Arima Analysis for Detecting FTIR and XRD Spectral Pattern on Barium Strosium Titanat (BST) Thin Film

Muhammad Nur Aidi¹, Irzaman²

¹Statistics Department, Bogor Agricultural University, Dramaga Bogor Indonesia
²Physics Department, Bogor Agricultural University, Kampus IPB Dramaga Bogor Indonesia

ABSTRACT
Knowledge about atomic and molecular structure of Barium Stronsium Titanat (BST) is very important for exploring the material characteristic of BST. Analyzing X-ray Diffraction and Fourier-transform Infrared (FTIR) Spectroscopy spectral pattern usually done by Rietvel model or General Structure Analysis System (GSAS). Both of these methods rely on reference pattern as guidance. XRD or FTIR data were first compared with reference data which then its characteristic indentified based on the reference data. ARIMA model could be used as alternative. ARIMA model does not need reference pattern as guidance. Research shows those FTIR and XRD values at heated BST powder could be modeled well by ARIMA. Therefore, studying atomic and molecular structure of BST could be done via reflectant function which derived from XRD and FTIR values with ARIMA approach. Result showed that first differencing model in ARIMA with order AR (2) and order MA (2) or less were very good for explaining Lanthanum Oxide (0%, 5%, and 10%) doped BST FTIR data. First differencing model in ARIMA with order AR (3), and order MA (3) or less were very good for explaining Lanthanum Oxide (0%, 5%, and 10%) doped BST XRD data. Accuracy of ARIMA model for explaining Lanthanum Oxide (0%, 5%, and 10%) doped BST FTIR data is more accurate than Lanthanum Oxide (0%, 5%, and 10%) doped BST XRD data. This is due to model ARIMA for Lanthanum Oxide (0%, 5%, and 10%) doped BST FTIR data is more simple (more parsimony) and its Determinant coefficient is higher.

Keywords: ARIMA, FTIR, XRD, BST, Lanthanum oxide

I. INTRODUCTION
In the past few years, ferroelectric material, Barium Stronsium (Ba₁₋ₓ Srₓ TiO₃, BST), has attracting attention as a chemically stable, high permittivity, high tunability and efficient ferroelectric material [1-3]. BST has varies electronic application as multilayer capacitor, Dynamic Random Access Memory (DRAM), micro wave phase, oscillator, uncooled infrared sensor, etc because of its high dielectric constant, nonlinear varied dielectric constant with electrical field, ferroelectric, piroelectric behavior, and so on. The mentioned characteristic depends on the main ingredient composition and chararteristic [4-5].

Ferroelectric material had been studied extensively in form of thin film, especially as multilayer ceramic capacitor (MLCC) and dynamic random access memory (DRAM) [6]. Among many type of ferroelectric material, barium strontium titanate had been the most intensively investigated because of its high dielectric constant, low dielectrical loss, and good thermal stability. Other than that, its temperature range, in which its feroelectric characteristic shows, could be simply controlled by adjusting its barium-strontium ratio [7].

BST powder and thin film usually made by solid-state reaction, and hidrothermal method [8-10]. Several inovative approach, such as sprayed pyrolysis, synthetic combustion, co-chemical precipitation,
pulsed laser deposition (PLD), chemical vapor deposition (CVD), electrochemical, sprayed electrostatic vapor deposition, had been used to synthesize the BST powder [11-12]. BST characteristic was closely related to the composition, its mineral structure, and its molecular shape. Thus, BST detection is crucial to understand the material characteristic deeper. There are several BST detection method such as X-ray powder diffraction (XRD), and also Fourier-transform infrared spectroscopy (FTIR).

