

Because the assumed displacement field (138) and 

stress field (140) analytically satisfy the governing 

equation (123), we have 
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me i i i i i it u t u t u
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Substituting Eqs. (138), (141) and (145) into the 

functional (147) yields 

             
T T T1

2
me e e e e e e e e    c H c d g c G d  (148) 
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     

   

 

T

T

T

d

d

d

e

e

te

e i i

e i i

e i it







 

   

   







H Q N

G Q N

g N

 (149) 

The stationary condition of the functional (148) 

with respect to  ec  and  ed  yields, respectively, the 

optional relationship between  ec  and  ed and the 

element stiffness equation as 

       
1

e e e e


c = H G d  (150) 

and 

     e e eK d = g  (151) 

with 

        
1

e e e e

T
K = G H G  (152) 

being the element stiffness matrix, which is sparse and 

symmetric. 

 

VI. CONCLUSIONS  
 

On the basis of the preceding discussion, the 

following conclusions can be drawn. This review 

reports recent developments on applications of HFS-

FEM to functionally graded materials and structures. 

It proved to be a powerful computational tool in 

modeling materials and structures with 

inhomogeneous properties. However, there are still 

many possible extensions and areas in need of further 

development in the future. Among those 

developments one could list the following: 
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1  Development of efficient F-Trefftz FE-BEM schemes 

for complex engineering structures containing 

heterogeneous materials and the related general purpose 

computer codes with preprocessing and postprocessing 

capabilities. 

2 Generation of various special-purpose elements to 

effectively handle singularities attributable to local 

geometrical or load effects (holes, cracks, inclusions, 

interface, corner and load singularities). The special-

purpose functions warrant that excellent results are 

obtained at minimal computational cost and without 

local mesh refinement.  

3 Development of F-Trefftz FE in conjunction with a 

topology optimization scheme to contribute to 

microstructure design. 

4 Extension of the F-Trefftz FEM to elastodynamics and 

fracture mechanics of FGMs. 
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