
IJSRSET1841244  | Received : 01 Dec  2016 | Accepted : 25 Dec  2016 | November-December-2016 [(2)6 : 770-776 ] 

 © 2016 IJSRSET | Volume 2 | Issue 6  | Print ISSN: 2395-1990 | Online ISSN : 2394-4099 

Themed Section : Engineering and Technology 

 

770 

Dynamic Dispatch Scheduling for High Performance VLIW 

Architecture 
R. Ramesh Babu

1
, Dr. Sachin Saxena

2
 

1
Research Scholar, Department of ECE, Sunrise University, Alwar, Rajasthan, India 

2
Supervisor, Department of ECE, Sunrise University, Alwar, Rajasthan, India 

ABSTRACT 

 

VLIW architecture has become widespread due to the combined benefits of simple hardware and compiler-

extracted instruction-level parallelism. However, the VLIW instruction set architecture and its hardware 

implementation are tightly coupled, a novel simultaneous multithreading VLIW architecture with dynamic 

dispatch mechanism to address the challenge of the underutilization of computing resources. The SMT 

technology exploits the unused instruction slots by converting the thread level parallelism to the instruction-

level parallelism, improving the efficiency. On the availability of the corresponding functional units. With the 

dynamic dispatch mechanism, the issues instructions to functional unit at run-time rather than at compile-

time, such that the issue conflicts among multiple threads are reduced significantly. The new VLIW 

architecture shows that it can effectively increase the processor throughput and improve the performance. 

Keywords :  VLIW, ILP, Reorder Buffer, Dynamic Dispatch 

 

I. INTRODUCTION 

 

With the advent of RISC architectures, the x86 is now 

recognized as a deficient instruction set. Instruction 

set compatibility is at the heart of the desktop 

microprocessor market. Because the application 

programs that end users purchase are delivered in 

binary (directly executable by the microprocessor) 

form, the end users desire to protect their software 

investments creates tremendous instruction-set 

inertia. RISC chips use a rather small number of 

relatively simple, fixed-length instructions, always 32 

bits long. Although this wastes some memory by 

making programs bigger, the instructions are easier 

and faster to execute. Because they have to deal with 

fewer types of instructions, RISC chips require fewer 

transistors than comparable CISC chips and generally 

deliver higher performance at similar clock speeds, 

even though they may have to execute more of their 

shorter instructions to accomplish a given function. 

Since the early days, asynchronous circuits have been 

used in many interesting applications. The results 

show that asynchronous circuits have advantages of 

low power consumption and high performance. In 

the embedded systems that are sensitive to power 

dissipation, there is a problem for us to solve that how 

to make our processors have lower power 

consumption without performance loss. 

  

VLIW instructions are necessarily longer than RISC 

or CISC instructions, thus the name Very long 

instruction word or VLIW refers to a processor 

architecture designed to take advantage of instruction 

level parallelism (ILP). Whereas conventional 

processors mostly only allow programs that specify 

instructions to be executed one after another, a VLIW 

processor allows programs that can explicitly specify 

instructions to be executed at the same time (i.e. in 

parallel). This type of processor architecture is 

intended to allow higher performance without the 



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)  771 

inherent complexity of some other approaches. In 

VLIW machine, instructions fetched by processor in a 

given cycle are to be performed by several functional 

units. It is important to dispatch these instructions to 

their destinations correctly. The design of the 

dispatch unit in these processors is a significant 

impact of the implementation of a sub system.  

Rapidly and correctly dispatching the instructions is 

the necessity to prevent the performance from the 

bottleneck. 

 

Very Long Instruction Word (VLIW) processors have 

wide acceptance in the embedded domain due to 

hardware simplicity, low cost and low power 

consumption. To exploit high Instruction Level 

Parallelism (ILP), VLIWs need to be designed with a 

significant issue width. However, the centralized 

Register File (RF), with all the Functional Units (FUs) 

connected to it, becomes a bottleneck because of an 

increase in RF delay, power consumption and area. 

Clustered VLIW architectures have multiple RFs and 

cluster the FUs according to the RFs they are 

connected to. Many VLIWs have been designed using 

the clustered approach. Some applications do not take 

advantage of the high issue width available in a VLIW 

processor and the processor is heavily underutilized. 

