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ABSTRACT 
 

Hospitals continually face the challenge of planning and allocating hospitals wards to incoming patients in a 

stochastic demand environment. In this paper, a finite horizon Markov decision process model is developed and 

analyzed for the hospital ward allocation activity. The model focuses explicitly on developing policies for 

determining when to admit additional patients using weekly data from incoming patients and the availability of 

vacancies in hospital wards. Adopting a Markov decision process approach, the states of a Markov chain represent 

possible states of demand for ward occupancy. The decision of whether or not to admit additional patients is made 

using dynamic programming over a finite period planning horizon. A numerical example demonstrates the existence 

of an optimal state-dependent admission policy as well as the corresponding total operational costs in hospital wards. 
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I. INTRODUCTION 

 

Planning and managing ward allocations in hospitals are 

still great challenges in hospital administration; 

especially when demand for hospital wards follows a 

stochastic trend. It requires a good understanding of the 

environment in which the hospital is operating and the 

development of a vision regarding future ward allocation 

decisions. Proper ward allocation must therefore ensure 

that the requirement of wards by patients are matched 

with the ward availability so that healthcare delivery is 

not hindered by lack of wards or the hospital does not 

have idle, excess wards on hand. Two major problems 

are usually encountered: 

(i) Determining the most desirable period during which 

to admit additional patients 

(ii) Determining the optimal operating costs 

corresponding to the admission policy given a 

periodic review ward allocation planning system 

when demand for wards is uncertain. 

 

It is essential for the hospital to gauge and know its 

reasonably or optimum ward capacity as no single 

capacity is applicable to the provision of healthcare 

services. In this paper, a Markov decision model is 

proposed whose goal is to optimize the ward allocation 

decisions for incoming patients when demand for wards 

is uncertain. 

 

The paper is organized as follows. After reviewing the 

previous work done, a mathematical model is proposed 

where consideration is given to the process of estimating 

model parameters. The model is then solved and applied 

to a special case study. Thereafter, final remarks follow. 

Muligan J [1] used Queuing theory to empirically 

approximate the potential for hospital scale economies 

due to stochastic nature of hospitals demand and service. 

The results suggest that scale economies due to 

stochastic demand and service re likely to be important 

only for consolidation of small, specialized hospital 

units. According to Carey [2], the issue of hospital bed 

capacity can be examined by considering stochastic 

demand for United states hospitals. An equilibrium 

condition for the optimal number of “excess beds” can 

be derived and applied using cost function estimated 

with a set of data. Results indicate that it may be 

difficult to justify the costliness of existing levels of 

empty hospital beds. In the article of Harper and Bagust 
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[3], the daily bed requirements are examined arising 

from the flow of emergency admissions to an acute 

hospital. The paper identifies the implications on 

fluctuating and unpredictable demands for emergency 

admission for the management of hospital bed capacity, 

and to quantify the daily risk of insufficient capacity for 

patients requiring immediate change to admission. 

According to Harper and Shahani [4], a simulation 

model can be developed that considers various types of 

patient inflows at the individual patient level and the 

resulting bed needs over time. The sequence of changes 

in capacity planning policies and the management of 

existing capacities can be readily examined. The work 

further highlights the need for evaluating hospital bed 

capacities in light of both occupancies and refused 

admission rates. In the article of Hughes D and McGuire 

A [5], the authors consider production responses to 

demand uncertainty with the hospital sector. It is noted 

that such responses have an impact on hospital cost 

structures. An empirical model is specified and 

estimation is undertaken on a sample of UK hospitals 

over the period 1993-1995, differentiating between 

hospital output which arises from uncertain demand and 

output considered to be predictable. It is found that 

demand uncertainty impose a direct cost equivalent to 

around 5% of the total cost of emergency admission. In 

the article of Green [6], the general background involved 

in hospital capacity planning is described. Examples of 

how OR models can be used to provide important 

insights into operational strategies and practices and to 

identify opportunities and challenges for future research 

are explored. Additional work by Smet M [7] shows the 

relationship between uncertain demand, excess bed 

capacity, hospital costs and performance. A waiting time 

indicator to  proxy hospital standby capacity is 

incorporated into a multi-product translog cost function 

for the Belgian general hospitals. This allows calculation 

of cost elasticity and marginal cost of seven hospital 

departments as well as the degree of economies of scale 

and enables identification of differences in efficiencies. 

