Robust Estimator Based \bar{X} Control Chart for Specified Capability Index C_{pk}

J. Livingston Thiraviya Kumar1, S. Devaraj Arumainayagam2

1Department of Economics and Statistics, Government of TamilNadu, India.
2Department of Statistics, Govt. Arts College, Coimbatore, Tamil Nadu, India

ABSTRACT

Statistical process Control is a tool used to improve the quality of a product by achieving process capability. Control Charts are used to confirm whether the process is statistically control. In general, process performance is measured through the four basic process capability indices C_p, C_{pk}, C_{pm} and C_{pmk}. To calculate the basic capability indices, it is assumed that the quality characteristics follow normal distribution. In practice most of the key quality characteristics fails normality. MAD based capability index is an alternative for heavily skewed data. In this paper, a robust \bar{X} chart for a specified capability index is proposed. The proposed control chart and basic Shewhart control chart are compared using a simulated process data from normal distribution.

Keywords: Capability indices, Median Absolute Deviation, Control chart, Normal Distribution.

I. INTRODUCTION

W. A. Shewhart initialized the concept of statistical process control. The variations in the process are due to chance cause and assignable cause. The variation due to chance cause is termed as allowable variation. Assignable causes arise due to non-random causes and are rectifiable. Control charts are used to assess the presence of assignable causes. A typical control chart consists of a central line (CL), Upper control limit (UCL), Lower control limit (LCL). The \bar{X} and R control charts are widely used to monitor the mean and variability of a process. A process that is operating with only chance causes is said to be in statistical control and the presence of assignable causes is said to be out of control. Control chart is an on-line process monitoring technique widely used to detect the occurrence of assignable causes. Mean and variability are the two vital characteristics used to understand the process. The process mean is controlled using \bar{X} chart. In this study \bar{X} chart is considered. The control limits for Shewhart variable control charts are given by,

$$Upper \ Control \ Limit = \bar{X} + A_2 \bar{R}$$

(1)

$$Central \ Line = \bar{X}$$

(2)

$$Lower \ Control \ Limit = \bar{X} - A_2 \bar{R}$$

(3)

The estimator of σ is given by

$$\hat{\sigma} = \frac{\bar{R}}{d_2}$$

(4)

Janacek et. al [4], proposed a modified control chart based on median to overcome the non-normality problems. Chen et. al [2] constructed the control chart of unilateral specification index C_{pl} and C_{pu} to monitor the stability of process and process capability. Subramaniet. al [10] proposed \bar{X} and R control chart...
based on process capability indices \(C_p \) and \(C_{pk} \). Liaquat Ahmad et al. [6] proposed a \(\bar{X} \) control chart based on process capability index \((C_p) \) using repetitive sampling and the performance of the proposed chart was evaluated by ARLs and the performance is efficient for the quick detection of false alarms. Moustafa [8] proposed a univariate robust control chart for location by modifying the control limits using robust estimators. The modified control limits are:

\[
\begin{align*}
UCL &= \bar{M} + R_1MAD \\
CL &= \bar{M} \\
LCL &= \bar{M} - R_1MAD
\end{align*}
\]

where

\[
R_1 = \frac{3.759b_n}{\sqrt{n}}
\]

II. Basic Process Capability Indices

The four basic process capability indices \(C_p \), \(C_{pk} \), \(C_{pm} \) and \(C_{pmk} \) are used for measuring the capability of a process. The index \(C_p \) only measures the variability of the process. \(C_{pk} \) consider the location of mean. According to Taguchi [12] there is a loss to society associated with missing the target and developed the concept of the quadratic loss function. Thus Chan et al. [1] introduced Taguchi capability index \(C_{pm} \). Pearn et al. [8] proposed the capability index \(C_{pmk} \).

