Synthesis, Characterization and Antimicrobial Activity of Sulphur doped ZnO Nanoparticles

A. E. Athare

Department of Chemistry, New Arts, Commerce and Science College, Ahmednagar, Maharashtra, India

ABSTRACT

Sulfur-doped Zinc Oxide (ZnO) nanowires were successfully synthesized by CO-precipitation method. The structure morphology chemical composition and antibacterial activity as synthesized S-doped ZnO nanostructures were investigated. X-ray diffraction and the selected area electron diffraction results reveal that the synthesized products are single-phase with hexagonal wurtzite structure with a highly preferential orientation in the (101) direction. EDS shows that the above route produced highly pure S-doped ZnO nanostructures. The optical band gaps of various ZnO powders were calculated from UV-Visible diffuse reflectance Spectroscopic studies. The FTIR spectrum shows that S-doping had an obvious effect on the stretching and bending frequency.

Keywords: Nanoparticles, XRD, SEM, Antibacterial activity.

I. INTRODUCTION

Zinc oxide (ZnO) is a wide band gap (3.37 ev), II-VI semiconductor of great interest for optoelectronic applications. [1-3]. It’s advantages over other wide band gap materials include eco-friendliness, resistance to oxidation, low cost, and a large excitation binding energy [60mev] (4).

In ZnO has well-documented emission bands of varying strengths the band edge ultraviolet (UV) emission and a broad defect mediated green emission [1-3]. Variously shaped ZnO nanoparticles are routinely synthesized and their electrical and optical properties have been exploited for many exciting applications including nanolasers, phosphors, light emitting diodes, biosensors, solar cell, and electrical generators [1, 5-09].

Mg and transition metals in ZnO has been carried out in order to obtain novel properties and broadens possible applications [11-14]. However, little attention has been paid to S doping in ZnO because of the difference between the low stability of sulfur and the high growth temperature of ZnO. Sulfur has a much smaller electro negativity (2.58) than that of oxygen (3.44) and the atom radius of Sulfur (1.09 Å) is much larger than that of oxygen (0.65 Å). The difference between S &O makes it possible to obtain some novel properties of ZnO via S doping. Yoo et al. have reported that the band gap of ZnO could be tuned via S dopant [15]. Impurities are also expected to increase the electrical conductivity of ZnO by supplying excess carriers [16].

ZnO nanostructures offer new and enhanced properties that differ from the bulk powder due to their high surface to volume ratio [1, 13]. The synthesis of hexagonal shaped ZnO nanostructures by surface doping hexagonal ZnO nanowires with thiourea (NH₂CSNH₂) in a low temperature solution based process. Scanning electron microscopy (SEM) reveals that the cross sectional shape of the nanostructure strongly depends on sulfur doping levels. Energy dispersive X-ray spectroscopy (EDX)
confirms that the synthesis process yields pure ZnO nanoparticles. UV-Visible absorption spectroscopy is a band gap semiconductor with an energy gap. The antibacterial activity of ZnO nanoparticles is systematically tested against gram positive and bacteria and gram negative bacteria by using agar well method. FTIR shows ZnO doped sulphur stretching and binding frequency.

II. METHODS AND MATERIAL

Zinc Sulphate [Zn(SO₄).7H2O], Thiourea (NH₂CSNH₂) and poly ethylene glycol (PEG-500) were used in the experiment. The ammonia (NH₃) as a precipitating agent and deionised water is used for the preparation of solutions. The Zn(SO₄).7H₂O, Thiourea (NH₂CSNH₂) and polyethylene glycol (PEG-500) are mixed together and grinding using an agate mortar. Then this mixture was dissolved in 300 ml deionised water. The solution was dispersed in ultrasonic bath and to this solution excess of ammonia was added to get precipitate. Then the solution was refluxed for 4 to 5 hours and white precipitate was isolated by filtration, washed with deionised water and ethanol. Then dried in a vacuum oven at 60 °c for 24 hours to obtain powder form. Finally Sulphur doped ZnO nanoparticles were obtained after annealing of the precursor in air at 500°C for two hours respectively.