X-ray powder diffraction (XRD) is a fast analysis method that mainly used for identifying crystal material phase and retrieving information about individual cell dimension. Analyzed material is homogenysis and composition. X-ray diffraction was based on constructive disturbance of monochromatic X-ray and crystal sample [13]. X-ray was emitted by cathode ray tube, filtered to create monochromatic radiation, collimated for concentrating, and aimed at the sample [14-16]. Interaction between the X-ray and the sample create constructive interference (and the ray diffracted) if the condition meets the Bragg Law (nλ = 2d sin θ). The law explain the correlation between electromagnetic radiation wavelength with diffraction angle and grid distance on the crystal sample [17]. Diffracted X-ray is then detected, proceed and calculated. By scanning the sample with range of 20 angles, all possible direction grid diffraction should be achieved due to the random orientation of the powder material. Conversion diffraction peak to distance-d enables the identification of mineral since each mineral has its unique set of distance-d. Usually, this is achieved by ratio of distance d and the standard benchmark pattern [18].

Fourier-transform infrared spectroscopy is a method used for retrieving infrared spectrum in absorption or emission of solid-gas, solid or gas which was identified by vibration movement. Molecular vibration was unique for each molecule and usually called finger print vibration. Molecular vibration could be splitted into two groups; stretching vibration and bendig vibration. A FTIR spectrometer could simultaneously collect high resolution spectrum data through wide spectrum range. In infrared spectroscopy, infrared spectrum was in the wavelength range from 0.75 to 1000 μm or wavenumber ranges from 1300 to 1 cm⁻¹. From the application and instrumentation point of view, infrared spectrum divided into three radiation type which are near infrared (wavenumber of 12800-4000 cm⁻¹), mid infrared (wavenumber 4000-200 cm⁻¹), and far infrared (wavenumber of 200-10 cm⁻¹). This gives significant advantages over dispersive spectrometer which measure the intensity on the narrow range of wavelength over period of time. Name of Fourier-transform infrared spectroscopy comes from the fact that Fourier transformation (mathematical process) was needed to change raw data into the actual spectrum [19-21].

From the aforementioned explanation, studying atomic and molecular structure of BST are very important in order to studying the BST character itself. Analyzing X-ray Diffraction spectrum and Fourier-transform infrared spectroscopy data usually with Rietveld model or General Structure Analysis System (GSAS). Both methods are based on reference as benchmark. XRD and FTIR data are compared with the reference data which then identified its characteristics. ARIMA model could be used as alternative. ARIMA model does not need any reference pattern as benchmark. The research result showed that XRD value on the heated BST powder could be modelled well by ARIMA [56]. Thus, BST study through atomic and molecular structure could be studied through reflectant function which generated from XRD [22-39] and FTIR [40-54] value with ARIMA approach.

II. RESEARCH OBJECTIVES

1. Obtain BST ARIMA function from XRD and FTIR data,
2. Compared BST ARIMA function with Lanthanum Oksida (0 %, 5 % dan 10 %) doped BST XRD and FTIR data.

III. RESEARCH METHODOLOGY

FTIR spectrum characterization from BST thin film used FTIR tools type ABB MB 3000. In this research, FTIR spectrum used belongs to the mid infrared radiation category (wavenumber of 4000-500 cm⁻¹) with step of 16 cm⁻¹. In the Rietvel model, x axis is infrared radiation category and y axis is percent of absorption. In the ARIMA model, infrared radiation category (x axis) be changed to integer number with starting number 1 as x axis and and y axis is still percent of absorption. XRD spectrum characterization used the XRD tools type GBC EMMA. In this research XRD spectrum used belongs to angle range of 10⁰ to 80⁰ with step of 0.02⁰ [55-58]. In the Rietvel model, x axis is X-Ray spectrum, and y axis is percent of diffraction. In the ARIMA model, X-Ray spectrum be changed to integer number with starting number 1 as as x axis and and y axis is still percent of diffraction.

