WUSGET

© 2015 IJSRSET | Volume 1 | Issue 3 | Print ISSN : 2395-1990 | Online ISSN : 2394-4099

Themed Section: Engineering and Technology

Query Optimizer for the ETL Process in Data Warehouses

Bhadresh Pandya®, Dr. Sanjay Shah?
'Professor, Department of Computer Science, Kadi Sarva Vishwavidyalaya, Gandhinagar , Gujarat, India
“Director, S. V Institute of Computer Studies, Kadi, Gujarat, India

ABSTRACT

ETL (Extraction-Transformation-Loading) process is responsible for extracting data from several sources, cleansing,
transforming, integrating and loading into a data warehouse. Extraction process accesses large amount of data by
executing several complex queries in source databases. These queries are repetitive and executed at regular interval
to refresh the data warehouse. Extraction of data from source must be completed in a certain time window; hence it
is necessary to optimize its execution time. In this paper, we delve into the optimization of queries by
recommending indices which reduces cost of the queries and improves performance of the queries.

Keywords: Extraction Transformation Loading, Data Warehouses, Query Optimizer, Business Intelligence,
Execution Plan of Query, Database Tuning, Query Tuning, Performance Tuning

I. INTRODUCTION

In the area of business intelligence, data warehouse
plays an important role. Designing and implementing a
data warehouse requires using different tools and
techniques to be used and applied to effective
implementation and maintenance of data warehouse.
The category of tools which are responsible for
extraction of data from several source systems, their
cleansing, transformation and inserting them into a data
warehouse are called ETL tools. Execution time of these
ETL process need to be optimized so that it can be
completed in specified time window [1].

The functionality of ETL tools involve prominent tasks
which include a) the identification and extraction of
relevant information from source systems b)
transformation and integration of information extracted
from several source systems into a common format c)
cleaning these data as per the database and business
rules d) loading quality assured data to the data
warehouse. The design and implementation of these
tasks in the ETL process is labor-intensive activity

IJSRSET151375 | Received: 17 June 2015 | Accepted: 24 June 2015 | May-June 2015 [(1)3: 329-333]

which consumes large portion of the data warehouse
projects [6].

Data extraction process involves execution of complex
queries on the relational databases of operational source
systems having large amount of data. In this paper, we
propose the heuristic algorithm which works on certain
key parameters of the query such as tables accesses,
columns accesses, conditions applied on the columns,
and using statistics of tables and columns it determines
optimal index set to be built which generated better
execution plan and reduces the cost of query.

II. METHODS AND MATERIAL

Data warehouses have become integral part of decision
making process for the businesses. To provide enterprise
level view of data for analysis of different functions,
data from all the operational systems need to be cleaned,
transformed and integrated at enterprise level. There is
no de facto standard for architecture and construction of
data warehouses. However quality and completeness of
data coming from different heterogeneous sources play a

329

major role in success of data warehouse along with
flexible and scalable architecture.

Enterprise database applications are often characterized
by a large volume of data and high demand with regard
to query response time and transaction throughput.
Beside investing in new powerful hardware, database
tuning plays an important role for fulfilling the
requirements. However, database tuning requires a
thorough knowledge about system internals, data
characteristics, applications and the query workload.
Among others index selection is a main tuning task. The
problem is to decide how queries can be supported by
creating indexes on certain columns [13].

The problem of low performance in data extraction of
ETL process in the data warehouse can be critical
because of the major impact in using the data from data
warehouse, the project can be compromised. In this case
there are several techniques that can be applied to reduce
queries’ execution time and to improve the performance
[12].

Reducing 1/0

Locating some selected records from the large tables
based on the selection criteria is a common task of
extraction process. Deriving the result set efficiently
from the operational databases is often difficult due the
complex nature of the data and query. The simplest way
of evaluating a query is to do a full scan of the tables
and apply specified conditions which induces higher
disk 1/0. The most commonly used indexing method is
the B-Tree which is very effective for on-line transaction
processing (OLTP). Almost every database product has
a version of this indexing method. As disk I/O operation
is time consuming database operation, focusing on the
efficiency of disk /O is an effective means for
improving performance and scalability [10].

