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ABSTRACT 

 

Understanding relay nodes and their modes of action is a fundamental challenge in systems medicine. Key to 

addressing this challenge is the elucidation of nodes targets, an important step in the search for new relay nodes 

or novel targets for existing relay nodes. Incorporating multiple biological information sources is of essence for 

improving the accuracy of nodes target prediction. In this article, we introduce a novel framework-Similarity-

based Inference of nodes-TARgets (SITAR) -for incorporating multiple nodes-nodes and gene-gene similarity 

measures for nodes target prediction. The framework consists of a new scoring scheme for nodes-gene 

associations based on a given pair of nodes-nodes and gene-gene similarity measures, combined with a logistic 

regression component that integrates the scores of multiple measures to yield the final association score. We 

apply our framework to predict targets for hundreds of relay nodes using both commonly used and novel 

nodes-nodes and gene-gene similarity measures and compare our results to existing state of the art methods, 

markedly outperforming them. 
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I. INTRODUCTION 

 

Deciphering nodes targets is a primary task in the 

development of new relay nodes, in finding new ways 

to utilize existing relay nodes, and in pinpointing 

their side effects. Experimental identification of 

nodes-target associations remains a laborious and 

costly task (Haggarty et al., 2003), calling for faster 

computational prediction methods. Such methods can 

be used to augment the limited available information 

on nodes targets, which is in sharp contrast to the vast 

number of compounds existing in chemical databases. 

Early attempts in computational prediction included 

docking simulations (Cheng et al., 2007) and text 

mining (Zhu et al., 2005). The former, however, can 

be applied only to targets with known three 

dimensional (3D) structure. The latter searches for co-

occurrences of relay nodes and genes in texts, and is 

limited to current knowledge and prone to detection 

problems due to multiple gene and compound names. 

Additional attempts were based on reverse 

engineering of gene regulatory networks, inferring 

possible targets from cellular responses to 

administered relay nodes (di Bernardo et al., 2005; 

Gardner et al., 2003; Mani et al., 2008). These 

methods suffer from the complex and noisy nature of 

molecular networks. Recently, several algorithms 

have been proposed to predict nodes-target 

associations by combining nodes-nodes and gene-

gene similarity measures (Bleakley and Yamanishi, 

2009; Campillos et al., 2008; Keiser et al., 2009; 

Yamanishi et al., 2008). The key assumption 
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underlying these algorithms is that similar relay 

nodes tend to share similar targets (Mitchell, 2001). 

This has been observed with respect to chemical 

similarity (Martin et al., 2002; Schuffenhauer et al., 

2003), side effect similarity (Campillos et al., 2008), 

and more. Several authors had previously predicted 

nodes-target interactions by combining chemical 

nodes-nodes similarity and sequence-based gene-gene 

similarity (Bleakley and Yamanishi, 2009; Yamanishi 

et al., 2008). Keiser et al. (2009) compared the 

chemical structure of relay nodes to a compendium of 

ligands, known to modulate the function of protein 

receptors, providing indirect connections between 

relay nodes and targets via these ligands. Several 

approaches, concentrating mainly on indirect nodes-

gene associations, employed additional similarity 

measures to gain insights on relay nodes. Specifically, 

protein-protein interaction (PPI) network similarity 

was used in Hansen et al. (2009) to predict nodes-

gene genetic interactions (termed ‘‘pharmacogenes’’), 

and gene expression data was combined with nodes-

response data in Kutalik et al. (2008) to infer co-

modules of genes and relay nodes. Last, a recent 

approach used information on compound induced 

fitness defects of yeast deletion strains to predict 

nodes-targets in S.cerevisiae (Hillenmeyer et al., 

2010). To overcome these limitations, we have 

designed a new prediction scheme-Similarity-based 

Inference of nodes-TARgets (SITAR)-that integrates 

multiple measures to facilitate the prediction task. 

Our contribution is twofold: (i) We introduce novel 

nodes-nodes similarity measures and combine them 

into the prediction process; and (ii) we propose a way 

of integrating the nodes-nodes and gene-gene 

similarities to create classification features. The result 

is a new nodes-target prediction algorithm, which 

markedly outperforms previous methods and can cope 

with new relay nodes with no known targets. 

 

II. RESULTS AND DISCUSSION 

 

2.1. SITAR: an algorithm for predicting nodes targets 

 

We designed a nodes-target prediction algorithm 

with three main components 

 

I. nodes-nodes and gene-gene similarity 

computations; 

II. combining the nodes and gene similarity 

measures into classification features; 

III. feature selection and prediction using logistic 

regression. In the following, we describe these 

components in detail. 

 

2.2. Similarity measures: 

In order to overcome the limitations engulfed in 

using similarity measures of a single type, we set out 

to incorporate a multitude of similarity measures, 

including both novel and already published ones. 