ARIMA model is a model of y_t function of y_{t-1}, y_{t-2}, up to y_{t-p} and e_t, e_{t-1}, e_{t-2}... e_{t-q}. That model can be wrote by

\[y_t = c + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \cdots + \phi_p y_{t-p} + \theta_1 e_{t-1} + \theta_2 e_{t-2} + \cdots + \theta_q e_{t-q} + \epsilon_t \]

Then

\[(1-\varphi_1B-\cdots-\varphi_pB^p)(1-B)^q y_t = c + (1+\theta_1B+\cdots+\theta_qB^q)e_t \]

ARIMA model exploration for FTIR and XRD data were done by Box and Jenkin procedure [67]. Initial step was done to identify the data was stationary or not in mean and in variance. If it was not stationary in mean then differencing need to be done, and transformation needs to be done if it was not stationary in variance. If the data was stationary, then ACF (Autocorrelation Function) plot and PACF (Partial Autocorrelation Function) plot were done to get possible assumption model. Next step was to get estimated parameter model and to test the parameter to the models until significant model parameters were obtained. Selected model was then calculated its Determinant coefficient value (R²) and plotted with the XRD data dan FTIR to determine the accuracy of the model.

IV. RESULT AND DISCUSSION

There are six models will be developed by ARIMA. They are ARIMA for and Lanthanum Oxide (0 %, 5 %, 10 %) doped BST FTIR data and Lanthanum Oxide (0 %, 5 %, 10 %) doped BST XRD data. We give two examples plot of Lanthanum Oxide (0 %,) doped BST FTIR data (Figure 1) and Lanthanum Oxide (0 %,) doped BST XRD data (Figure 2). At Figure 1, X is infrared radiation category and y axis is percent of absorption. At Figure 2, X axis is X-Ray spectrum, and y axis is percent of diffraction.

Figure 1. Plot of Lanthanum Oxide (0 %,) doped BST FTIR data
At Figure 3, X is integer number with start value of 1 and y axis is percent of absorption. At Figure 4, X is integer number with start value of 1 and y axis is percent of diffraction.

4.1. ARIMA model on BST FTIR Data

Partial Autocorrelation Function and Autocorrelation Function calculation of Lanthanum Oxide (0% as control) doped BST FTIR data suggest that the suitable model was ARIMA (3,1,3) or less. From the tested model, it turned out that the ARIMA model (2,1,2) was the best model due to its significant parameters of model on alpha 5% with Coefficient of Determinant (R²) of 93.5%. ARIMA model (2,1,2) was showed at Table 1.

ARIMA model (2,1,2) on Lanthanum Oxide (0 % as control) doped BST FTIR data was

\[W_i = 1,416 W_{i-1} - 0.563 W_{i-2} + 0.482 e_{i-1} + 0.485 e_{i-2} \]

where,

\[W_i = Y_i - Y_{i-1} \quad \text{Difference of Observation FTIR value n=i with FTIR value n=i-1} \]
\[W_{i-1} = Y_{i-1} - Y_{i-2} \quad \text{Difference of Observation FTIR value n=i-1 with FTIR value n=i-2} \]
\[W_{i-2} = Y_{i-2} - Y_{i-3} \quad \text{Difference of Observation FTIR value n=i-2 with FTIR value n=i-3} \]

Table 1. Significance test of model parameters of ARIMA (2,1,2) on Lanthanum Oxide (0 % as Control) doped FTIR BST data

<table>
<thead>
<tr>
<th>Model</th>
<th>Lag</th>
<th>Parameters</th>
<th>Standard error</th>
<th>T</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR</td>
<td>Lag 1</td>
<td>1,416</td>
<td>0,068</td>
<td>20,743</td>
<td>0,000</td>
</tr>
<tr>
<td></td>
<td>Lag 2</td>
<td>-0,563</td>
<td>0,067</td>
<td>-8,387</td>
<td>0,000</td>
</tr>
<tr>
<td>Differencing</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA</td>
<td>Lag 1</td>
<td>0,482</td>
<td>0,073</td>
<td>6,626</td>
<td>0,000</td>
</tr>
<tr>
<td></td>
<td>Lag 2</td>
<td>0,485</td>
<td>0,072</td>
<td>6,741</td>
<td>0,000</td>
</tr>
</tbody>
</table>
With high coefficient of Determinant value R^2, 93.5%, it means that Lanthanum Oxide (0%) doped BST FTIR data could be explained 93.5% by the model. This is proved by the plot between Lanthanum Oxide (0% as control) doped BST FTIR data showed in Figure 5. At Figure 5, it could be suggested that the model was good enough due to the estimated data plot pattern was following the data. Fluctuation of Lanthanum Oxide (0%, control) doped BST FTIR data could be well predicted with ARIMA (2,1,2) model.