The problem was further examined by Lovell, Rodriguez 

and Wall [8].In their article, demand uncertainty is 

incorporated into the system to account for the hospital 

activity of standby capacity or insurance against 

unexpected demand. It is found that demand uncertainty 

in Spanish hospitals affects hospital production and 

increases costs. Results also show that over 

capitalization in such hospitals can be explained by 

hospitals providing insurance demand when faced with 

demand uncertainty. In the article of BoutsioliI [9], the 

expected demand of Greek public hospitals is estimated 

where a multi variable model with four explanatory 

variables is used. The forecasted residuals of hospital 

regressions for each year give the estimated stochastic 

demand. It is shown that demand varies both among 

hospitals and over the five-year time period under 

investigation. Further research by Ayvaz, Nur Huh and 

Woonghee [10] focuses on a hospital setting and a 

general model is formulated that is applicable to various 

resource allocation problems in a hospital. A multiple of 

customer classes that display different reactions to the 

delays in service is considered. By adopting a dynamic 

programming approach, it is shown that the optimal 

policy for a system involving both lost sales and 

backorders is not simple but exhibits desirable 

properties. 

 

In this paper, healthcare system is considered whose 

goal is to optimize the admission decisions of patients 

and the total operational costs of wards. At the 

beginning of each period, a major decision has to be 

made, namely whether to admit additional patients or 

not to admit for optimal utilization of the healthcare 

available resources. 

II. METHODS AND MATERIAL 
 

2. MODEL DEVELOPMENT 

 

2.1 Notation and Assumptions 

i,j   = states of demand    

P
Z

ij = Number of patients 

A=Very High state                                       

O
Z

ij = Operational costs 

B   =   High state                                              

n,N  = Stages 

C   = Moderate state                                          

V
Z

i   = Expected operational costs 

D   = Low state                                                           

a
Z

i   = Accumulated operational costs 

E   = Very low state                                           

w   = Hospital ward 

O
Z
 = Operational cost matrix                               

P
Z
   = Patient matrix 

Q
Z
   = Demand transition matrix                                

Q
Z

ij   = Demand transition probability 

Z   = Admission policy 



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 

 

190 

i,j ε {A,B,C,D,E}      Z  ε {0,1}      w ε {1,2,3}               

N=1,2,…………..N         

   

We consider a healthcare system whose demand for 

hospital wards during a chosen period over a fixed 

planning horizon is classified as Very high(state 

A),High(state B),Moderate(state C),Low(state D) or 

Very low(state E) and the demand of any such period is 

assumed to depend on the demand of the preceding 

period. The transition probabilities over the planning 

horizon from one demand state to another may be 

described by means of a Markov chain. The 

representation assumes the following correspondence 

between the ward occupancy and the states of the chain: 

 

Ward 

Occupancy 

(%) 

State of 

demand 

State 

code 

85-100 Very high A 

70-84 High B 

55-69 Moderate C 

40-54 Low D 

0-39 Very low E 

 

Suppose one is interested in determining the optimal 

course of action, namely to admit additional patients (a 

decision denoted by Z=1) or not to admit (a decision 

denoted by Z=0) during each time period over the 

planning horizon where Z is a binary decision variable. 

Optimality is defined such that the minimum expected 

operational costs are accumulated at the end of N 

consecutive time periods spanning the planning horizon. 

In this paper, a two ward (W=2) and two-period (N=2) 

planning horizon are considered. 

  

2.2 Finite Dynamic Programming Formulation  

 

Recalling that the demand can be in state A, B, C, D or 

E the problem of finding and optimal admission decision 

can be expressed as a finite period dynamic 

programming model. 

 

Let gn(i,w) denote the expected operational costs 

accumulated in ward w during periods n,n+1,……..N 

given that the state of the system at the beginning of 

period n is i ε {A,B,C,D,E}      the recursive relation 

relating gn and gn+1 is: 

 

 

                

                 

                 

                         (1)                    

              

together with the conditions 

 

 
 

This recursive equation may be justified by noting that 

the cummulation total operational costs O
Z

ij(w) + 

gn+1(i,w) resulting from reaching state j  ε {A,B,C,D,E}  

at the start of period n+1 from state i ε {A,B,C,D,E} at 

the start of period n occurs with probability Q
Z

ij(w) . 

Clearly,   V
Z
(w) = Q

Z
(w)[O

Z
(w)]

T
     ,  Z ε {0,1}      (2)  

where “T” denotes matrix transposition, and hence the 

dynamic programming recursive equations 

 

                           

                    

  
i ε {A,B,C,D,E}   ,n=1,2,……………………N-1,        

Z  ε {0,1} 

 

                                     (2) 

              i ε {A,B,C,D,E}    

 

2.3  Computing  Q
Z
(w) 

 

The demand transition probability from state i ε 

{A,B,C,D,E}   to state j ε {A,B,C,D,E}   given 

admission policy Z ε {0,1}  may be taken as the number 

of  patients observed at ward w when demand is initially 

in state i and later with demand changing to state j, 

divided by the number of  patients over all states.    That 

is. 

