

# Ionic Conduction at High Field in Anodic Oxide Films on Tantalum Metal in Aqueous Electrolyte at Various Temperatures

Jitender<sup>1</sup>, Naveen Verma<sup>\*2</sup>, Krishan Chander Singh<sup>2</sup>

<sup>1</sup>Department of Chemistry, Rao Pahlad Singh Degree College, Balana, Mahendergarh, Haryana, India \*<sup>2</sup>Department of Chemistry, Maharshi Dayanand University, Rohtak, Haryana, India

# ABSTRACT

The study of anodization process on Tantalum metal was carried out in Malic acid electrolyte at different temperatures range and various current densities. This anodization process of metal electrode makes sure the adequate fabrication of oxide film. Anodization of Ta metal provides a satisfactory fabrication of oxide film and the kinetic data is altogether reliable for any current density set. We study the ionic conduction mechanism of anodic oxide film in Malic acid electrolyte at high field strength. Different variables of Dewald's theory have been measured as a component of current density & temperature.

Keywords: Anodization, Oxide film, Current, Voltage

## I. INTRODUCTION

In the last few decades, researchers depicted the growth kinetics of anodic oxide film on Niobium and Tantalum metals by applying Guntherschulze - Betz [1] and Cabrera Mott [2] approaches in Malic acid electrolyte at various temperatures and current densities. Cabrera - Mott's single barrier theory could not explain the data successfully. As per this theory tafel slope should be dependent on temperature but during anodic oxide film growth on metals, the rate of increase of forming field with logarithm of ionic current density (tafel slope) is autonomous of temperature in aqueous electrolytic solution. Dignam model [3] has not been also successful because its temperature independent Morse function parameter hypothesis in light of the fact that Morse function parameter  $\mu^*$ , w<sup>\*</sup> and i<sub>0</sub> were found to be temperature dependent in our prior studies.

An appreciable contribution (11% to 20%) of the quadratic term is observed for the range of current densities studied. Our results demonstrate that net activation energy W (E) should not be influenced by

temperature and current density. The observed inappropriateness of these theories might be due to the neglect of the presence of space charge in anodic film or the pre history of the specimens may be influencing the results. In this section, we study the elimination caused by the pre history of the film and then look at the results examined by the space charge. The growth kinetics of anodization was investigated with modification in experimental procedure which could keep away numerous an intrinsic errors which might have arised in the experiments. Dewald [4, 5] assimilated the two probabilities of rate limitation, which incorporate effects of space charge within the anodic film, first at anodic film interface adjacent to the parent metal and next, rate limitation within the bulk anodic film in to the formation. The Dewald's double barrier hypothesis allow for the effect of space charge. This hypothesis is an extension of Cabrera -Mott's single barrier theory and considers the effect of space charge in the oxide films which develops when the time required for an excess interstitial ion to move from one side of the film to the next is not all that much smaller than the time needed by the ion to

go over the interface. Dewald proposed his theory to clarify the temperature independent Tafel slope which had been found by Vermilyea [6]. A few analysts [7-9] have depicted their results in agreement with Dewald's dual barrier control model. For the growth of anodic oxide film, Dewald theory may be the correct model for the detection of space charge experimentally. In the study of barrier type films, Vermilyea [10] has demonstrated that due to low level of space charge probably i.e. enough to produce a 1% difference in the mean electric field strength across the film, the absolute indication of such space charge may be difficult to obtain. Young [11], on the other hand, has reported some evidence on the basis of capacitance changes in Ta2O5 films formed anodically. Depending upon the idea of thermally activated hopping of ionic point defects in accordance with Boltzmann statistics, Diggle and Vijh derived a fundamental transport equation for the space charge gradient model and concluded that under steady current conditions, the total amount of space charge inside of a film increases with thickness, with a tendency to level off towards some constant value with increasing thickness at lower current densities. At a given current density, the region of large space charge becomes relatively more confined to the interfaces as the film thickness increases. The whole amount of space charge held by the anodic oxide film increases with the increased current level in accordance to the order of current density profiles for a given thickness. Young's conclusion on Nb and Ta metals showed a temperature autonomous Tafel slope and consequently single barrier hypothesis of Cabrera and Mott totally disagreed. Diggle and Vijh [12] concluded that although the Dewald hypothesis seemed to imply that Tafel slope changed with thickness because of space charge in an extremely distinct manner. According to them, space charge caused the rate limiting step to alter from an interface barrier to conduction within the anodic film. Hence, Tafel slope go through a corresponding transition with diverse hopping separations accepted for each of these breaking points. These examinations show to observe the investigation of space charge effect through the ionic conduction mechanism of anodic oxide films and to discover the exact nature of Tafel slope variation. In our present perception, by applying the technique of Bray, Jacob and Young [13], we study the ionic conduction mechanism of anodic oxide film in Malic acid electrolyte at high field strength. Different variables of Dewald's theory have been measured as a component of current density & temperature.

