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ABSTRACT 
 

Constraints imposed by power consumption and the related costs are one of the key roadblocks to the 

design and development of next generation exascale systems. To mitigate these issues, strategies that 

reduce the power consumption of the processor are the need of the hour. Techniques such as Dynamic 

Voltage and Frequency Scaling (DVFS) exist which reduce the power consumption of a processor at 

runtime but they should be used in such a manner so that their overhead does not hamper application 

performance. In this paper, we propose an energy saving strategy which operates on timeslice basis to 

apply DVFS under a user defined performance constraint. Results show energy savings up to 7% when 

NAS benchmarks are tested on a laptop platform 
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I. INTRODUCTION 

 

The ever increasing costs and constraints on power 

consumption are limiting the leap to the next 

generation exascale systems [34] as the power limit 

determined for these systems as per DoE guidelines is 

20 MW. Therefore, there is an urgent need to limit 

the power consumption of modern computing 

systems to mitigate these issues. 

 

To minimize the impact of the increasing power 

consumption on the computing performance, novel 

schemes/strategies need to be devised to reduce the 

power consumption of components within a 

computing system mainly processors without 

decreasing their performance by much. This means 

that a performance loss which can be tolerated for 

application execution can be pre-decided and then 

performance of the processor can be adjusted so to 

minimize power consumption. The current 

generation of Intel processors provides various P-

states for dynamic voltage and frequency scaling 

(DVFS) [35][36] and T-states for introducing 

processor idle cycles (Throttling). For example, the 

Intel Haswell" micro-architecture provides fifteen P-

states while the DRAM provides four frequencies. 

The delay of switching from  

 

one state to another depends on the relative ordering 

of the current and target states, as discussed, e.g., in 

[42]. The user may write a specific value to model-

specific registers (MSRs) to change the P- or T-states 

of the processor. Intel micro-architecture starting 

from Sandy Bridge onwards estimates power and 

energy consumption of the CPU and memory 

through the built-in MSRs. 

 

This paper proposes a power saving strategy which 

operates in a fixed timeslice fashion to reduce the 

energy footprint in modern processors during parallel 

application execution. The strategy makes use of 

DVFS in each timeslice to reduce processor 

frequency based on the performance constraint and 

workload. Results depict that up to 7% of energy can 

be saved.  

 

 The rest of the paper is organized as follows. Section 

2 provides the background DVFS in Intel processors. 
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Section 3 discusses the performance model that we 

use for the strategy. Section 4 provides the proposed 

energy saving strategy. Section 5 discusses the 

related works whereas Section 6 concludes the 

paper. 

 

II. Dynamic Voltage and Frequency Scaling 

 

There are mainly two sources of power dissipation in 

digital CMOS circuits which are namely: Static 

Power [26] and Dynamic Power. Static Power is the 

power consumption which is consumed by a digital 

circuit when it is not in operation and it is mainly 

caused by leakage currents within the circuit. The 

other type of power consumption known as dynamic 

power consumption is mainly caused by the 

switching activity in the circuit when it is in 

operations. It is mainly dependent upon the operating 

frequency and voltage of the processor.  

 

The dynamic voltage and frequency scaling (DVFS) 

mechanism reduces the operating frequency and 

voltage of the processor on-the-fly during application 

execution, thereby reducing the dynamic power 

consumption. DVFS is applied by writing a specific 

value to the IA32_PERF _CTL [1][2] model specific 

register (MSR) in Intel processors and it is an 

architectural register which means it is present in 

different generations of Intel processors with the 

same address. 

 

III. Applying DVFS 

 

The execution time ((tf)) of an application at a 

processor frequency f can be divided into two non-

overlapping portions: On-chip time (ton) and off-chip 

time (toff) [41]. 

(tf)=(ton)( fmax)/f+ (toff)  …(1) 

Where fmax is the maximum available processor 

frequency. The on-chip time scales linearly with the 

processor frequency accordingly whereas the off-chip 

time is not affected by the processor frequency. 

This is due to the fact that off-chip time is 

predominantly memory accesses which runs in the 

order of many microseconds during which, the 

processor is simply waiting for the data and not doing 

much useful work. Therefore, this stall time can be 

exploited by simply reducing the processor frequency 

so that the power consumption of the processor can 

be reduced. This idea forms the basis of this work.  

Basically, by monitoring the memory intensity, more 

specifically the memory accesses per instruction, we 

can assess the performance loss that would be caused 

on the application of DVFS on application 

performance. Therefore, if appropriate frequencies 

are chosen through DVFS, the performance loss can 

be minimized and substantial energy savings can be 

achieved. In the next section, we provide the details 

for the runtime strategy. 

 

IV. Energy Saving Runtime Strategy 

 

MAPI Range Chosen Frequency 

0-0.004 <= 2.4. GHz 

>0.004-0.01 <= 2.2 GHz 

>0.01-0.04<= 1.6 GHz 

>0.04 1.2 GHz 

 

Table I: MAPI ranges and the respective processor 

frequencies selected for the strategy. 

 

For the strategy, we operate it on a timeslice basis 

such that a frequency is selected for the next 

timeslice in the previous timeslice based on the 

memory access per-instruction metric (MAPI) which 

is measured through the Intel processor performance 

counters.  

 

Table I shows the range of MAPI values for a 

timeslice and the appropriate value of frequency that 

will be selected in case the actual MAPI value falls in 

that range. These values were obtained through 

extensive profiling on our hardware platform on 

which we executed several single and multi-threaded 

applications to notice the change in performance 

with varying processor frequencies. The performance 

degradation was noted down with the corresponding 

frequency and the MAPI value. A pattern was 
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noticed for the range of MAPI values such that when 

the actual MAPI value was in that range, the 

performance loss for a particular frequency peaked at 

a particular value. This methodology was used to 

choose suitable frequencies for MAPI ranges as 

shown in Table I. 