The task of improving performance of query and
building suitable indexes is done by database
administrator, according to his knowledge and expertise.
This is both subjective and quiet hard to achieve when
number of queries is very large [11]. Proposed algorithm
simplifies this task by recommending indexes which
result in better execution plan reducing 1/O significantly.

The Index Recommending Heuristic Algorithm

For the given query, capture details of tables accessed, columns
accessed, and conditions applied on the columns

Collect statistics:

a. Tahle statistics: Mumber of tuples, tuple size in bytes
b, Column statistics: Mumber of distinct values

Assign ranking to the operators/conditions for execution

Assign column selection priority hased on the assigned ranking and

heuristic knowledge

List suggested indexes best suited for the query

Figure 1: Heuristic algorithm for index recommendation

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

III. RESULTS AND DISCUSSION

The algorithm was tested on real-time large databases on different modules in real-application environment.
Examples of execution plan before putting recommended indexes in place and after creating are as below:

U4 GQL Enplain Plan systes

=10

SELECT DISTINCT t_00.header
FROM s=porm. crnd order index t 00, sspcrm.crm jest £ 01,
saperw. crn_jest t_02, sapern.crnd orderadu h t_03
VHERE t 0l.mandt = :ad
AND £_0l.chinr = £_00.item
AND t_02.mandt 1
AND t_02.cbinr = t_00.header
AID t_03.client = raZ
AND t_03.guid = t_00.header

AND t_oo.client = a3
AND (& Ol.inact = :ad
D £_0l.stat = :as

OR ©_0Z.inact = :aé

AND t_02.stat = :a?)
AID t_00.chject_type IN (:ad, :ad, :all, :all]
AND t_03.template_type = :al2

LEC
SORT (UNIQUE NOSORT)
MERGE JOIM

MERGE JOIN
ORT (JOIN)
© = MERGE JOIN

%= SORT (OIN)
LIST ITERATOR
[SAPCRM.CRMD_ORDER_INDEX TABLE AGCESS (BY INDEX ROWID)

1 SAPCRM.CRMD_ORDER_INDEXBO INDEX (RANGE SCAN)

SORT (JOIN)

SAPCRM.CRM_JEST TABLE ACCESS (FULL)
©Z} FILTER
SORT (JOIM)

T SAPCRM.CRM_JEST TABLE ACCESS (FULL)

SORT (JOIN)
1] SAPCRM.CRMD_ORDERADM_H TABLE ACCESS (FULL)

5 =

440,554
436,137
432,210
428178
238,410
238,410
48,641

36,123
9,365
185,768
26,013

26,013
3037
1,737

244,088
244,089
265,029
265,029
4,812,867
4,812,867
1,581,876

1,581,876
1,581,878

32,672,568
32,672,568

32,672,568
520,290
520,290

27,412.338
27,412.339
24,587.851
24,587 B51
329,004 68
329,004 68
69,516.035

B9,516.035
747 670117

7497 670117

797 870117
10161914
10161914

4

This plan step designates this statement as a SELECT statement.

FROM sapcru.crnd_order_index t 00, sapcrm.crm jest t 0L,
saperm.crn_jest t_02, saporm.crmd_orderadn b t_03

WEEFE t 0l.mendt = :al
IND t_01.chinr = t 00.item
- IND t_02.mandt = :al
= AND t_DZ.objnr = t_DO.header

AND t 03.client = :a2
IND t_03.tuid = © 00.header
IND t_00.client
AND (t_0l.inact = :
AND t Ol.stat = :a§

OR © 02.inact = :a6

IND t_02.5tat = :a?)

AND t_DO.object _type IN (:a8, :ad, :al0, :all)
AND t 03.template type = :al2

?