#### **II. METHODS AND MATERIAL**

Tantalum samples of 2 cm<sup>2</sup> expose area with a short tag were cut by a dye from metal sheet (99.8% pure). The edges and surface of samples were rubbed with 600; 1000; 1500; 2000 grit fine grade emery paper to make the surface smooth. The specimens were plunged in 100g/L KOH solution at temperature 80°C for 3 minute with constant stirring to remove the greasy particles and then washed with doubled distilled water. Chemical polishing of the sample was done by dipping in freshly prepared etching mixture of 98% H2SO4; 70% HNO3; 48% HF (5:2:2 v/v) for 3 -5 seconds in a Teflon beaker and then immediate washing with distilled water. Finally any remaining polluting influence left adhering to the surface was evacuated by putting the specimen in boiled water for 10 minute. Finally the sample was dried in a stream of hot air. The whole process was repeated again just before the utilization of the sample. The experimental set up for the anodization of Ta metal in 0.1M Malic acid electrolyte was also the same. In order to exclude the surface roughness and unlike chemical polishing, the specimen was anodically oxidized at constant current density (i1) and film up to 30V was formed. Because of constant current anodization, the surface appearance of film improved. After that, specimen was anodized with current density i2 (i2 = 10i1) and oxide film formed continuously up to 50V. At that point, current density was again changed to i1 and film up to 160V was formed. Again current density adjusted to i2 and anodization was proceeding up to 170V. The advantage of taking  $i_1 = 10i_2$  was that the tafel slope is given by the equation

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

$$\tau = \frac{E1 - E2}{2.303}$$

Here

 $E_1$ ,  $E_2$  = Value of field strength

i1 = Lower current density

i<sub>2</sub> = Higher current density

Hertzberg et al(14) reported the density of Ta<sub>2</sub>O<sub>5</sub> film i.e. 4.36 kgmdm<sup>3</sup>. Electronic clock was used to record the time for the passage of current for film formation by means of progressive interims of voltage. The anodic polarization procedure is schematically outlined in fig. 3.1-3.3 for a particular current density set (1.0-10.0mA/cm<sup>2</sup>) for Ta metal at distinctive temperatures (20°C; 30°C; 40°C). Indistinguishable results were got at various sets of current densities employed (0.25 - 2.5; 0.5 - 5.0; 1.0 - 10.0; 1.5 - 15.0 mA/cm<sup>2</sup>) for the growth of anodic oxide film on Ta metal at different temperatures of Malic acid electrolyte. This anodization process of metal (Ta) electrode makes sure the adequate fabrication of oxide film. The data of the value of field strength at specific current density set and at a particular temperature were tabulated by the repetition of these observations up to five times. Anodization of Ta metal provides a satisfactory fabrication of oxide film and the kinetic data is altogether reliable for any current density set.

# **III. RESULTS AND DISCUSSION**

Anodization data of Ta metals in 1M Malic acid electrolyte at various current densities and at different temperatures has been given in Table I. Figures 1-3 represent the plot between voltage versus time of anodization for Ta metals at different temperatures.

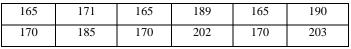
| TABLE I                                              |
|------------------------------------------------------|
| DATA FOR ANODIC POLARIZATION AT DIFFERENT CURRENT    |
| density sets and at different temperatures in $0.1M$ |
| MALIC ACID ELECTROLYTE ON TANTALUM METAL             |

\_.\_\_\_

| Formati<br>on<br>(Volts)     ion<br>(Seconds)     Formati<br>on<br>(Volts)     ion<br>(Seconds)     17       Current Density Set : 0.25-2.5mA/ cm <sup>2</sup> 10     10     17       293.15K     303.15K     313.15K     10       20     17     20     29     20     32     20                         | -0. |           |                     |                |           |           |         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|---------------------|----------------|-----------|-----------|---------|
| Formati<br>on<br>(Volts)     ion<br>(Seconds)     Formati<br>on<br>(Volts)     ion<br>(Seconds)     ion<br>on<br>(Volts)     ion<br>(Seconds)     ion<br>(Seconds) <b>Current Density Set : 0.25-2.5mA/ cm<sup>2</sup></b> 293.15K       20       17       20     17     20     29     20     32     20 |     | Time for  | Voltage             | Time for       | Voltage   | Time for  | Voltage |
| on<br>(Volts)         (Seconds)<br>(Volts)         on<br>(Volts)         (Seconds)<br>(Volts)         on<br>(Volts)           Current Density Set : 0.25-2.5mA/ cm <sup>2</sup>                                                                                                                         | 16  | Anodizat  | of                  | Anodizat       | of        | Anodizat  | of      |
| (Volts)         (Volts)         (Volts)           Current Density Set : 0.25-2.5mA/ cm <sup>2</sup>                                                                                                                                                                                                     | 170 | ion       | Formati             | ion            | Formati   | ion       | Formati |
| Current Density Set : 0.25-2.5mA/ cm <sup>2</sup> 293.15K         303.15K         313.15K           20         17         20         29         20         32         20                                                                                                                                |     | (Seconds) | on                  | (Seconds)      | on        | (Seconds) | on      |
| 293.15K         303.15K         313.15K           20         17         20         29         20         32         20                                                                                                                                                                                  |     |           | (Volts)             |                | (Volts)   |           | (Volts) |
| 20 17 20 29 20 32 20                                                                                                                                                                                                                                                                                    |     |           | nA/ cm <sup>2</sup> | et : 0.25-2.5r | Density S | Current   |         |
|                                                                                                                                                                                                                                                                                                         |     | .15K      | 313                 | .15K           | 303       | .15K      | 293     |
|                                                                                                                                                                                                                                                                                                         |     |           |                     |                |           |           |         |
| 30 31 30 45 30 47 30                                                                                                                                                                                                                                                                                    | 20  | 32        | 20                  | 29             | 20        | 17        | 20      |
|                                                                                                                                                                                                                                                                                                         | 30  | 47        | 30                  | 45             | 30        | 31        | 30      |
|                                                                                                                                                                                                                                                                                                         |     |           |                     |                |           |           |         |