 
 

i ε {A,B,C,D,E}                        Z  ε {0,1}                   (3) 

 

1. 3. COMPUTING AN OPTIMAL ADMISSION 

POLICY      
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The optimal admission policy for patients to wards is 

found in this section for each time period separately. We 

recall that the model assumes two wards over a two-

period planning horizon   

 

3.1 Optimization during period 1 

 

When demand is very high (state A), the optimal 

admission policy during period 1 is  

 

 
 

The associated total operational costs for managing 

hospital wards are 

 

 
 

When demand is high (state B), the optimal admission 

policy during period 1 is  

 

 
 

The associated total operational costs for managing 

hospital wards are 

 

 
 

When demand is moderate (state C), the optimal 

admission policy during period 1 is  

 

 
The associated total operational costs for managing 

hospital wards are 

 

 
 

When demand is moderate (state D), the optimal 

admission policy during period 1 is  

 

 
 

The associated total operational costs for managing 

hospital wards are 

 
When demand is moderate (state E), the optimal 

admission policy during period 1 is  

 
The associated total operational costs for managing 

hospital wards are 

 
 

 

3.2 Optimization during period 2 

Using dynamic programming recursive equation in (2), 

and recalling that a
Z

i(w)  denotes the already  

accumulated operational costs at the end of period 1 as a 

result of decisions made during that period, it follows 

that 

 

                              

 

 
 

Therefore, when demand is very high (state A), the 

optimal admission policy during period 2 is  

 

 
 

The associated total operational costs for managing 

hospital wards are 

          
When demand is high (state B), the optimal admission 

policy during period 2 is  
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The associated total operational costs for managing 

hospital wards are 

           
When demand is moderate (state C), the optimal 

admission policy during period 2 is  

          
 The associated total operational costs for managing 

hospital wards are 

         
When demand is low (state D), the optimal admission 

policy during period 2 is  

     
The associated total operational costs for managing 

hospital wards are 

     
When demand is very low (state E), the optimal 

admission policy during period 2 is  

    
The associated total operational costs for managing 

hospital wards are 

    
 

4. CASE STUDY 

 

4.1 Case Description 

 

In order to demonstrate the use of model in §2-3, real 

case applications from Case Medical Hospital, a 

Hospital in Uganda is presented in this section. The 

demand for hospital wards fluctuates on a weekly basis. 

The hospital wants to avoid admissions of excess 

patients when wards are at full capacity, and hence seeks 

decision support in terms of an optimal admission policy 

for patients and the associated total operational costs for 

managing hospital wards over a two-week planning 

horizon. 

 

4.2 Data Collection 

 

A sample of 40 transitions for the demand of hospitals 

wards was used at three separate wards and the 

associated total operational costs were noted when 

additional patients were admired (Z=1) versus when 

additional patients were not admitted (Z=0). 

 

When additional patients were admitted (Z=1), the 

following matrices were obtained. 

 

Ward 1: 

 
                    

 
Ward 2: 

 

     
                    

 
When additional patients were not admitted (Z=0), the 

matrices below follow:  

 

Ward 1: 
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Ward 2: 

    
                  

 
 

4.3 Computation of Model Parameters 

 

Using (5), the state transition matrices for wards1 and 2 

are 

 

Ward 1: 

 
 

 
 

Ward 2 

 

 
 

: 

 

Using (2), the expected operational costs are computed 

and results are summarized in Table I below: 

 

Table I: Expected Operational Costs for states of 

demand in hospital wards given different admission 

policies 

 

Ward 

(w) 

State of 

Demand 

(i) 

Expected  Operational 

costs 

V
Z

i(w) 

 Z=1 Z=0 

1 A 

B 

C 

D 

E 

34.4 

24.4 

17.2 

15.8 

14.7 

28.8 

20.9 

12.0 

14.3 

15.6 

2 A 

B 

C 

D 

E 

30.5 

27.9 

16.7 

14.5 

13.5 

24.4 

20.2 

10.0 

14.3 

15.2 

 

The accumulated operational costs are similarly 

computed and results are summarized in Table II below: 

 

TABLE II : Accumulated operational costs for states of 

demand in hospital wards given different admission 

policies 

 

Ward 

(w) 

State of 

Demand 

(i) 