Step Name

=]

SORT (UNIGUE)
© @ CONCATENATION
© @ NESTED LOOPS
© = MERGE JOIN
© = MERGE JOIN

SAPCRM.CRM_JEST~Z3 INDEX (RANGE SCAN)
SORT (JOIN)
INLIST ITERATOR

1] SAPCRM.CRMD_ORDER_INDEX~Z5 INDEX (RANGE SCAN)
ORT (JOIN)

T SAPCRM.CRMD_ORDERADM_H TABLE ACCESS (FULLY

5 SAPCRM.CRM_JEST-Z2 INDEX (RANGE SCAN)

© @ NESTED LOOPS
© = MERGE.JOIN

ORT (JOIN)
@ = MERGE JOIN
SORT (JOIN)

i SAPCRM.CRM_JEST~Z3 INDEX (RANGE BCAN)

SORT (JQIN)

25 SAPCRM.CRMD_ORDER_INDEX-~Z5 INDEX (RANGE SCAMN)
ORT (JOIN)
T SAPCRM.CRMD_ORDERADM_H TABLE ACCESS (FULLY
1 SAPCRM CRM_JEST~Z2 INDEX (RANGE SCGAN)

Step# Cost
25 60627
4

"

9 5,622
[} 3578
2 306

1 2

g 3,273
4

3 3124
] 1,211
7 526
10 s
23 20022
21 5,622
18 4,411
17 3578
13 306
12 305
16 3,273
15

14 3124
20 1,211
14 526
22 2

Rows kBytes
103,295 11,600,513
53,921 1,316,431
72,000 6,328.125
72,000 4,821 875
276,928 31,100313
4 0.0gz
371,825 16,330,966
371,825 16,339 966
160,823 3141074
160,823 3141074
53921 12316431
276,928 31,100313
72,000 6,328,125
72,000 4,921 875
72,000 4,921 875
53,921 1,316,431
53,921 1,316,431
371,825 16,330,966
371,825 16,330.966
160,823 3141074
160,823 3141074
4 0.08&

This plan step designates this statement as a SELECT statement.

Figure-3: Execution plan of Query — A after creating recommended indexes

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

331 L

Bl 5L Explain Plan system@ECQ
File Edit % Drilldown Help

SELECT sum(t_00.1fime)

FROM =sapecc.lips t_00, sapecc.vbuk t 01

WHEFE t_Ol.mandt = :al
t_0l.wheln = £ 00.wbeln
t_00.mandt = :al
(t_00.mandt = :al
t_00.werks = :ali
t_00.pstyvy <= :ad
t_0l.vbtyp = :ad
t_0l.wbstk tab

.whstk

] - ATE
)

g

= . . -

4,
1
52,077
100,211
100,211

T = WMERGE JOIN
= SORT (JOIN)
7 SAPECC LIPS TABLE ACCESS (FULL)
Q=} FILTER
D= SORT (JOIN)
S [f] SAPECCVBUK TABLE ACCESS (BY INDEX ROWID)

£ SAPECCVBUK~SPE INDEX (RANGE SCAN)

282,301
1

W o T — k@

=10l x|

1,881.602
2152971
2152971

This plan step designates this statement as a SELECT statement.

F1 for Help

EM

Brytes

Figure - 4 : Original Execution Plan of Query — B

B8 SQL Explain Plan system@ECQ

Eile Edit ¥

SELECT sum(t_00.lfimg)
FROM sapecc.lips t 00, sapecc.vbuk t 01

Drilldowen

Help

WHERE t_0l.mandt = :al
AND £ 0l.wbeln = t_00.vheln
AND £ O00.mandt = ;al

AND jt_00.mandt = :aZ
AND t O0.werks = :a3
AND £ O0.pstyw <> :ad

AND £ 0l.wbhtyp = :a5
AND . Ol.whstk = ;a6
OFR t Ol.wbstk = :a7)

ORT (AGGREGATE) 7 1
S MERGE JOIN B 561 52,077
i SAPECCWBUK~Z3 INDEX (FULL SCAN) 1 76 282,301
=} FILTER 5
5= SORT (JOIN) 4
S [f] SAPECC.LIPS TABLE ACCESS (BY INDEX ROWID) 3 a3 100,211
fH SAPECC LIPS~Z2 INDEX (RANGE SCANM) 2 76 1

=0l x|

0.036
1,881.688
4135269

2,162.871

This plan step designates this statement as a SELECT staternent.