| 95  | 30                                                                                                                                       | 298                                                   | 30                                                    | 341                                                   |
|-----|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|
| 203 | 35                                                                                                                                       | 447                                                   | 35                                                    | 523                                                   |
| 293 | 40                                                                                                                                       | 670                                                   | 40                                                    | 679                                                   |
| 377 | 45                                                                                                                                       | 746                                                   | 45                                                    | 815                                                   |
| 458 | 50                                                                                                                                       | 866                                                   | 50                                                    | 940                                                   |
|     |                                                                                                                                          |                                                       |                                                       |                                                       |
| 461 | 50                                                                                                                                       | 868                                                   | 50                                                    | 942                                                   |
| 467 | 60                                                                                                                                       | 874                                                   | 60                                                    | 947                                                   |
| 479 | 70                                                                                                                                       | 884                                                   | 70                                                    | 960                                                   |
| 491 | 80                                                                                                                                       | 898                                                   | 80                                                    | 975                                                   |
| 503 | 90                                                                                                                                       | 912                                                   | 90                                                    | 989                                                   |
| 515 | 100                                                                                                                                      | 926                                                   | 100                                                   | 1003                                                  |
| 527 | 110                                                                                                                                      | 940                                                   | 110                                                   | 1017                                                  |
| 538 | 120                                                                                                                                      | 954                                                   | 120                                                   | 1031                                                  |
| 550 | 130                                                                                                                                      | 967                                                   | 130                                                   | 1045                                                  |
| 562 | 140                                                                                                                                      | 981                                                   | 140                                                   | 1059                                                  |
| 574 | 150                                                                                                                                      | 995                                                   | 150                                                   | 1072                                                  |
| 586 | 160                                                                                                                                      | 1008                                                  | 160                                                   | 1085                                                  |
|     |                                                                                                                                          |                                                       |                                                       |                                                       |
| 640 | 150                                                                                                                                      | 1198                                                  | 150                                                   | 1246                                                  |
| 718 | 155                                                                                                                                      | 1232                                                  | 155                                                   | 1344                                                  |
| 796 | 160                                                                                                                                      | 1328                                                  | 160                                                   | 1440                                                  |
|     |                                                                                                                                          |                                                       |                                                       |                                                       |
| 872 | 165                                                                                                                                      | 1510                                                  | 165                                                   | 1537                                                  |
| 948 | 170                                                                                                                                      | 1630                                                  | 170                                                   | 1647                                                  |
|     | 203<br>293<br>377<br>458<br>461<br>467<br>479<br>491<br>503<br>515<br>527<br>538<br>550<br>562<br>574<br>586<br>640<br>718<br>796<br>872 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

| Current Density Set : 0.5-5.0mA/ cm <sup>2</sup> |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| .15K                                             |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 313.15K                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
|                                                  |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
|                                                  | -                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                   | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| 17                                               | 30                                                                                                                                                                                                                                                                       | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30                                                                                                                                                                                                                                                                  | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
|                                                  |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| -                                                |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                     | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| 65                                               | 35                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 35                                                                                                                                                                                                                                                                  | 214                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| 106                                              | 40                                                                                                                                                                                                                                                                       | 217                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40                                                                                                                                                                                                                                                                  | 289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| 145                                              | 45                                                                                                                                                                                                                                                                       | 279                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 45                                                                                                                                                                                                                                                                  | 351                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| 185                                              | 50                                                                                                                                                                                                                                                                       | 338                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 50                                                                                                                                                                                                                                                                  | 408                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
|                                                  |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| 186                                              | 50                                                                                                                                                                                                                                                                       | 339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 50                                                                                                                                                                                                                                                                  | 409                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| 189                                              | 60                                                                                                                                                                                                                                                                       | 342                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 60                                                                                                                                                                                                                                                                  | 412                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| 194                                              | 70                                                                                                                                                                                                                                                                       | 349                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 70                                                                                                                                                                                                                                                                  | 420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| 200                                              | 80                                                                                                                                                                                                                                                                       | 356                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 80                                                                                                                                                                                                                                                                  | 427                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| 206                                              | 90                                                                                                                                                                                                                                                                       | 362                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 90                                                                                                                                                                                                                                                                  | 434                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| 212                                              | 100                                                                                                                                                                                                                                                                      | 369                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100                                                                                                                                                                                                                                                                 | 441                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| 217                                              | 110                                                                                                                                                                                                                                                                      | 376                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 110                                                                                                                                                                                                                                                                 | 448                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| 224                                              | 120                                                                                                                                                                                                                                                                      | 383                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120                                                                                                                                                                                                                                                                 | 455                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| 229                                              | 130                                                                                                                                                                                                                                                                      | 389                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 130                                                                                                                                                                                                                                                                 | 462                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| 234                                              | 140                                                                                                                                                                                                                                                                      | 395                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 140                                                                                                                                                                                                                                                                 | 469                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| 240                                              | 150                                                                                                                                                                                                                                                                      | 402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 150                                                                                                                                                                                                                                                                 | 478                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| 245                                              | 160                                                                                                                                                                                                                                                                      | 408                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 160                                                                                                                                                                                                                                                                 | 485                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
|                                                  |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| 269                                              | 150                                                                                                                                                                                                                                                                      | 469                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 150                                                                                                                                                                                                                                                                 | 558                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| 309                                              | 155                                                                                                                                                                                                                                                                      | 509                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 155                                                                                                                                                                                                                                                                 | 610                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| 328                                              | 160                                                                                                                                                                                                                                                                      | 551                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 160                                                                                                                                                                                                                                                                 | 660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
|                                                  |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| 363                                              | 165                                                                                                                                                                                                                                                                      | 593                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 165                                                                                                                                                                                                                                                                 | 712                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| 398                                              | 170                                                                                                                                                                                                                                                                      | 635                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 170                                                                                                                                                                                                                                                                 | 732                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
|                                                  | 112         17         25         65         106         145         185         186         189         194         200         206         212         217         224         229         234         240         245         269         309         328         363 | .15K         303           12         20           17         30           25         30           65         35           106         40           145         45           185         50           186         50           189         60           194         70           200         80           206         90           212         100           217         110           224         120           229         130           234         140           240         150           245         160           269         150           309         155           328         160           363         165 | 303.15K           12         20         14           17         30         21           25         30         67           65         35         147           106         40         217           145         45         279           185         50         338 | .15K         303.15K         313           12         20         14         20           17         30         21         30           25         30         67         30           65         35         147         35           106         40         217         40           145         45         279         45           185         50         338         50           186         50         339         50           189         60         342         60           194         70         349         70           200         80         356         80           206         90         362         90           217         110         376         110           224         120         383         120           229         130         389         130           234         140         395         140           240         150         402         150           245         160         408         160           269         150         469         150           309 |  |  |  |  |