Accumulated  Operational 

costs 

a
Z

i(w) 

 Z=1 Z=0 

1 A 

B 

C 

D 

E 

53.33 

44.37 

34.26 

33.44 

33.15 

52.24 

40.85 

29.02 

32.66 

33.50 

2 A 

B 

C 

D 

E 

50.43 

45.88 

32.53 

31.03 

29.90 

44.29 

37.92 

24.70 

29.69 

32.08 
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4.4 The Optimal Admission Policy  

 

4.4.1 Results - Ward 1 (Week 1) 

 

Since 28.8 < 34.4, it follows that Z=0 is an optimal 

admission policy with expected operational costs of 

$28.8 when demand is Very High (state A).Since 20.9 < 

24.4, it follows that Z=0 is an optimal admission policy 

with expected operational costs of $20.9 when demand 

is High (state B). 

 

Since 12.2 < 17.2, it follows that Z=0 is an optimal 

admission policy with expected operational costs of 

$12.2 when demand is Moderate (state C).Since 14.3 < 

15.8, it follows that Z=0 is an optimal admission policy 

with expected operational costs of $14.3 when demand 

is Low (state D). 

 

Since 14.7 < 15.6, it follows that Z=1 is an optimal 

admission policy with expected operational costs of 

$14.7 when demand is Very Low (state E). 

 

4.4.2 Results - Ward 2 (Week 1) 

 

Since 24.4 < 30.5, it follows that Z=0 is an optimal 

admission policy with expected operational costs of 

$24.4when demand is Very High (state A).Since 20.2 < 

27.9, it follows that Z=0 is an optimal admission policy 

with expected operational costs of $20.2 when demand 

is High (state B). 

 

Since 10.0 < 16.7, it follows that Z=0 is an optimal 

admission policy with expected operational costs of 

$10.0 when demand is Moderate (state C).Since 14.3 < 

14.5, it follows that Z=0 is an optimal admission policy 

with expected operational costs of $14.3 when demand 

is Low (state D). 

 

Since 13.5 < 15.2, it follows that Z=1 is an optimal 

admission policy with expected operational costs of 

$13.5 when demand is Very Low (state E). 

 

4.4.3 Results - Ward 1(Week 2) 

 

Since 52.24 < 53.33, it follows that Z=0 is an optimal 

admission policy with accumulated operational costs of 

$52.24 when demand is Very High (state A).Since 40.85 

< 44.37, it follows that Z=0 is an optimal admission 

policy with accumulated operational costs of $40.85 

when demand is High (state B). 

 

Since 29.02 < 34.26, it follows that Z=0 is an optimal 

admission policy with accumulated operational costs of 

$29.02 when demand is Moderate (state C).Since 32.66 

< 33.44, it follows that Z=0 is an optimal admission 

policy with accumulated operational costs of $32.66 

when demand is Low (state D). 

 

Since 33.15 < 33.50, it follows that Z=1 is an optimal 

admission policy with accumulated operational costs of 

$33.15 when demand is Very Low (state E). 

 

4.4.4 Results - Ward 2(Week 2) 

 

Since 44.29 < 50.43, it follows that Z=0 is an optimal 

admission policy with accumulated operational costs of 

$44.29 when demand is Very High (state A).Since 37.92 

< 45.88, it follows that Z=0 is an optimal admission 

policy with accumulated operational costs of $37.92 

when demand is High (state B). 

 

Since 24.70 < 32.53, it follows that Z=0 is an optimal 

admission policy with accumulated operational costs of 

$24.70 when demand is Moderate (state C).Since 26.69 

< 31.03, it follows that Z=0 is an optimal admission 

policy with accumulated operational costs of $26.69 

when demand is Low (state D). 

 

Since 29.90 < 32.08, it follows that Z=1 is an optimal 

admission policy with accumulated operational costs of 

$29.90 when demand is Very Low (state E). 

 

 

III. CONCLUSION 

 
Markov decision processes can be very useful in 

optimizing decisions pertaining to hospital ward 

admissions scheduling of patients under demand 

uncertainty. This is possible provided the problem is 

formulated as a multi-period decision problem using 

dynamic programming over a finite period planning 

horizon. It would however be worthwhile to extend the 

research and examine the behaviour of admission 

policies under non stationary demand conditions. In the 

same spirit, the model developed raises a number of 

salient issues to consider: Admission of patients under 

emergency conditions and capacity management for 



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 

 

195 

medical personnel to handle unexpected patients. 

Finally, special interest is sought in further extending the 

research by considering admission policies in the 

context of Continuous Time Markov Chains (CTMC). 
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