In the context of VLIW architectures, processor 

underutilization can be characterized in terms of 

vertical and horizontal waste. Vertical wastes are the 

cycles where no operations are issued at all. 

Horizontal waste is the underutilization of the issue 

width of the processor, i.e. the number of operations 

issued in a cycle is less than the issue width. Several 

multithreading techniques have been proposed to 

reduce the vertical and horizontal waste in the 

processor.  

 

Traditional approaches to improving performance in 

processor architectures include breaking up 

instructions into sub-steps so that instructions can be 

executed partially at the same time (pipelining), 

dispatching individual instructions to be executed 

completely independently in different parts of the 

processor (superscalar architectures), and even 

executing instructions in an order different from the 

program (out-of-order execution). These approaches 

all involve increased hardware complexity (higher 

cost, larger circuits, higher power consumption) 

because the processor must intrinsically make all of 

the decisions internally for these approaches to work.  

The VLIW approach, by contrast, depends on the 

programs themselves providing all the decisions 

regarding which instructions are to be executed 

simultaneously and how conflicts are to be resolved. 

As a practical matter this means that the compiler 

software (the software used to create the final 

programs) becomes much more complex, but the 

hardware is simpler than many other approaches to 

parallelism. As is the case with any novel 

architectural approach, the concept is only as useful 

as code generation makes it. However, these 

optimized capabilities are useless unless compilers are 

able to spot relevant source code constructs and 

generate target code that duly utilizes the CPU's 

advanced offerings. Therefore, programmers must be 

able to express their algorithms in a manner that 

makes the compiler's task easier. 

 

As SMT exploits some of the unused instruction slots 

by converting thread-level parallelism (TLP) to ILP, a 

processor with SMT can issue multiple instructions 

from multiple threads each cycle. Therefore, SMT 

improves the processor throughput, raises the 

functional unit utilization, and exploits maximum ILP 

by issuing as many instructions as possible from 

multiple threads in any given cycle. 

 

Instruction Level Parallelism 

 

Very Long Instruction Word (VLIW) processors have 

wide acceptance in the embedded domain due to 

hardware simplicity, low cost and low power 

consumption. To exploit high Instruction Level 

Parallelism (ILP), VLIWs need to be designed with a 

significant issue width. However, the centralized 

Register File (RF), with all the Functional Units (FUs) 

connected to it, becomes a bottleneck because of an 

increase in RF delay, power consumption and area 



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)  772 

Clustered VLIW architectures have multiple RFs and 

cluster the FUs according to the RFs they are 

connected to. Many VLIWs have been designed using 

the clustered approach. Some applications do not take 

advantage of the high issue width available in a VLIW 

processor and the processor is heavily underutilized. 

In the context of VLIW architectures, processor 

underutilization can be characterized in terms of 

vertical and horizontal waste. Vertical wastes are the 

cycles where no operations are issued at all. 

Horizontal waste is the underutilization of the issue 

width of the processor, i.e. the number of operations 

issued in a cycle is less than the issue width. Several 

multithreading techniques have been proposed to 

reduce the vertical and horizontal waste in the 

processor.  

 

Architectures exploiting instruction-level parallelism 

(ILP) at compile time, such as Very Long instruction 

word (VLIW) and transport triggered architecture 

(TTA), may satisfy the requirements. They can be 

further enhanced by using asynchronous circuits to 

significantly reduce power consumption. As such, we 

are interested in asynchronous processors with 

architectures exploiting ILP at compile time. 

However, most of the current asynchronous 

processors are based on RISC-like architectures. 

When designing asynchronous VLIW or TTA 

processors, the distribution of control introduces 

some serious problems, and errors may occur because 

of the variable latencies of operations. 

 

Instruction-Level Parallelism (ILP) is a measure of 

how many operations in a computer program can be 

executed concurrently. An ILP processor has multiple 

function units that can be engaged simultaneously 

executing multiple operations. 

 

In Figure1showing a simple five-stage processor 

pipeline in the multiple-issue case on the right, there 

can be two operations in the EX stage in a single cycle. 

Noteworthy, in the same cycle multiple register file 

accesses can occur (write backs in the WB stage and 

operand reads in the ID stage), requiring a multi-

ported register file. 