| Current Density Set : 0.25-2.5mA/ cm <sup>2</sup> |    |         |    |         |    | Current Density Set : 1.0-10.0mA/ cm <sup>2</sup> |   |         |    |     |      |     |      |
|---------------------------------------------------|----|---------|----|---------|----|---------------------------------------------------|---|---------|----|-----|------|-----|------|
| 293.15K                                           |    | 303.15K |    | 313.15K |    | 293.15K                                           |   | 293.15K |    | 303 | .15K | 313 | .15K |
| 20                                                | 17 | 20      | 29 | 20      | 32 | 20                                                | 5 | 20      | 7  | 20  | 9    |     |      |
| 30                                                | 31 | 30      | 45 | 30      | 47 | 30                                                | 8 | 30      | 10 | 30  | 13   |     |      |
|                                                   |    |         |    |         |    |                                                   |   |         |    |     |      |     |      |

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

1351

| 30  | 10  | 30  | 15  | 30  | 45  |
|-----|-----|-----|-----|-----|-----|
| 35  | 12  | 35  | 39  | 35  | 96  |
| 40  | 31  | 40  | 62  | 40  | 147 |
| 45  | 50  | 45  | 84  | 45  | 191 |
| 50  | 68  | 50  | 105 | 50  | 230 |
|     |     |     |     |     |     |
| 50  | 69  | 50  | 106 | 50  | 232 |
| 60  | 70  | 60  | 108 | 60  | 235 |
| 70  | 73  | 70  | 111 | 70  | 238 |
| 80  | 76  | 80  | 114 | 80  | 242 |
| 90  | 79  | 90  | 117 | 90  | 246 |
| 100 | 81  | 100 | 120 | 100 | 251 |
| 110 | 83  | 110 | 123 | 110 | 255 |
| 120 | 85  | 120 | 126 | 120 | 259 |
| 130 | 87  | 130 | 129 | 130 | 263 |
| 140 | 91  | 140 | 132 | 140 | 267 |
| 150 | 93  | 150 | 135 | 150 | 271 |
| 160 | 95  | 160 | 138 | 160 | 275 |
|     |     |     |     |     |     |
| 150 | 101 | 150 | 147 | 150 | 321 |
| 155 | 109 | 155 | 163 | 155 | 342 |
| 160 | 117 | 160 | 181 | 160 | 367 |
|     |     |     |     |     |     |
| 165 | 121 | 165 | 198 | 165 | 393 |
| 170 | 131 | 170 | 216 | 170 | 417 |

| Current Density Set : 1.5-15.0mA/ cm <sup>2</sup> |                |     |     |     |      |  |  |  |
|---------------------------------------------------|----------------|-----|-----|-----|------|--|--|--|
| 293                                               | 93.15K 303.15K |     |     |     | .15K |  |  |  |
| 20                                                | 4              | 20  | 4   | 20  | 5    |  |  |  |
| 30                                                | 6              | 30  | 7   | 30  | 7    |  |  |  |
|                                                   |                |     |     |     |      |  |  |  |
| 30                                                | 13             | 30  | 16  | 30  | 25   |  |  |  |
| 35                                                | 35             | 35  | 35  | 35  | 49   |  |  |  |
| 40                                                | 55             | 40  | 59  | 40  | 72   |  |  |  |
| 45                                                | 74             | 45  | 79  | 45  | 92   |  |  |  |
| 50                                                | 92             | 50  | 97  | 50  | 110  |  |  |  |
| 50                                                | 02             | 50  | 00  | 50  | 111  |  |  |  |
| 50                                                | 93             | 50  | 98  | 50  | 111  |  |  |  |
| 60                                                | 94             | 60  | 99  | 60  | 112  |  |  |  |
| 70                                                | 96             | 70  | 101 | 70  | 115  |  |  |  |
| 80                                                | 98             | 80  | 104 | 80  | 117  |  |  |  |
| 90                                                | 101            | 90  | 106 | 90  | 119  |  |  |  |
| 100                                               | 103            | 100 | 109 | 100 | 121  |  |  |  |
| 110                                               | 105            | 110 | 111 | 110 | 123  |  |  |  |
| 120                                               | 108            | 120 | 114 | 120 | 125  |  |  |  |
| 130                                               | 110            | 130 | 116 | 130 | 127  |  |  |  |
| 140                                               | 111            | 140 | 118 | 140 | 129  |  |  |  |
| 150                                               | 112            | 150 | 121 | 150 | 131  |  |  |  |
| 160                                               | 114            | 160 | 123 | 160 | 134  |  |  |  |
| 150                                               | 148            | 150 | 155 | 150 | 138  |  |  |  |
| 155                                               | 162            | 155 | 163 | 155 | 145  |  |  |  |
| 160                                               | 176            | 160 | 176 | 160 | 145  |  |  |  |
| 100                                               | 170            | 100 | 170 | 100 | 157  |  |  |  |
| L                                                 |                |     |     |     |      |  |  |  |