Overall, we considered five nodes-nodes similarities 

and three gene-gene similarities from different 

biological and chemical sources. The nodes-nodes 

similarity measures were computed using chemical, 

registered and predicted nodes side effects (Kuhn et 

al., 2010) of the nodes, nodes response gene 

expression profiles, and the Anatomical, Therapeutic 

and Chemical (ATC) classification system. The gene-

gene similarity measures used are based on sequence, 

closeness in a protein-protein interaction network, 

and semantic Gene Expressions. 

 

2.3. Feature construction and classification 

At the heart of our algorithm lies the process of 

exhaustive construction of classification features that 

span the entire pair wise space of nodes-target 

measures’ combinations. That is, each feature is 

constructed based on one nodes-nodes similarity 

measure and one gene-gene similarity measure. It is 

calculated by combining the nodes-nodes similarities 

between the query nodes and other relay nodes and 

the gene-gene similarities between the query gene 

and other target genes across all true nodes-target 

associations. The features are automatically combined 

using a logistic regression classifier that is coupled 

with a wrapper feature selection procedure and yield 

the final classification scores. 
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2.4. Feature selection and performance evaluation 

We performed feature selection using both forward 

selection and backward elimination, converging to a 

selected set of ten features, constructed from pairs of 

nodes-nodes and gene-gene similarity measures. The 

area under the precision-recall curve (AUPR) scores 

before and after the feature selection phase, as well as 

the AUPR achieved when using each of the ten 

selected features are listed in Table 1. Similar results 

were obtained when using an SVM classifier (see 

Methods below, as well as Table S1 in the 

Supplementary Material, available at 

www.liebertonline.com/cmb). Examining the 

individual contribution of each of the 

 

2.5. Comparison to other nodes-target prediction 

methods 

We compared our method to two state-of-the-art 

methods: 

The kernel regression-based method (KRM)  of 

Yamanishi et al.  (2008) embeds relay nodes and 

targets into a unified Euclidean space termed the 

‘‘pharmacological space,’’ using a regression model. 

Predicted interacting nodes-gene pairs are those that 

are closer to each other below a certain threshold in 

the pharmacological space. 

 

The bipartite local models (BLMs) method of 

(Bleakley and Yamanishi, 2009) constructs local 

models to learn nodes-target associations based on 

additional targets of the query nodes and additional 

relay nodes targeting the query target. We note that 

the SEA tool of Keiser et al. (2007) provides receptors 

code names that cannot be mapped to our list of 

targets, precluding a direct comparison to their 

method. Figure 2 displays the precision-recall curves 

of the three methods, and Table 3 summarizes the 

AUPR and AUC scores between the different 

methods, overall demonstrating the marked 

improvement obtained by our new method (AUPR of 

0.908, exceeding the KRM and BLM methods by 0.07 

and 0.15 AUPR difference, respectively). 

 

 

III. METHODS 

 

3.1. Similarity measures 

We defined and computed five nodes-nodes 

similarity measures and three gene-gene similarity 

measures. All similarity measures were normalized to 

be in the range [0, 1]. 

We used the following nodes-nodes similarity 

measures: 

 

1. Chemical-based: Canonical simplified molecular 

input line entry specification (SMILES) of the nodes 

molecules were downloaded from NodesBank 

(Wishart et al., 2008). Hashed fingerprints were 

computed using the Chemical Development Kit (CDK) 

with default parameters (Steinbeck et al., 2006). The 

similarity score between two relay nodes is computed 

on their fingerprints according to the two-

dimensional Tanimoto score (Tanimoto, 1957), which 

is equivalent to the Jaccard score ( Jaccard, 1908) of 

their fingerprints, i.e., the size of the intersection 

over the union when viewing each fingerprint as 

specifying a set of elements. 

 

2. Ligand-based: The Similarity Ensemble Approach 

(SEA) (Keiser et al., 2007) relates protein receptors 

based on the chemical 2D similarity of the ligand-sets 

modulating their function. Given a nodes’s canonical 

SMILES, the SEA search tool compares it against a 

compendium of ligand-sets and computes E-values 

for those ligand sets. To compute a nodes-nodes 

similarity, we queried relay nodes using their 

canonical SMILES on the SEA tool. To obtain robust 

results, we queried the nodes against the two ligand 

databases provided in the tool (MDL Nodes data 

report and WOMBAT [Olah et al., 2005]) and used 

two different methods to compute the nodes 

fingerprint (Scitegic ECFP4 and Daylight), resulting 

in four lists of similar ligand sets. Unifying the four 

lists and filtering nodes-ligand set pairs with E-

values >10_5, we obtained a list of relevant protein-

receptor families for each nodes. Finally, the 

similarity between a pair of relay nodes was 

computed as the Jaccard score between the 
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corresponding sets of receptor families. We note that, 

due to a partial mapping of the receptor families to 

proteins, we could not use the nodes-receptor 

associations directly as classification features. 