![Figure 5](image)

Table 2. Significance test of model parameters of ARIMA (2,1,1) on Lanthanum Oxide (5%) doped BST FTIR data

<table>
<thead>
<tr>
<th>Model</th>
<th>Lag</th>
<th>Parameters</th>
<th>Standard Error</th>
<th>T</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR</td>
<td>Lag 1</td>
<td>0.893</td>
<td>0.088</td>
<td>10.191</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>Lag 2</td>
<td>-0.466</td>
<td>0.078</td>
<td>-5.949</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>Differencing</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA</td>
<td>Lag 1</td>
<td>-0.404</td>
<td>0.090</td>
<td>-4.500</td>
<td>0.000</td>
</tr>
</tbody>
</table>

ARIMA model (2,1,1) on Lanthanum Oxide (5%) doped FTIR BST data was

\[W_i = 0.893 W_{i-1} - 0.466 W_{i-2} - 0.404 e_{i-1} \]

where,

\[W_i = Y_i - Y_{i-1} = \text{Difference of Observation} \]

FTIR value $n=i$ with FTIR value $n=i-1$

\[W_{i-1} = Y_{i-1} - Y_{i-2} = \text{Difference of Observation} \]

FTIR value $n=i-1$ with FTIR value $n=i-2$

\[W_{i-2} = Y_{i-2} - Y_{i-3} = \text{Difference of Observation} \]

FTIR value $n=i-2$ with FTIR value $n=i-3$

![Figure 6](image)
was 97\%, showed that the ARIMA (2,1,1) model was very good. It means the ARIMA (2,1,1) could explain 97\% of Lanthanum Oxide (5\%) doped BST FTIR data. It also showed in the plot between Lanthanum Oxide (5\%) doped BST FTIR estimated data from ARIMA (2,1,1) with its FTIR data on the Figure 6. Figure 6, that the model was good enough since the plot pattern of the predicted data was following the data pattern. Fluctuation of Lanthanum Oxide (5\%) doped BST FTIR data could be well predicted with ARIMA (2,1,1) model.

With the same method, Partial Autocorrelation Function and Autocorrelation Function calculation of Lanthanum Oxide (10\%) doped BST FTIR data suggest that the suitable model was ARIMA (3,1,3) or less. Models exploration process were executed with ARIMA (3,1,3), ARIMA (3,1,2), ARIMA (2,1,3), and ARIMA (2,1,2), and the result showed that ARIMA (2,1,2) was the best model due to its significant model parameters with alpha 5\%. ARIMA (2,1,2) model on Lanthanum Oxide (10\%) doped BST FTIR data was showed in Table 3. This model has Coefficient of Determinant (R2) of 98\%.