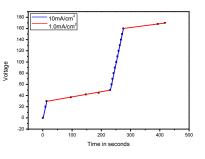



Figure 1: Plot of Voltage vs. Time of Anodization for Ta Metal at 20°C temperature

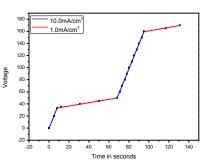



Figure 2: Plot of Voltage vs. Time of Anodization for Ta Metal at 30°C temperature

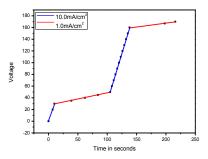



Figure 3: Plot of Voltage vs. Time of Anodization for Ta Metal at 40°C temperature

The values of field strength at particular current density and temperature were calculated by Faraday's law method and the values are presented in table II. The field strength increases with increase in current density but decreases with rise in temperature. The plots of field strength (E) versus reciprocal of temperature (1/T) for all current density sets are presented in figure 4. The plots of E vs. 1/T irrespective of current density employed are linear and parallel indicated that the difference of field at all temperatures for a given current density set is constant and hence, the Tafel slope is independent of temperature. The values of Tafel slope at all current density sets and temperatures were calculated using field values and are given in table V. The Tafel slope increases with current density.

Dewald's theory makes allowance for the existence of space charge within the film and hence, the field (E) which is the function of thickness (x) in the oxide is given by

$$E(x) = E_0 + \frac{1}{\beta} \ln(1 + \beta \gamma n_0 x)$$
(1)  
Where  
$$\beta = \frac{aq}{kT}$$
And  
$$\gamma = 4\pi q/\epsilon$$
(2)

Here 'a' is a bulk half jump distance , 'q' is the charge on mobile ion, 'k' is the Boltzmann constant, 'T' is the absolute temperature,  $\in$  is the dielectric constant of oxide and  $n_0$  is the number of ions cm<sup>-3</sup> at x = 0. The field due to surface charge (E<sub>0</sub>) could be given by

$$E_0 = \frac{kT}{bq} \ln\left(\frac{i_0}{N_s \vartheta_s q}\right) + \frac{\varphi}{bq}$$
(3)

 $n_0$  has been evaluated by substituting E<sub>0</sub> from Eq. (3) in the expression for current in the film at x = 0, that is,

 $i_0 = 2a\vartheta q n_0 \exp[-(U - aE_0 q)/kT]$ (4)

In steady state

 $i_0 = i(X) = i \text{ and }$ 

From Eq. (3) and Eq. (4)

$$n_0 = \frac{(N_s \vartheta_s q)^{a/b}}{2aq\vartheta} i^{1-a/b} \exp\left(-\frac{w}{kT}\right)$$
(5)

Where w = af/b-U and i is the current density in unit of  $Am^{-2}$  and not in  $cm^{-2}$  as in Dewald's paper. The experimental field could be given by

$$E = -\frac{\Delta V}{\Delta X} = \frac{1}{\Delta X} \int_{x}^{x'} E(X) dX \quad (6)$$

Hence, substituting from Eq. (1) the theoretical expression for experimental field and the derived Tafel slopes were:

$$E = E_0 + \frac{1}{\beta} \left[ \left( 1 + \frac{1}{\beta n_0 \gamma \Delta X} \right) \ln(1 + \beta \gamma n_0 \Delta X) - 1 \right] (7)$$

And

$$\tau = \frac{\partial E}{\partial lni} = \frac{kT}{aq} \left[ 1 + \frac{\left(\frac{a}{b} - 1\right)\ln(1 + \beta\gamma n_0 \Delta X)}{\beta\gamma n_0 \Delta X} \right]$$
(8)

Or

$$\tau = \frac{kT}{aq} \left[ 1 + \frac{\left(\frac{a}{b} - 1\right)\ln(1+\delta)}{\delta} \right]$$
(9)

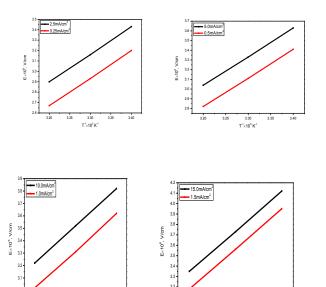



Figure 4: Plot of E vs. T<sup>-1</sup> for Tantalum metal

T<sup>-1</sup>×10<sup>3</sup> K

T<sup>1</sup>×10<sup>3</sup> K<sup>1</sup>

$$\delta = \beta \gamma n_0 \Delta X$$
  
=  $\frac{2\pi q}{\vartheta \epsilon k T} (N_s \ \vartheta_s q)^{\frac{a}{b}} i^{1-\frac{a}{b}} \exp\left(-\frac{W}{kT}\right) \Delta X$  (10)