The capability index \(C_p \) measures the variability alone, where

\[
C_p = \frac{USL - LSL}{6\sigma}
\]

Kane [13] discussed the index \(C_{pk} \), which attempts to measure the variability and shift in process mean simultaneously and it is defined as

\[
C_{pk} = \min \left\{ \frac{USL - M}{3\sigma}, \frac{M - LSL}{3\sigma} \right\}
\]

Chan et al. [1] introduced so called Taguchi capability index \(C_{pm} \) considering specification range, process variation and variation of mean from the target, given by

\[
C_{pm} = \frac{USL - LSL}{6\sqrt{\sigma^2 + (\mu - T)^2}}
\]

Pear et al. [8] proposed the index \(C_{pmk} \) by modifying the numerator and denominator of the index \(C_{pm} \) as

\[
C_{pmk} = \frac{\min(USL - \mu, \mu - LSL)}{3\sqrt{\sigma^2 + (\mu - T)^2}}
\]

When the data are non-normal or are skewed, the Median Absolute Deviation (MAD) is a robust estimator of variability. Kayode S. Adekeye [5] modified the four basic process capability indices using median absolute deviation and is defined as

\[
C_p = \frac{USL - LSL}{6(b_nMAD)}
\]

\[
C_{pk} = \frac{(USL - LSL) - |M - m|}{6(b_nMAD)}
\]

\[
C_{pm} = \frac{USL - LSL}{6\sqrt{(b_nMAD)^2 + (M - T)^2}}
\]

\[
C_{pmk} = \frac{(USL - LSL) - |M - m|}{6\sqrt{(b_nMAD)^2 + (M - T)^2}}
\]

Subramaniet al. [10] proposed \(\bar{X} \) and \(R \) chart based on the process capability indices \(C_p \) and \(C_{pk} \) and presented the control chart constants \(D^*, D_3^*, D_4^*, A_2^* \) for the sample size \(n \) (2 ≤ \(n \) ≤ 25). In this paper, a robust estimator based \(\bar{X} \) control chart for specified capability index is proposed and the quality control constant \(R_2 \) is tabulated.

III. A Robust Estimator Based \(\bar{X} \) Control Chart for Specified Capability Index \(C_{pk} \)

i) \(C_{pk} \) Based Robust Control Chart

The proposed control chart can be used to calculate the control limits for any specified values of the capability index \(C_{pk} \). \(MAD \) is obtained by simplifying (13), thus

\[
MAD = \frac{(USL - LSL) - |M - m|}{6b_nC_{pk}}
\]
\[UCL = \bar{MD} + \left(\frac{3 \cdot 1.253 \cdot b_n \cdot \left(\frac{(USL - LSL) - (M - m)}{6b_nC_{pk}} \right)}{\sqrt{n}} \right) \]

\[UCL = \bar{MD} + \left(\frac{0.6265}{\sqrt{n}} \right) \left(\frac{(USL - LSL) - (M - m)}{C_{pk}} \right) \]

**Capability index - Cpk based Control Limits for Robust \(\bar{X} \) - Chart:

\[LCL = \bar{MD} - (R_2) \left(\frac{(USL - LSL) - (M - m)}{C_{pk}} \right) \] \hspace{1cm} (20)

\[CL = \bar{MD} \] \hspace{1cm} (21)

\[UCL = \bar{MD} + (R_2) \left(\frac{(USL - LSL) - (M - m)}{C_{pk}} \right) \] \hspace{1cm} (22)

where

\[R_2 = \frac{0.6265}{\sqrt{n}} \]

Table 1 represents the quality control constant \(R_2 \) for the proposed control charts.

<table>
<thead>
<tr>
<th>(n)</th>
<th>(R_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.44300</td>
</tr>
<tr>
<td>3</td>
<td>0.36117</td>
</tr>
<tr>
<td>4</td>
<td>0.31325</td>
</tr>
<tr>
<td>5</td>
<td>0.28018</td>
</tr>
<tr>
<td>6</td>
<td>0.25577</td>
</tr>
<tr>
<td>7</td>
<td>0.23679</td>
</tr>
<tr>
<td>8</td>
<td>0.22150</td>
</tr>
<tr>
<td>9</td>
<td>0.20883</td>
</tr>
<tr>
<td>10</td>
<td>0.19812</td>
</tr>
<tr>
<td>11</td>
<td>0.18890</td>
</tr>
<tr>
<td>12</td>
<td>0.18085</td>
</tr>
<tr>
<td>13</td>
<td>0.17376</td>
</tr>
<tr>
<td>14</td>
<td>0.16744</td>
</tr>
<tr>
<td>15</td>
<td>0.16176</td>
</tr>
<tr>
<td>16</td>
<td>0.15663</td>
</tr>
<tr>
<td>17</td>
<td>0.15195</td>
</tr>
<tr>
<td>18</td>
<td>0.14767</td>
</tr>
<tr>
<td>19</td>
<td>0.14373</td>
</tr>
<tr>
<td>20</td>
<td>0.14009</td>
</tr>
<tr>
<td>21</td>
<td>0.13671</td>
</tr>
<tr>
<td>22</td>
<td>0.13357</td>
</tr>
</tbody>
</table>

IV. Simulation Study

The proposed control charts are tested with a simulated normally distributed data with mean \(\mu = 20 \) and standard deviation \(\sigma = 1 \). The following parameters, \(USL = 22 \), \(LSL = 18 \) and \(T = 20 \) are considered for comparing Shewhart control chart and the proposed capability index based control chart.