<table>
<thead>
<tr>
<th>Model</th>
<th>Lag Parameters</th>
<th>Standard Error</th>
<th>T</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR</td>
<td>Lag 1</td>
<td>1.251</td>
<td>0.118</td>
<td>10,571</td>
</tr>
<tr>
<td></td>
<td>Lag 2</td>
<td>-0.588</td>
<td>0.075</td>
<td>-7.944</td>
</tr>
<tr>
<td>Differencing</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA</td>
<td>Lag 1</td>
<td>-0.457</td>
<td>0.140</td>
<td>-3.258</td>
</tr>
<tr>
<td></td>
<td>Lag 2</td>
<td>0.416</td>
<td>0.136</td>
<td>3.053</td>
</tr>
</tbody>
</table>

ARIMA model (2,1,2) on Lanthanum Oxide (10 \%) doped FTIR BST data was

\[W_i = 1,251 W_{i-1} -0,588 W_{i-2} - 0.457 ei-1 + 0,416 ei-2 \]

where,

\[W_i = Yi - Yi-1 = \text{Difference of Observation FTIR value } n=i \text{ with FTIR value } n=i-1 \]
\[W_{i-1} = Yi-1 - Yi-2 = \text{Difference of Observation FTIR value } n=i-1 \text{ with FTIR value } n=i-2 \]
\[W_{i-2} = Yi-2 - Yi-3 = \text{Difference of Observation FTIR value } n=i-2 \text{ with FTIR value } n=i-3 \]

From the aforementioned explanation, Lanthanum Oxide (0\%, 5\%, 10\%) doped BST FTIR could be well explained by the models ARIMA (2,1,2), ARIMA (2,1,1), and ARIMA (2,1,2) due to its above 95\% coefficient of Determinant value.

4.2. ARIMA model on BST XRD data

From the PACF and ACF plot of Lanthanum Oxide (0\%, control) doped BST FTIR data, it was suggested that the suitable model was ARIMA (3,1,3) or less. ARIMA (3,1,3) model of Lanthanum Oxide (0\%, control) doped BST FTIR data had parameters model
of ARIMA significant on alpha 5%. Thus, the selected model was ARIMA (3,1,3). ARIMA (3,1,3) model result on Lanthanum Oxide (0%) doped BST XRD data was showed in Table 4. The model had coefficient of Determinant (R^2) = 88% which there were 88% of Lanthanum Oxide (0%) doped BST XRD data could be explained by the model.

Table 4. Significance test of model parameters of ARIMA (3,1,3) on Lanthanum Oxide (0%) doped XRD BST data

<table>
<thead>
<tr>
<th>Model</th>
<th>Lag</th>
<th>Parameters</th>
<th>Standard Error</th>
<th>T</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lag 1</td>
<td>-0.965</td>
<td>0.081</td>
<td>-11.871</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>Lag 2</td>
<td>-0.531</td>
<td>0.080</td>
<td>-6.625</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>Lag 3</td>
<td>-0.506</td>
<td>0.057</td>
<td>-8.925</td>
<td>0.000</td>
</tr>
<tr>
<td>Differencing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lag 1</td>
<td>-1.049</td>
<td>0.078</td>
<td>-13.426</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>Lag 2</td>
<td>-0.771</td>
<td>0.078</td>
<td>-9.887</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>Lag 3</td>
<td>-0.578</td>
<td>0.047</td>
<td>-12.230</td>
<td>0.000</td>
</tr>
</tbody>
</table>

![Figure 8. Plot XRD Predicted data from ARIMA (3,1,3) with Lanthanum Oxide (0%, control) BST XRD data](image)

ARIMA model (3,1,3) on Lanthanum Oxide (0%) doped BST XRD data was

$\text{Wi} = -0.965 \text{ Wi}_1 - 0.531 \text{ Wi}_2 - 0.506 \text{ Wi}_3 - 1.049 \text{ ei}_1 - 0.771 \text{ ei}_2 - 0.578 \text{ ei}_3$

where,

$\text{Wi}_i = \text{Yi} - \text{Yi-1} = \text{Difference of Observation FTIR value n=i with FTIR value n=i-1}$

$\text{Wi}_1 = \text{Yi-1} - \text{Yi-2} = \text{Difference of Observation FTIR value n=i-1 with FTIR value n=i-2}$

$\text{Wi}_2 = \text{Yi-2} - \text{Yi-3} = \text{Difference of Observation FTIR value n=i-2 with FTIR value n=i-3}$

$\text{Wi-3} = \text{Yi-3} - \text{Yi-4} = \text{Difference of Observation FTIR value n=i-3 with FTIR value n=i-4}$

Plot between the Lanthanum Oxide (0%) doped BST XRD predicted data from ARIMA (3,1,3) with the Lanthanum Oxide (0%) doped BST XRD data was shown in Figure 8. In Figure 8, it could be suggested, ARIMA (3,1,3) for Lanthanum Oxide (0%, control) doped BST XRD data was good enough due to the predicted data plot pattern was following the data pattern.