Values of  $\delta$  cannot be calculated empirically, instead of we found that values of parameters, 'a', 'b' and 'W' which allowed Eq. (9) to represent the experimental values of Tafel slope. The ten- fold increase in i at constant temperature change the field which can be represented by Eq. (11):

$$\Delta E = \Delta E_0 + \frac{1}{\beta} [F(\delta)_{i=i_0} - F(\delta)_{i=i_2}$$
(11)

Where

$$F(\delta) = \left(1 + \frac{1}{\delta}\right) \ln(1 + \delta) \tag{12}$$

 $\delta/\theta$  is the value of space charge at higher current density (i1). Now, if  $\delta$  denoted the value of  $\beta n_0 \Delta X$  at i2 then,

$$\delta_{i=i_1} = \delta \times 10^{1-a_b} = a_b$$
(13)

Therefore

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

1353

$$\Delta E_0 - \Delta E = \frac{1}{\beta} \left[ F(\delta) - F(\delta/\theta) \right]$$
(14)

Here  $\Delta E$  is the change in the field brought about by increase in current density ten times and is given by Eq. (14);  $\Delta E_0$  is the change in the field due to surface charge and its value is 2.303kT/bq, F( $\delta$ ) is the function dependent on the space charge  $\delta$ . Hence, Eq. (14) can be written in the form

$$2.303 a/b - \beta \Delta E = F(\delta) - F\left(\frac{\delta}{\theta}\right)$$
(15)

Using Eq. (9) and Eq. (15), the parameter 'a' and 'b' were determined as under:

- i. The values of 'a' and 'b' were assumed and hence the value of  $\theta$  was evaluated.
- ii.  $F(\delta) F(\delta/\theta)$  [R.H.S. of Eq. (15)] was represented graphically as function of  $\delta$ .
- iii. The values of  $2.303 a/b \beta \Delta E$  [L.H.S. of eq. (15)] at different temperature were evaluated. Values of  $\Delta E$  were taken from plots of E versus 1/T.
- iv. From (i) and (iii) by interpolation the values of  $\delta(T)$  were determined.
- Using the values of  $\delta$ , 'a' and 'a/b' the theoretical v. value of Tafel slope  $(\tau)$  was calculated. Such calculations was repeated until values of 'a' and 'b' were found such that an agreement with experimental values of Tafel slope was obtained. There were two widely different values of a/b ratio which allowed a quantitative fit to all the data available. Ratio a/b along with absolute values of 'a' and 'b' are presented in table III. Only for these values of a/b, it was possible to achieve a temperature independent Tafel slope. The value of 'a' and 'b' increase with increase of current density and there is a slight increase of a/b ratio whether it is 1.295 or 1.316 is difficult to decide. Dewald used the value of a/b ratio, which gave minimum value of 'a' and 'b'. Using the same criterion we have chosen a/b ≈1.295 for further calculation of various parameters.

The values of  $\delta$  for a particular set of current density decrease with increase of temperature in table IV. The effect of space charge is more clearly observed at

a temperature when  $\delta$  is greater than unity. This effect becomes pre dominant as the temperature is lowered. The space charge factor  $\delta$  depends mainly on (-W/kT) (from Eq. 10). Knowing  $\delta$  and E, exp. the surface charge field E<sub>0</sub> has been evaluated using Eq.7. The values of E<sub>0</sub>/T were computed and plotted against 1/T (Fig. 5). According to Eq. 3 such plots should be linear with a slope  $\Phi$ /bq. From the slopes, the value of  $\Phi$  were obtained and are given in table V. Using the relation  $U=a\Phi/b-w$ , the value of U were calculated and reported in table V. Both the entrance barrier energy  $(\Phi)$  and diffusion barrier energy (U)seem to increase with current density and magnitude of U is greater than  $\Phi$  at all the current density sets. This suggests that rate determining step would be the ionic movement at the metal/oxide interface and not across the film. However, at high field the correct activation energies would be  $(\Phi$ -Ebq) and  $(\Phi$ -Eaq) instead of  $\Phi$  and U. Therefore, using average values of field for each current density set taking charge on each Ta atom in Ta2O5 film as 5e- and using values of ' $\Phi$ ', 'U', 'b' and 'a' from T from table V, the value of  $(\Phi$ -Ebq) and (U-Eaq) were computed are recorded in table V. The value of  $(\Phi$ -Ebq) is lesser than (U-Eaq) at each current density set and this again suggests that the rate determining step would be the ionic movement at the metal/oxide interface. Though there is a substantial contribution of space charge ( $\delta$ >1) at low temperature yet the rate controlling step is at the metal/oxide interface. This is a misleading conclusion. It seems that our choice of a/b = 1.295 is not correct and next we used a/b = 1.316 and calculated the values of various parameters at different current densities and temperatures adopting the same procedure as given above the values are recorded in table V. The values of  $\Phi$  were obtained from the plots of E<sub>0</sub>/T versus 1/T (Fig.4) at each current density set.