Figure - 5 : Execution plan of Query — B after creating recommended indexes

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

332 L

Comparative Cost

Query Label System Original Cost Cost After Indexing
Q1 ECQ 319 1
Q2 ECQ 922 513
Q3 ECQ 938 21
Q4 ECQ 1458 1
Q5 ECP 2009 1
Q6 ECQ 4752 561
Q7 CRQ 6077 3
Q8 CRP 8450 2466
Q9 CRQ 14673 15
Q10 CRP 440554 60627
21
5
“ - 5 cpp N 05 »
T B B R — 077
. 3 P oo
E Ecq = 1
o 100 200 300) s00 600 700 a0o0 00 1000 o 2000 4000 6000 8000 10000
o Cost After Indexing @ Original Cost B Cost After Indexing ™ Original Cost

o 100000

200000 300000 400000 S00000

 Cost After Indexing ® Original Cost

Figure - 6 : Comparative of Original Cost and Cost After Indexing

IV. CONCLUSION

ETL process is a vital component of Data Warehouse responsible for
its successful implementation. Extraction process extracts data from
various operational source systems having large amount of data by
executing several complex queries which need to completed in a
specified time window. Database tuning and query tuning plays a
major role in performance tuning, apart from adding new hardware.
Results of proposed algorithm of recommending creation of indexes
to tune performance queries are encouraging, which reduces cost of
execution significantly and thus reducing execution time. Future
work in this direction is planned to develop an automated tool to
recommend set of indexes for ETL process tuning by including
required details in the design of metadata repository as a part of total
data warehouse architecture.

V. REFERENCES

[1] AlkisSimitsis, PanosVassiliadis, TimosSellis, Optimizing ETL
Processes in Data Warehouses, In Proc. ICDE, pages 564-575, 2005.

[2] E. Malinowski, E. Zima’nyi, Hierarchies in a multidimensional model:
From conceptual modeling to logical representation, Data & Knowledge
Engineering, 2005 Elsevier

Josep Aguilar-Saborit, Victor Munte’s-Mulero, Calisto ZuzarteJosep-L.
Larriba-Pey, Star join revisited: Performance internals for cluster
architectures, Data & Knowledge Engineering, 2007 Elsevier

(3]

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

[4] Michel Schneider, Integrated vision of federated data warehouses, Data
Integration and the Semantic Web, 2006

[5] Songting Chen, Cheetah: A High Performance, Custom Data Warehouse

on Top of MapReduce, 36th International Conference on Very Large

Data Bases, September 13-17, 2010, Singapore.

Umeshwar Dayal, Malu Castellanos, Alkis Simitsis, Kevin Wilkinson,

Data Integration Flows for Business Intelligence, EDBT, 2009

XuanThi Dung *WennyRahayu ¢ David Taniar, A high performance

integrated web data warehousing, Cluster Computing, 2007 - Springer

Benoit Dageville, Dinesh Das, Karl Dias, Khaled Yagoub, Mohamed

Zait, Mohamed Ziauddin, Automatic SQL Tuning in Oralce 10g,

VLDB Conference, Canada 2004

[91 M. GOLFARELLI, S. RIZZI, E. SALTARELLI, Index selection
techniques in data warehouse systems, In Proc. DMDW, 2002

[10] Kurt Stockinger, Kesheng Wu, Bitmap Indices for Data Warehouses, In
Data Warehouses and OLAP. 2007. IRM Press. London

[11] Stéphane Azefack, Kamel Aouiche, Jérome Darmont, Dynamic index
selection in data warehouses, In 4th International Conference on
Innovations in Information Technology, 2007, Dubai

[12] Adela Bara, lon Lungu, Manole Velicanu, Vlad Diaconita, Iuliana
Botha, IMPROVING QUERY PERFORMANCE IN VIRTUAL DATA
WAREHOUSES, WSEAS TRANSACTIONS on INFORMATION
SCIENCE & APPLICATIONS, 2008

[13] Kai-Uwe Sattler, Eike Schallehn, Ingolf Geist, Autonomous Query-
driven Index Tuning, in International Database Engineering &
Applications Symposium, Portugal, 2004

(6]
(7]
(8]

333