 

 

I 

 

    CYCLES 

  Fig.1 ILP                 CYCLES 

 

 

 

 

 

  I         Fig.2.mutiple thread CYCLES 

 

Previous studies of ILP limits indicate availability of 

potentially high operation concurrency in (media) 

applications, spanning the range of a few tens up to 

hundreds of independent operations. For example, 

Table II shows Potential ILP rates for a basic block 

instruction scheduling, program wide instruction 

scheduling and program-wide scheduling combined 

with aggressive code optimizations. 

 

Reorder buffer 

 

Additional set of hardware registers called reorder 

buffers (ROBs).  ROBs stores results of instructions (in 

shadow) that have completed but not yet committed. 

Instructions enter ROB out of order and instruction 

leaves ROB in order. Results of an instruction become 

visible externally when it leaves ROB and force them 

to complete in order. Elimination of store buffers and 

replacing them by ROBs in VLIW architecture. 

Exceptions are masked until instructions commits.  

 

Instruction Format 

The Instruction Set of processor consists of 16-bit 

instructions and 32-bit instructions. Most frequently 

used instructions, such as addition, subtractions, 

and/or, etc, have both 16-bit 32-bit instruction 

formats. 

The Processor instruction set picks up the parallel 

information from the instruction type and the register 

IF       ID       EX          ME       

WB 
IF       ID       EX          ME       

WB 

 IF      ID          EX         ME       

WB 

 

 

 

 

IF          ID         EX      ME      

WB 

 

IF        ID         EX        ME      
WB 
IF         ID       EX        ME        
WB IF      ID           EX         ME       

WB   IF       ID          EX         ME        

WB 



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)  773 

file assignment field. According to the register file 

assignment field, the instructions are grouped into 

two slots, slot x and slot y, and each slot consists of up 

to three instructions. The slot x and slot y can be 

executed concurrently, and the instructions in the 

same slot can be dispatched in parallel. 

 

Instruction Dispatch  

When multiple threads contend for one functional 

unit, an issue conflict on that functional unit occurs. 

To quantify the issue conflicts, the issue conflict rate 

is introduced to indicate the most wanted functional 

unit for both threads in a given period. Equation 1 

calculates the issue conflict rate, in which issue 

conflict cycle is the cycle when an issue conflict 

occurs. 

Issue Conflict Rate = Issue Conflict Cycles / Total 

Cycles (1) 

 

 
Fig.3 : The block diagram of instruction dispatch unit 

Conventional VLIW assign the instructions to 

functional unit at compile-time with the functional 

unit assignment field in the operation code. 

 

Destination Identification 

The instructions of an execution packet may be 

performed by different functional units. The dispatch 

unit checks the aims of them and delivers them to the 

proper places, where pre-process and decode 

instructions and then perform the operations. 

 

 

Pipeline Partially Discontinued 

In the case of more than one execution packet in the 

fetch packet, the dispatch unit needs some more 

pipeline cycle to finish dispatching these eight 

instructions. Some of the stages of the pipeline have 

to be stopped, such as the instruction fetch unit; 

while some of other stages, ALUs, ought to run 

normally. When the final execution packet of the 

fetch packet has been delivered, the pipeline 

continues. It is indispensable for the DSP to run 

correctly; otherwise undefined erroneous result 

would be produced. 

 

Branch Consideration 

It is common in the program to switch the section. 

When the fetch packet of the destination of the 

branch instruction comes to the instruction dispatch 

unit, it is definite to begin the dispatch and delivery 

of the eight instructions immediately, abandoning the 

processing of the previous fetch packet. 

 

Instruction Pre-Processing 

According to the statistics of the Processor 

performance, it is the instruction decoding and 

preparing the operands that take up some long time in 

a cycle, which is the critical path delay in design. 

Therefore the instruction pre-processing is very 

helpful to improve the clock rate, as it interprets the 

type of operation and the source of operands. Thus, to 

sum up the points indicated above, it is the 

complexity of the instruction dispatch unit that 

makes the design of the logic circuitry very 

complicated. At the same time, the area and power 

consumption are serious disadvantages of the circuit 

unit. 

 
 

Fig.4 (a). Static dispatch mechanism 



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)  774 

 

Figure.4 (a) according to the functional unit 

assignment field in the instruction code, the dispatch 

unit issues the instruction to the M1 unit. This can be 

called static dispatch mechanism. Though there are 

multiple M units, M1 to M4, which can execute this 

multiply instruction, the hardware just issues the 

instruction to M1 unit which is designated by the 

complier. If M1 unit has been taken up by the higher 

priority thread, the issue conflict occurs and the 

instruction is not issued until M1 unit is available. 