It is observed from table V, the magnitude of  $\Phi$  is smaller than U at all current density sets, thus indicating that the rate determining step for ionic movement would be within the film and not at the metal/oxide interface. The values of ( $\Phi$ -Ebq) and (U-Eaq) are not much different from each other suggesting that both the metal/oxide interface barrier are important, for the conduction of ions. With the increase of current density, the value of ( $\Phi$ -Ebq) becomes slightly less than (U-Eaq), thus showing that the rate controlling step also shifting from metal/oxide interface to diffusion barrier within the film. W is net activation energy, therefore, it should not be affected by temperature and current density.

The value of W using Dewald theory at current density set 10mAcm<sup>-2</sup> 0.8007 eV for Ta metal (table V). The value of W(E) at current density 10mAcm<sup>-2</sup> reported, using Dignam was 0.557 eV for Ta metal.. Thus value of net activation energy calculated using Dewald theory agrees well with the value calculated using Dignam equation. Since Dewald theory takes into account space charge contributions in addition to surface charge contribution, it can be concluded that Dewald theory explain our data more satisfactorily and hence it is found suitable.

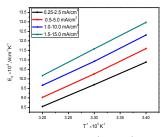



Figure 5: Plot of  $E_0T^{-1}$  vs.  $T^{-1}$  (Ta metal)

 $TABLE \ II$  Field strength  $E_1 \And E_2 \ (V_{\text{CM-1}})$  at higher and lower current densities at various temperature of anodization for Tantalum metal

| Current Density<br>Set (mA/cm <sup>2</sup> ) | Field<br>(V/cm) | Field   | ) at different<br>s |         |
|----------------------------------------------|-----------------|---------|---------------------|---------|
|                                              |                 | 293.15K | 303.15K             | 313.15K |
| 0.25-2.5 mA/cm <sup>2</sup>                  | E1              | 3.43    | 3.16                | 2.90    |
|                                              | E <sub>2</sub>  | 3.20    | 2.92                | 2.67    |
| 0.5-5.0 mA/cm <sup>2</sup>                   | E1              | 3.63    | 3.33                | 3.04    |
|                                              | $E_2$           | 3.41    | 3.11                | 2.82    |
| 1.0-10.0 mA/cm <sup>2</sup>                  | $E_1$           | 3.82    | 3.52                | 3.22    |
|                                              | E <sub>2</sub>  | 3.62    | 3.31                | 3.02    |
| 1.5-15.0 mA/cm <sup>2</sup>                  | E1              | 4.12    | 3.80                | 3.35    |
|                                              | E1              | 3.63    | 3.33                | 3.04    |

## TABLE III

| BOTH SETS OF VARIOUS VALUES OF PARAMETER       |
|------------------------------------------------|
| 'a' AND 'b' AND 'a/b' SATISFYING EQ.(9) FOR Ta |
| METAL                                          |

| Current<br>Density | aA°  | aB°  | a/b   | aA°  | aB°  | a/b   |
|--------------------|------|------|-------|------|------|-------|
| 0.25-2.5           | 6.20 | 4.71 | 1.316 | 4.72 | 5.85 | 0.806 |
| 0.5-5.0            | 7.08 | 5.29 | 1.338 | 5.25 | 6.48 | 0.810 |
| 1.0-10.0           | 7.75 | 5.81 | 1.333 | 5.84 | 7.27 | 0.901 |
| 1.5-15.0           | 8.82 | 6.65 | 1.326 | 6.20 | 8.09 | 0.766 |

### TABLE IV VALUE OF SPACE CHARGE TERM § OF DEWALD'S THEORY FOR DIFFERENT CURRENT DENSITY SETS AT VARIOUS TEMPERATURES FOR TANTALUM METAL

|                           | IVIL    | IAL           |         |
|---------------------------|---------|---------------|---------|
| Current Density           |         | Temperature K |         |
| Set (mA/cm <sup>2</sup> ) |         |               |         |
|                           | 298.15K | 308.15K       | 318.15K |
|                           |         | When a/b>1    | •       |
| 0.25-2.5                  | 0.18    | 0.42          | 0.92    |
| 0.5-5.0                   | 0.15    | 0.37          | 0.82    |
| 1.0-10.0                  | 0.13    | 0.33          | 0.74    |
| 1.5-15.0                  | 0.11    | 0.29          | 0.66    |
|                           |         | When a/b<1    |         |
| 0.25-2.5                  | 9.8     | 3.92          | 1.6     |
| 0.5-5.0                   | 15.2    | 5.32          | 1.9     |
| 1.0-10.0                  | 20.2    | 6.74          | 2.3     |
| 1.5-15.0                  | 26.0    | 7.32          | 2.7     |
|                           |         |               | 1       |

TABLE V Value of Various Parameters for Tantalum metal from Dewald's Theory at Different Current Density Sets for Tantalum Metal