 

(3) Expression-based: Gene expression responses to 

relay nodes were retrieved from the Connectivity 

Map project (Lamb et al., 2006). We experimented 

with three different methods to calculate nodes 

similarity from Connectivity Map ranked gene 

expression profiles: 

(i) Spearman rank correlation coefficient 

(ii) calculating a Jaccard score between the 500 most 

differentially expressed genes (250 Most up-regulated 

and 250 most down-regulated genes); and 

(iii) using the method proposed by (Iorio et al., 2009), 

employing Gene Set Enrichment Analysis (GSEA) 

(Subramanian et al., 2005) as a similarity measure. 

We dealt with multiple experiments per nodes as 

follows: In the Spearman calculation, we averaged 

over the d1xd2 different correlation coefficients 

obtained between the d1 experiments of one nodes 

against the d2 repeated experiments of the second 

nodes. In the Jaccard case, we used differentially 

expressed genes that appeared in at least 50% of the 

gene expression responses to the same nodes. The 

method proposed by Iorio et al. (2009) handles 

repeated experiments of the same nodes through 

iterative merging.  

 

(4) Side-effect based: Nodes side effects were 

obtained from SIDER (Kuhn et al., 2010), an online 

database containing nodes side effects associations 

extracted from package inserts using text mining 

methods. Recently, we developed an algorithmic 

framework to predict side effects for relay nodes by 

combining side effect information on known relay 

nodes with their chemical properties (Atias and 

Sharan, 2010). Following this work, we defined the 

similarity between relay nodes according to the 

Jaccard score between their top ten predicted side 

effects. 

(5) Annotation-based: We used the World Health 

Organization (WHO) ATC classification system 

(Skrbo et al., 2004). This hierarchical classification 

system categorizes relay nodes according to the organ 

or system on which they act, their therapeutic and 

their chemical characteristics. ATC codes were 

obtained from Nodes Bank. To define a similarity 

between ATC terms, we used the semantic similarity 

algorithm of Resnik (1999). This algorithm associates 

probabilities p(x) with all the nodes (i.e., terms) x in 

the hierarchy and calculates the similarity of two 

relay nodes as the maximum over all their common 

ancestors c of -log (p(c)). 

 

The gene-gene similarity measures we used include: 

1. Sequence similarity: based on a Smith-Waterman 

sequence alignment score (Smith et al., 1985). 

Following the normalization suggested in Bleakley 

and Yamanishi (2009), we divide the Smith-

Waterman score between two protein sequences by 

the geometric mean of the scores obtained from 

aligning each sequence against itself. 

2. Closeness in a protein-protein interaction (PPI) 

network: Human protein-protein interactions were 

compiled from the literature (Breitkreutz et al., 2008; 

Ewing et al., 2007; Rual et al., 2005; Stelzl et al., 2005; 

Xenarios et al., 2002). The distances between each 

pair of genes were calculated on their corresponding 

proteins using an all-pairs shortest paths algorithm. 

 

IV. CONCLUSION 

 

We introduced a novel method, SITAR, for 

predicting nodes-target interactions. Our method 

incorporates an extensive set of nodes-nodes and 

gene-gene similarity measures. Newly incorporated 

nodes-nodes similarities are based on predicted side 

effects, gene expression nodes response profiles, and 

the ATC classification system. The classification 

features are constructed based on a new score 

integrating the nodes-nodes and gene-gene similarity 

spaces. These features are integrated via a logistic 

regression classifier, combined with a feature 

selection process. Our method is flexible and allows 

the incorporation of new emerging measures without 

altering already computed scores on other measures. 
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Using our method, we show marked improvement of 

classification performance over previous nodes-target 

prediction approaches. We provide novel predictions 

of nodes-target interactions and validate them against 

public databases. Last, we predict targets for relay 

nodes which to-date have no known targets. Having 

shown that our method is robust with respect to 

different score choices, selected features, and 

different classification methods, it seems that the 

primary reason for the increased performance 

compared to previous methods stems from the use of 

multiple similarity measures. Each of the resulting 

features alone does not have enough predictive 

power, but the combination of multiple features 

allows the classification procedure to perform well. 

Accordingly, we noticed that using a low number of 

features (less than five) deteriorates the results. 

Nevertheless, our method can be enhanced in several 

ways. First, one could improve and expand the 

measures used. Of special interest is improving the 

gene co-expression similarity based on the 

Connectivity Map data, which currently exhibits the 

worst performance. Another extension would be to 

increase the number of represented relay nodes and 

genes shared between the different measures. This 

could be achieved either by predicting missing 

similarities from existing ones (Atias and Sharan, 

2010) or by incorporating imputation methods to 

overcome missing information in some of the 

measures. 
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