ARIMA (3,1,3) model also the best model for Lanthanum Oxide (5%) doped BST XRD data. It was due to the PACF and ACF model analysis that suggested the ARIMA (3,1,3) or less, since model parameters of ARIMA (3,1,3) have significance of 5%. The ARIMA (3,1,3) model result on Lanthanum Oxide (5%) doped BST XRD data was shown in the Table 5. This model had coefficient of Determinant (R^2) = 88%, which means there are 88% of Lanthanum Oxide (5%) doped BST XRD data that could be explained by model.
Table 5. Significance test of model parameters ARIMA (3,1,3) on Lanthanum Oxide (5%) doped XRD BST data

<table>
<thead>
<tr>
<th>Model</th>
<th>Lag</th>
<th>Parameters</th>
<th>Standard Error</th>
<th>T</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR</td>
<td>Lag 1</td>
<td>0.534</td>
<td>0.052</td>
<td>10.359</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>Lag 2</td>
<td>0.859</td>
<td>0.020</td>
<td>43.747</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>Lag 3</td>
<td>-0.497</td>
<td>0.045</td>
<td>-11.136</td>
<td>0.000</td>
</tr>
<tr>
<td>Differencing</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA</td>
<td>Lag 1</td>
<td>0.521</td>
<td>0.056</td>
<td>9.313</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>Lag 2</td>
<td>0.787</td>
<td>0.028</td>
<td>28.054</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>Lag 3</td>
<td>-0.312</td>
<td>0.050</td>
<td>-6.211</td>
<td>0.000</td>
</tr>
</tbody>
</table>

ARIMA model (3,1,3) on Lanthanum Oxide (5%) doped BST XRD data was:

\[W_i = 0.534 W_{i-1} + 0.859 W_{i-2} - 0.497 W_{i-3} + 0.521 e_{i-1} + 0.787 e_{i-2} - 0.312 e_{i-3} \]

where,

\[W_i = Y_i - Y_{i-1} = \text{Difference of Observation FTIR value } n=i \text{ with FTIR value } n=i-1 \]
\[W_{i-1} = Y_{i-1} - Y_{i-2} = \text{Difference of Observation FTIR value } n=i-1 \text{ with FTIR value } n=i-2 \]
\[W_{i-2} = Y_{i-2} - Y_{i-3} = \text{Difference of Observation FTIR value } n=i-2 \text{ with FTIR value } n=i-3 \]
\[W_{i-3} = Y_{i-3} - Y_{i-4} = \text{Difference of Observation FTIR value } n=i-3 \text{ with FTIR value } n=i-4 \]

Figure 9. Plot XRD Predicted Data from ARIMA (3,1,3) with Lanthanum Oxide (5%) doped BST XRD data

Plot between the Lanthanum Oxide (5%) doped BST XRD predicted data from ARIMA (3,1,3) with the Lanthanum Oxide (5%) doped BST XRD was shown in Figure 9. In Figure 9, it could be suggested that ARIMA (3,1,3) for Lanthanum Oxide (5%) doped BST XRD data was good enough due to the predicted data plot pattern was following the data pattern.

On the Lanthanum Oxide (10%) doped BST XRD data, it was suggested that the best model was ARIMA (3,1,2). The model parameters was shown in the Table 6. The model had coefficient of Determinant \(R^2 \) = 88% which means there were 88% of Lanthanum Oxide (10%) doped BST XRD data could be explained by the model.