| Current<br>Density Set                                         | T           | W     | Φ    | U         | Φ-U          | Ф-<br>Ebq | U-<br>Eaq |  |  |
|----------------------------------------------------------------|-------------|-------|------|-----------|--------------|-----------|-----------|--|--|
| (mA/cm <sup>2</sup> )                                          |             |       | w    | hen a/b : | <u>&gt;1</u> |           |           |  |  |
| 0.25-2.5                                                       | 9.8         | 0.627 | 2.36 | 2.13      | 0.22         | 1.37      | 1.35      |  |  |
| mA/cm <sup>2</sup>                                             | 6           | 8     | 4    | 2         | 3            | 9         | 12        |  |  |
| $\begin{array}{c} 0.5\text{-}5.0\\ \text{mA/cm}^2 \end{array}$ | 13.         | 0.796 | 3.48 | 3.21      | 0.25         | 2.33      | 2.30      |  |  |
|                                                                | 34          | 6     | 7    | 3         | 8            | 8         | 14        |  |  |
| 1.0-10.0                                                       | 12.         | 0.800 | 4.04 | 3.69      | 0.33         | 2.69      | 2.62      |  |  |
| mA/cm <sup>2</sup>                                             | 47          | 7     | 5    | 4         | 2            | 3         | 02        |  |  |
| 1.5-                                                           | 11.         | 0.877 | 4.13 | 3.77      | 0.33         | 2.53      | 2.47      |  |  |
| 15.0mA/cm <sup>2</sup>                                         | 16          | 1     | 3    | 8         | 4            | 2         | 74        |  |  |
|                                                                | When a/b >1 |       |      |           |              |           |           |  |  |

| 0.25-2.5               | 9.86 | 0.62 | 2.36 | 2.13 | 0.22 | 1.37 | 1.35 |
|------------------------|------|------|------|------|------|------|------|
| mA/cm <sup>2</sup>     |      | 78   | 4    | 2    | 3    | 9    | 12   |
| 0.5-5.0                | 13.3 | 0.79 | 3.48 | 3.21 | 0.25 | 2.33 | 2.30 |
| mA/cm <sup>2</sup>     | 4    | 66   | 7    | 3    | 8    | 8    | 14   |
| 1.0-10.0               | 12.4 | 0.80 | 4.04 | 3.69 | 0.33 | 2.69 | 2.62 |
| mA/cm <sup>2</sup>     | 7    | 07   | 5    | 4    | 2    | 3    | 02   |
| 1.5-                   | 11.1 | 0.87 | 4.13 | 3.77 | 0.33 | 2.53 | 2.47 |
| 15.0mA/cm <sup>2</sup> | 6    | 71   | 3    | 8    | 4    | 2    | 74   |

## **IV.CONCLUSION**

The space charge effect of the Dewald's double barrier control theory has been examined and by using this theory various parameters of anodic oxidation have been evaluated. The entrance barrier energy has been found greater than the corresponding diffusion barrier energy when ratio of the half jump distances of the diffusion barriers to that of entrance barrier (a/b) is less than unity. This suggests that the rate controlling step is at metal/metal oxide interface. But the entrance barrier energy is of the same order that of diffusion barrier energy when the jump distances ratio is more than one. Therefore, the rate controlling step in the kinetics of growth of anodic oxide film is not only at metal/ metal oxide interface but also across the film. The contribution of space charge has been obtained during the growth of anodic oxide film on Ta metal and it is found increases with increase of temperature. Therefore, our data could be explained satisfactorily by Dewald's theory if a/b is greater than one.

#### V. REFERENCES

- [1] N. Verma, J. Jindal, K. C. Singh. 2017. Journal of Indian Chemical Society (2017), ISSN NO: 0019-4522
- [2] N. Cabrera and N. F. Mott. 1948. Reports on Progress in Physics. (1948), ISSN NO:0034-4885 DOI: 10.1088/0034-4885/12/1/308
- [3] M. J. Dignam. 1979. Journal of Electrochemical Society. (1979), ISSN NO: 1945-7111DOI: 10.1149/1.2128923
- [4] J. F. Dewald. 1955. Journal of Electrochemical Society. (1955), ISSN NO: 1945-7111DOI: 10.1149/1.2429983

- [5] J. F. Dewald. 1957. Journal of Physics and Chemistry of Solids. (1957), ISSN NO: 0022-3697 DOI: 10.1016/0022-3697(57)90006-9
- [6] D. A. Vermilyea. 1953. Acta Metallurgica. (1953), ISSN NO: 0001-6160 DOI: doi.org/10.1016/0001-6160(53)90101-1
- [7] N. Verma, B. Mari, K.C. Singh, M. Mollar, J. Jindal. 2016. Acta Physica Polonica A. (2016),
   ISSN NO: 0587-4246 DOI: 10.12693/APhysPolA.129.297
- [8] R. K. Nigam, K. C. Singh and S. Maken. 1988.
   Thin Solid Films. (1988), ISSN NO: 0040-6090DOI: 10.1016/0040-6090(88)90027-2
- [9] S. Hornkjol and T. Hurlen. 1990. Electrochimica Acta. (1990), ISSN NO: 0013-4686DOI: 10.1016/0013-4686(90)87097-L
- [10] D. A. Vermilyea. 1957. J. Electrochemical Society. (1957), ISSN NO: 1945-7111DOI: 10.1149/1.2428521
- [11] L. Young. 1956. Transactions of the Faradey Society. (1956), ISSN NO: 0014-7672DOI: 10.1039/TF9565200502
- [12] J. W. Diggle and A. K. Vijh, "Oxide and oxide films", 3<sup>rd</sup> ed., Marcel Dekkar, New York.
- [13] A. R. Bray, P.W.M. Jacobs and L. Young. 1958.
   Proceedings of the Physical Society. (1958),
   ISSN NO: 0370-1328DOI: 10.1088/0370-1328/71/3/314
- F. Holtzberg, A. Reisman, M. Berry and M. Berkenblit. 1957. Journal of American Chemical Society. (1957), 79, ISSN NO: 0002-7863DOI: 10.1021/ja01566a004