III. RESULTS AND DISCUSSION

The prepared samples were characterized by various sophisticated Techniques. The X-ray analysis (XRD) of samples is obtained using Philips X-ray diffractometer with diffraction angle 2θ in between 20 to 80° using Cu-Kα radiation of wavelength 1.5405 Å. Surface morphology and elemental analysis of the samples were carried out using scanning electron microscopy with electron dispersion spectroscopy (SEM-EDS) characterization conducted using a JEOL-JED 2300 (LA) instrument. The FT-IR study was done in the range of 4000-500 cm⁻¹ by JASCO-FTIR/4100spectrometer with anhydrous KBr as standard reference. The light absorption by sample was carried out by using Varian Carry 5000 (UV-VIS-DRS) spectroscopy in the range 800-300 nm.

Figure 1 Shows that the S-doped ZnO nanoparticles are XRD peaks significantly broader as compared to bulk samples [17]. Briefly, a peak in the diffracted intensities has been shows formation of nanoparticles in the crystal [18].

XRD pattern of the sample has prominent peaks at two theta values of 31.73°, 34.37°, 36.21°, 47.470, 56.55°, 62.77°, corresponding to (100), (002), (101), (102), (110), (103). The lattice constants of our sample are found to be a = b = 3.242 Å and c = 5.176Å in good agreement with the values of hexagonal ZnO. The (hkl) values are also in good agreement with the standard card of ZnO powder [19].

The particle size was calculated by Debye-Scherer’s equation using most intense peak (101)

\[D = \frac{k \lambda}{\beta \cos \Theta} \]

Where D is the crystallite size, K is a constant (shape factor about 0.9) λ is the x-ray wavelength (1.5405 nm), β is the full width at half maximum (FWHM) of the diffraction line and Θ is the diffraction angle. Average particle size was found to be 09.11 nm.

![Figure 1. XRD Pattern of S-doped ZnO calcined at 500°C.](image-url)
FT-IR spectra of S-doped ZnO samples in the range of 4000 to 500 cm\(^{-1}\). Fig.(2) shows that the spectra shows a broad absorption peak around 3311 cm\(^{-1}\) and a sharp peak around 1600 cm\(^{-1}\), which represents the surface adsorbed water and hydroxyl groups. In addition, a weak absorption peak around 3693 cm\(^{-1}\) was observed, may be due to the tetrahedral coordinated vacancies (Zn\(^{2+}\)--OH), a broad peak around 630 cm\(^{-1}\) was also observed, may be due to the Zn–O stretching and Zn–O–S bending, characteristic of the anabas structure of S-doped ZnO. No absorption peaks corresponding to samarium were observed, results are in good agreement with XRD.

The SEM image of ZnO nanoparticle is shown in figure 3 a high degree of agglomeration is clearly visible in agreement with previous studies [20]. The observation of some larger nanoparticles in SEM image is attributed to agglomeration [21]. In EDX spectrum of ZnO nanoparticles, a sample is shown in fig (3). The names and percentages of the elements further ZnO sample are shown in the labelling clearly, Zn and O are the main constituents of the sample [22] and no trace of impurities could be found within the detection limit of EDX.

The band gap energies (E\(_{bg}\)) of the S-doped ZnO nanoparticles were probed by UV-Visible diffusion reflectance spectroscopy (UV- DRS). It determines band gap of the prepared materials. Figure 4 shows that The diffusion reflectance spectra were recorded and cut off wave length at which absorption sharp edge rises were determined by drawing a tangent on this curves (402.7). The band gap energies were calculated by using cut off wavelength is represented in the following table. The band gap energy is calculated by using the hollowing equation E\(_{bg}\) = 1.240/\(\lambda\). Where \(\lambda\) is the wavelength in nanometer and E\(_{bg}\) is the band gap energy of synthesized nanomaterial was found to be 3.07 ev.
The antimicrobial test of ZnO nanoparticles was taken against various micro-organisms such as S. aureus, B. cereus, E. coli, P. aeruginosa. Antimicrobial activity was determined by Agar Cup Diffusion Method. The S-doped ZnO nanoparticles were dissolved in DMSO i.e. di-methyl sulfoxide and ultrasonicate.

Sulfur doped ZnO nanoparticles were prepared by a simple, fast and low cost co-precipitation method. The synthesis of Sulphur doped ZnO nanostructures (spherical morphology) EDX shows the elemental composition of synthesized nanoparticles. Synthesized nanoparticles show 3.07 ev band gap energy which slightly lower than commercial ZnO doped sulfur (3.17 ev). The absorption spectra due to Zn-O stretching were observed at 3394 cm$^{-1}$, 1632 cm$^{-1}$, 1334 cm$^{-1}$, the synthesized nanoparticles shows excellent biological activity for P. aeruginosa.

V. REFERENCES