Table 6. Significance test of model parameters of ARIMA (3,1,2) on Lanthanum Oxide (10%) XRD BST data

<table>
<thead>
<tr>
<th>Model</th>
<th>Lag</th>
<th>Parameters</th>
<th>Standard Error</th>
<th>T</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR</td>
<td>Lag 1</td>
<td>0.336</td>
<td>0.021</td>
<td>16.158</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>Lag 2</td>
<td>0.848</td>
<td>0.013</td>
<td>62.599</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>Lag 3</td>
<td>-0.377</td>
<td>0.016</td>
<td>-23.692</td>
<td>0.000</td>
</tr>
<tr>
<td>Differencing</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA</td>
<td>Lag 1</td>
<td>0.138</td>
<td>0.017</td>
<td>8.036</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>Lag 2</td>
<td>0.857</td>
<td>0.017</td>
<td>50.535</td>
<td>0.000</td>
</tr>
</tbody>
</table>
ARIMA model (3,1,2) on Lanthanum Oxide (10 %) doped BST XRD data was

\[Wi = 0.336 \text{ Wi}_1 + 0.848 \text{ Wi}_2 - 0.377 \text{ Wi}_3 + 0.138 \text{ ei}_1 + 0.857 \text{ ei}_2 \]

where,

\[\text{Wi}_i = \text{Yi}_i - \text{Yi}_{i-1} = \text{Difference of Observation FTIR value n=i with FTIR value n = i-1} \]
\[\text{Wi}_{i-1} = \text{Yi}_i - \text{Yi}_{i-2} = \text{Difference of Observation FTIR value n=i-1 with FTIR value n = i-2} \]
\[\text{Wi}_{i-2} = \text{Yi}_i - \text{Yi}_{i-3} = \text{Difference of Observation FTIR value n=i-2 with FTIR value n = i-3} \]
\[\text{Wi}_{i-3} = \text{Yi}_i - \text{Yi}_{i-4} = \text{Difference of Observation FTIR value n=i-3 with FTIR value n = i-4} \]

Plot between the Lanthanum Oxide (10%) doped BST XRD predicted data from ARIMA (3,1,2) with the Lanthanum Oxide (10 %) doped BST XRD data was shown in Figure 10. In Figure 10, it could be said that ARIMA (3,1,2) for Lanthanum Oxide (10 %) doped BST XRD data was good enough due to the predicted data plot pattern was following the data pattern.

From the aforementioned explanation, Lanthanum Oxide (0%, 5%, 10%) doped BST XRD could be well explained by the model ARIMA (3,1,3) and ARIMA (3,1,2) due to its has above 88% coefficient of Determinant value.

4.3. Effect of Lanthanum Oxide enclosure on the FTIR and XRD of BST

To calculate the effect of the Lanthanum Oxide doped the BST FTIR and BST XRD, F Test was done, then followed by T test. The mean value of Lanthanum Oxide of 0% (control), 5%, and 10% doped BST FTIR were 95.6092, 85.8572, 93.7853, respectively. Variance analysis result showed that percentage of Lanthanum Oxide doped BST FTIR affected the BST FTIR value. This was proved from the F test on the Table 7, which showed significant difference.

It is suspected that the addition of lanthanum oxide into the BST, infrared ray spectra capable of vibrating the La-O group bond in the BST compound (capable of vibrating very significantly).