\(\bar{X} = 20.014 \); \(\bar{R} = 2.330 \); \(C_p = 0.67 \), \(C_{pk} = 0.66 \) and \(C_{pm} = 0.69 \).

Figure 1. Shewhart \(\bar{X} \), R Control Chart and the Capability Indices

The statistical software MINITAB 16 is used to calculate various capability indices. Figure 1 represents the Shewhart \(\bar{X} \), R control chart and the various capability indices. Since all the points in the control charts are within the control limits it is inferred that the process is statistically control. But from the capability analysis of the sample of size 25 with subgroup size 5, since all the capability values are less than 1, we conclude that the process is not capable to meet the specification.

Table 2 represents the control limits of \(\bar{X} \) chart for the specified value (1.33) of the four basic capability indices.
Capability Index based Robust Control chart

<table>
<thead>
<tr>
<th>Cpk = 1.33</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCL</td>
</tr>
<tr>
<td>20.552</td>
</tr>
<tr>
<td>71</td>
</tr>
</tbody>
</table>

Figure 2. Cpk = 1.33 based \bar{X} chart

Figure 3. Cpk = 1.5 based \bar{X} chart

Figure 4. Cpk = 2 based \bar{X} chart

Fig 1, 2, 3, 4 and 5 represents the \bar{X} control chart based on Cpk for the specified capability index value 1.33, 1.5 and 2. In all the cases, it can be inferred that the process is statistically control to meet the specification since the process capability index values of the data considered are very closer to each other.

Table 4 Width of the Control limits

<table>
<thead>
<tr>
<th>Capability Value</th>
<th>Shewhart</th>
<th>Cpk</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.33</td>
<td>2.688</td>
<td>1.672656</td>
</tr>
<tr>
<td>1.5</td>
<td>2.688</td>
<td>1.483088</td>
</tr>
<tr>
<td>2</td>
<td>2.688</td>
<td>1.112316</td>
</tr>
</tbody>
</table>
Figure 5. Comparison of Region between UCL and LCL for Shewhart Control Chart and capability index based \bar{X} control chart

Table 3 and Table 4 provides the width between UCL and LCL of R chart and \bar{X} chart respectively. From both the tables it is clear that the region between UCL and LCL of R chart and \bar{X} chart reduces when the capability value increases and also when the capability index is changed.

<table>
<thead>
<tr>
<th>Capability Value</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.33</td>
<td>0.622268</td>
</tr>
<tr>
<td>1.5</td>
<td>0.551744</td>
</tr>
<tr>
<td>2</td>
<td>0.413808</td>
</tr>
</tbody>
</table>

Equation (20) is used to calculate the ratio between the width of Shewhart control limits and Capability index based control limits for R chart and \bar{X} chart and presented in Table 5 and Table 6 respectively. If the widths are equal, the ratio will be equal to 1. But from the tables it is clear that the region between UCL and LCL of R chart and \bar{X} chart reduces when the capability value increases and also when the capability index is changed.

V. Conclusion

Control charts are used to check whether the process is statistically control. When the process is statistically control, Capability indices are used to measure whether the process is capable to meet the customer specifications.

A unified approach to capability index based variable control chart is proposed which extends the variable control chart with specified capability index. A simulated data that follows normal distribution have been used to construct the Shewhart control chart and the proposed capability index based control chart. It is clear from the result that the width of the control limits is reduced for the proposed control charts as compared with Shewhart control chart. The ratio is also calculated for Shewhart control limits and the proposed various capability index based control limits for three specified values 1, 1.33 and 2. Since the ratio is less than 1, it is clear that the control limit width of the proposed chart is less than the Shewhart control limit width. The proposed control chart can be extended other capability indices.

VI. REFERENCES

using repetitive sampling. Transactions of the Institute of Measurements and Control, 0(0) 1-8.