 

So, the strategy works as follows. The application can 

be divided into equally sized “k” timeslices. At the 

end of each timeslice, we measure the MAPI during 

that timeslice using the performance counters and 

record them in a register. To predict the MAPI for 

the next timeslice, we make use of a history-based 

predictor which averages “n” previous values of 

MAPI to predict its next value. 

This predicted value is used in Table I to set the 

frequency accordingly for the next timeslice. In this 

manner, the strategy runs for the “k” timeslices, 

setting the frequency for each timeslice and reducing 

power and energy consumption. The algorithm I 

provides underlying pseudocode algorithm for the 

runtime energy-saving strategy. 

Algorithm I 

Parameters: 

R => MAPI Register. 

Mavg => Average value of MAPI for past “x” 

timeslices. 

1. Initialize MAPI Register R. 

2. After “x” timeslices have passed, calculate 

Mavg. 

3. Based on Table I, select the appropriate 

frequency based on the value of Mavg. 

4. Go to Step 2 till “k” timeslices are finished. 

 

V. Experimental Results 

 

We conducted experiments on a Desktop platform 

with Intel Core 2 Quad 6600, quad-core processor 

which has processor frequency ranging from 2.4-1.2 

GHz. NAS NPB parallel benchmarks [4] were used 

for evaluation of the strategy. The power and energy 

consumption of the platform were measured by using 

the P3 4400 Kill-a-watt power meter and “userspace” 

governor was used throughout the experiments so 

that frequency decided by the userspace could be 

used.  

Table 1: NAS NPB Benchmark Information 

 

CG (Conjugate 

Gradient) 

Estimates the 

smallest eigenvalue of a 

large sparse symmetric positive-

definite matrix using 

the inverse iteration with 

the conjugate gradient 

method as a subroutine for 

solving systems of linear 

equations. 

FT (Fast Fourier 

Transform) 

Solves a three-dimensional 

partial differential equation. 

MG (Multigrid) Approximates the solution to 

three dimensional discrete 

poisson equation using the 

multigrid method. 

SP (Scalar 

Pentadiagonal) 

Solves a nonlinear system of 

partial differential equations. 

 

Figure 1. Performance Loss and Energy Savings for 

NAS NPB Benchmarks. 

 

Four NAS NPB benchmarks namely CG, FT, MG and 

SP were chosen for the evaluation of the strategy 

which are explained in Table 1. 

Figure 1 shows the resultant performance loss and 

energy savings for the four chosen NAS NPB 
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benchmarks. It can be observed from Figure 1 that 

for all the four benchmarks, the energy saving 

strategy does not result in a performance loss greater 

than 3%. Also, the average performance loss across 

the four benchmarks was determined to be ~2.4%. 

In terms of energy savings, the largest amount of 

energy savings were obtained for the CG benchmark. 

This is due to the fact that CG benchmark was 

determined to be the most memory intensive out of 

the bunch with the MAPI figure staying above the 

0.01 value. Therefore, it executes at frequencies of 2.2 

and 1.6 GHz for different intervals. The other three 

benchmarks were not as memory intensive as CG, 

and depicted variable MAPI behavior through 

different timeslices, therefore, relatively lesser energy 

savings were obtained for them. Overall, the average 

energy savings for the four NAS benchmarks were 

~5%. 

 

VI.  Related Work 

 

There are different strategies for reducing energy 

consumption in modern computing systems through 

DVFS. The first uses a fixed size timeslice based 

profiling methods with workload classification 

through performance counters [8], [10], [11], [14], 

[17], [19], 

[23],[24],[25],[30],[33],[37],[38],[39],[40],[41]. The 

other type identify communication phases which 

could be present in message passing etc. based 

communication intervals, to apply frequency scaling 

[7], [13], [15], [18], [20], [22], [25], [26], 

[27],[28],[29],[31],[32],[33]. While DVFS has been 

quite widely used to reduce the power consumption, 

it doesn’t exactly provide the information regarding 

the instantaneous power consumption of the 

processor. Therefore, power limiting comes into 

picture so that power consumption of the processor 

can be directly controlled. Intel Running Average 

Power Limit (RAPL) [6] provides power clamping 

and energy metering capabilities starting from Intel 

SandyBridge processor generation. Runtime system 

“conductor” does power budgeting based on 

available power to different compute nodes and the 

communication slack available. Power limiting 

research focusing on capabilities of processor and 

DRAM along with a profiling based power 

budgeting strategy was proposed in [44]. Authors in 

[45] study and propose predictive models which 

facilitate forecasting values of performance 

parameters and the appropriate power limits for 

different components within a compute node to 

maximize performance. 

 

VII. Conclusions 

 

The desire for achieving exascale performance has 

pushed the modern computing systems to operate at 

their maximum operating frequency and bandwidths. 

Consequently, the energy consumption and failure 

rates are also reaching prohibitive levels for these 

computing systems. To mitigate this issue, an energy 

saving strategy is proposed in this work which makes 

use of the DVFS capability present in the Intel 

processors to reduce the processor power and energy 

consumption. The strategy makes use of offline 

profiling to determine the frequency levels for 

different memory intensities and uses this 

information to scale the frequency for applications 

accordingly.  Results on an Intel quad-core machine 

with four chosen NAS NPB benchmarks depict that 

energy savings of up to 7% can be achieved by using 

our strategy. Future work will explore a runtime 

performance model which would disable use of 

offline profiling and would enable the use to 

determine the frequency levels for an application at 

runtime. 
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