With dynamic dispatch mechanism, the pre-decode 

logic in the dispatch unit decodes the instruction type 

from the instruction code. 

 

 
Fig.4(b). Dynamic dispatch mechanism 

 

Figure.4 (b) shows a block diagram of the VLIW 

architecture. In the VLIW architecture, the scheduler 

engine fetches instructions from the instruction cache 

and executes them first using a simple pipelined 

processor the primary processor. In addition, its 

scheduler unit dynamically schedules the trace 

produced during this execution into VLIW 

instructions, placing them as blocks of VLIW 

instructions in the VLIW cache. If the same code is 

executed again, it is then fetched by the VLIW engine 

from this cache and executed in a VLIW fashion. In 

the VLIW architecture, the scheduler engine provides 

object code compatibility, and the VLIW engine 

provides VLIW performance and simplicity. 

Executing code in two distinct modes, one sequential 

and one parallel, results in four positive 

characteristics. First, code compatibility between 

different machine 

 

Dynamic dispatch mechanism is also beneficial to the 

code density. With static dispatch mechanism, the 

instruction mapped to different functional units 

requires different instruction codes, even though the 

instruction has the same function.  The dynamic 

dispatch unit issues instructions to functional units 

according to the instruction type, so that an 

instruction has a uniform instruction code. This 

orthogonal instruction set maintains a compact code 

density. 

 

Evaluation of work 

 

To evaluate the performance of our approach, we 

evaluate the behaviour of the prototype processor 

under different configurations: with on-chip 

memories or caches, with static or dynamic dispatch 

mechanisms, with single thread or dual thread, and so 

on. 

 

 

x-axis-program,y-axis-IPC 

Fig.5. Processor throughput 

The generated programs (prog1~prog4) with different 

levels of instruction parallelism are evaluated for 

various configurations: with on-chip memories or 

caches, with static or dynamic dispatch mechanisms. 

Compared to the single thread model, all dual-thread 

models show substantial gains in IPC. If the programs 

are evaluated without cache, the lower the 

instruction parallelism of the program is, the larger 

0

1

2

3

4

5

sr
am

-1

sr
am

2

sr
am

-3

sr
am

-4

ca
ch

e
-1

ca
ch

e
-2

ca
ch

e
3

ca
ch

e
-4

single thread

milti thread

dynamic
dispatch



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)  775 

enhancement can be gained from the simultaneous 

multithreading. 

 

The processor throughput (IPC) for our approach in 

comparison with the single-thread model and the 

BMT model. The Block Multi-Threading (BMT) 

model is a dual-thread multithreading model without 

splitting the VLIW execution packets. Compared to 

the single-thread model, all dual-thread models show 

substantial gains in IPC. If the programs are evaluated 

without cache, the lower the instruction parallelism 

of the program is, the larger enhancement can be 

gained from the simultaneous multithreading. Under 

the configuration with cache, because the multi 

threading can hide the caches miss latencies, the gain 

in IPC of our approaches more significant. As seen in 

Fig.5, with respect to the single-thread model, the 

average processor throughputs improvement gained 

by our approach of the generated programs is about 

52%, and about 22% with respect to the BMT model. 

 

II. CONCLUSION 

 

The dispatch unit of the VLIW dynamically 

dispatches instructions to the functional units at run-

time rather than at compile-time, such that the issue 

conflicts among multiple threads are reduced. 

Instruction dispatch unit for design based on VLIW 

architecture. The unit recognizes the proper 

instructions to allocate in every cycle, and then 

dispatches them to the accurate functional units. 

The proposed dual-thread VLIW processor model 

based on the Weld architecture paradigm tolerates 

latencies by creating a speculative thread from a 

single application and running it with the no 

speculative main thread simultaneously. The compiler 

decides where and when to create the speculative 

thread that can be both control and memory 

speculative at the time of thread creation. 

 

III. REFERENCES 

 

[1] Fisher Joseph A(1983)."Very Long Instruction 

Word architecture and the ELI-512" Proceedings 

of the 10th annual international symposium on 

Computer architecture. International Symposium 

on Computer Architecture. New York, NY, 

USA:AMC.140–150.DOI:10.1145/800046. 801649 

.ISBN0-89791-101-6 Retrieved 2009-04-27. 