<table>
<thead>
<tr>
<th>Source</th>
<th>Sum of Squares</th>
<th>Degree of freedom</th>
<th>Sum of Mean Squares</th>
<th>F</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lanthanum Oxide</td>
<td>12311.128</td>
<td>2</td>
<td>6155.564</td>
<td>37.641</td>
<td>.000</td>
</tr>
<tr>
<td>Error</td>
<td>111856.855</td>
<td>684</td>
<td>163.533</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>124167.983</td>
<td>686</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Meanwhile, mean value Lanthanum Oxide of 0% (control), 5%, and 10% doped BST XRD were 17.3276; 17.6975; 18.8966; respectively. Variance analysis result showed that percentage of Lanthanum Oxide doped to BST XRD did not affect the BST XRD value. This was proved from the F test on the Table 8,
which showed not significant difference. It is suspected that the addition of lanthanum oxide into the BST, the x-ray spectral does not move the angle nor increase the intensity of the peak of the diffraction field is not large (shifts the angle and raises the peak intensity of the diffraction field is not significant).

Tabel 8. Analisis Ragam Pengaruh Lantanum Oksida terhadap XRD BST

<table>
<thead>
<tr>
<th>Source</th>
<th>Sum of Squares</th>
<th>Degree of freedom</th>
<th>Sum of Mean Squares</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lanthanum Oxide</td>
<td>4416,746</td>
<td>2</td>
<td>2208,373</td>
<td>1,583</td>
<td>0,205</td>
</tr>
<tr>
<td>Error</td>
<td>14645643,976</td>
<td>10500</td>
<td>1394,823</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>14650060,722</td>
<td>10502</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

V. CONCLUSION

1. First Differencing Model on ARIMA with order AR 2 and Order MA(2) or less, was very good to explain Lanthanum Oxide (0%, 5%, 10%) doped BST FTIR data.
2. First Differencing Model on ARIMA with order AR 3 and Order MA(3) or less, was very good to explain Lanthanum Oxide (0%, 5%, 10%) doped BST XRD data.
3. Accuracy of ARIMA model to explain Lanthanum Oxide (0%, 5%, 10%) doped BST FTIR data was better than to explain Lanthanum Oxide (0%, 5%, 10%) doped BST XRD data (more parsimony) and also had higher coefficient of Determinant.
4. ARIMA (2,1,2) model Lanthanum Oxide (0%) doped BST FTIR data was $W_i= 1.416 Wi-1 -0.563 Wi-2 +0.482 ei-1 + 0.485 ei-2$. ARIMA (2,1,1) model on Lanthanum Oxide (5%) doped BST FTIR data was $W_i= 0.893 Wi-1 -0.466 Wi-2 -0.404 ei-1$. ARIMA (2,1,2) model on Lanthanum Oxide (10%) doped BST FTIR data was $W_i= 1.251 Wi-1 -0.588 Wi-2 - 0.457 ei-1 + 0.416 ei-2$.
5. ARIMA (3,1,3) model Lanthanum Oxide (0%) doped BST XRD data was $W_i= -0.965 Wi-1 -0.531 Wi-2 - 0.506 Wi-3 - 1.049 ei-1 - 0.771 ei-2 - 0.578 ei-$. ARIMA (3,1,3) model Lanthanum Oxide (5%) doped BST XRD data was $W_i= 0.534 Wi-1 +0.859 Wi-2 - 0.497 Wi-3 + 0.521 ei-1 + 0.787 ei-2 - 0.312 ei$. ARIMA (3,1,2) model on Lanthanum Oxide (10%) doped BST XRD data was $W_i= 0.336 Wi-1 +0.848 Wi-2 - 0.377 Wi-3 + 0.138 ei-1 + 0.857 ei-2$.

VI. REFERENCES

[53] Naeeem A, Mahmood A, Iqbal Y, Ullah A, Mahmood T, Humayun M. "Dielectric and impedance spectroscopic studies on (Ba0.5Sr0.5)Mnx(Ti0.95Fe0.05)1xO3 ceramics synthesized by using sol–gel method," Journal of Alloys and Compounds, Vol. 645, pp. 290-296, 2015.

Properties of BaxSr(1-x)TiO3 (x = 0.25; 0.35; 0.45; 0.55) Thin Film Semiconductor. Ferroelectrics. Vol. 445 (1) : 4-17, 2013.