[2] Manoj Gupta, Ferm´ın S´anchez,Josep Llosa 978-

1-4244-6443-2/10/$26.00 ©2010 IEEE, "A Low 

Cost Split-Issue Technique to Improve 

Performance of SMT Clustered VLIW Processors". 

[3] Zheng Shen, Hu He,Yihe Suna at the National 

Natural Science Foundation of China (NSFC)  

under grant No.60236020 IEEE 2009 12th 

Euromicro Conference on Digital System Design / 

Architectures, Methods and Tools "Simultaneous 

Multithreading VLIW DSP Architecture with 

Dynamic Dispatch Mechanism". 

[4] J.Poornima1,G.V.Ganesh,G.Venkata Rao,S.Daya 

Sagar."Design and implementation of advanced 

32bit pipelined RISC processor for multipurpose 

applications" International Journal of VLSI & 

Signal Processing Applications, Vol. 2,Issue2,April 

2012, ISSN 2231-3133, (153-159)  

[5] Bharath Iyer, Sadagopan Srinivasan, and Bruce 

Jacob, Proceedings of the 31st Annual 

International Symposium on Computer 

Architecture (ISCA’04) 1063-6897/04 ©2004 

IEEE, "Extended Split-Issue: Enabling Flexibility 

in the Hardware Implementation of NUAL VLIW 

DSPs". 

[6] Dongrui She, Yifan He, Bart Mesman, Henk 

Corporaal,978-3-9810801-8-6/DATE12/2012 

EDAA,"Scheduling for Register File Energy 

Minimization in Explicit Datapath Architectures," 

[7] Yong Li, Zhi-ying Wang and Kui Dai, Seventh 

International Conference on Computer and 

Information Technology, 0-7695-2983-6/07 © 

2007 IEEE DOI 10.1109/CIT.2007.53, "A Low-

Power Application Specific Instruction Set 

Processor Using Asynchronous Function Units". 

[8] Qingwei Zheng, Zhaolin Li, Jianfei Ye, Chipin 

Wei and Jiajia Chen, 2010 Second Pacific-Asia 

Conference on Circuits, Communications and 

System (PACCS) ©2010 IEEE,"Implementation of 

an Instruction Dispatch Unit Applied to Digital 

Signal Processors with VLIW Architecture". 



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)  776 

[9] Mengjun Sun, Zheng Shen, Hu He, 978-1-4244-

3870-9/09 ©2009 IEEE,"An Efficient Parallel 

Instruction Execution Method for VLIW". 

[10] Ittetsu Taniguchi, Mitsuya Uchida, Hiroyuki 

Tomiyama, Masahiro Fukui,Praveen Raghavan 

and Francky Catthoor, 2011 14th Euromicro 

Conference on Digital System Design, 978-0-

7695-4494-6/11©2011IEEE DOI 

10.1109/DSD.2011.93. "An Energy Aware Design 

Space Exploration for VLIW AGU Model with 

Fine Grained Power Gating". 

[11] Tien-Wei Hsieh, Pi-Chen Hsiao, Che-Yu Liao, 

Hsien-Ching Hsieh, Huang-Lun Lin Tay-Jyi Lin, 

Yuan-Hua Chu, and An-Yeu (Andy) Wu, 2008 

IEEE International SoC Design Conference, 

"Energy-Effective Design & Implementation of an 

Embedded VLIW DSP". 

[12] Chan-Hao Chang,DianaMarculescu Proceedings of 

the 2006 Emerging VLSI Technologies and 

Architectures (ISVLSI’06) 0-7695-2533-4/06 - 

2006 IEEE "Design and Analysis of a Low Power 

VLIW DSP Core".  

[13] Hsien-Ching Hsieh, Shui-An Wen, Che-Yu Liao, 

Huang-Lun Lin, Po-Han Huang,Shing-Wu Tung 

at 2011 International Symposium on Intelligent 

Signal Processing and Communication Systems 

(ISPACS) December 7-9, 2011 "Low Power Design 

and Dynamic Power Management System for 

VLIW DSP Subsystem" . 

[14] Mostafa E. A. Ibrahim, Markus Rupp, and S. E.-D. 

Habib ©2009 IEEE "Performance and Power 

Consumption Trade-offs for a VLIW DSP". 


