Advances In Voronoi Hybrid Finite Element Elements

Yi Xiao

Research School of Engineering, Australian National University, Acton, ACT 2601, Australia

ABSTRACT

This paper presents an overview on developments of Voronoi hybrid finite element method (FEM). Recent developments on Special n-sided Voronoi fiber/matrix elements as well as Voronoi polygonal hybrid FEM with boundary integrals are described. Formulations for all cases are derived by means of modified variational functional and fundamental solutions. Generation of elemental stiffness equations from the modified variational principle is also discussed. Finally, a brief summary of the approach and potential research topics is provided.

Keywords: Finite Element Method, Fundamental Solution, Voronoi elements.

I. INTRODUCTION

Applications of various numerical methods have been attractive by many researchers in recent years [1-4]. It should be mentioned that analytical solutions which are available only for a few problems with simple geometries and boundary conditions [5-18]. Therefore, development of efficient numerical methods is vital for solving engineering problems [19-25]. A new method, the so-called hybrid Trefftz FEM (or T-Trefftz method) has been developed recently [26, 27]. Unlike in the conventional FEM, the T-Trefftz method couples the advantages of conventional FEM [28-31] and BEM [32-34]. In contrast to the standard FEM, the T-Trefftz method is based on a hybrid method which includes the use of an independent auxiliary inter-element frame field defined on each element boundary and an independent internal field chosen so as to a priori satisfy the homogeneous governing differential equations by means of a suitable truncated T-complete function set of homogeneous solutions. Since 1970s, T-Trefftz model has been considerably improved and has now become a highly efficient computational tool for the solution of complex boundary value problems. It has been applied to potential problems [35-38], two-dimensional elastics [39, 40], elastoplasticity [41, 42], fracture mechanics [43-45], micromechanics analysis [46, 47], problem with holes [48, 49], heat conduction [50-52], thin plate bending [53-56], thick or moderately thick plates [57-61], three-dimensional problems [62], piezoelectric materials [63-67], and contact problems [68-70].

On the other hand, the hybrid FEM based on the fundamental solution (F-Trefftz method for short) was initiated in 2008 [27, 71] and has now become a very popular and powerful computational methods in mechanical engineering. The F-Trefftz method is significantly different from the T-Trefftz method discussed above. In this method, a linear combination of the fundamental solution at different points is used to approximate the field variable within the element. The independent frame field defined along the element boundary and the newly developed variational functional are employed to guarantee the inter-element continuity, generate the final stiffness equation and establish linkage between the boundary frame field and internal field in the element. This review will focus on the F-Trefftz finite element method.
The F-Trefftz finite element method, newly developed recently [27, 71], has gradually become popular in the field of mechanical and physical engineering since it is initiated in 2008 [27, 72, 73]. It has been applied to potential problems [37, 74-76], plane elasticity [40, 77, 78], composites [79-83], piezoelectric materials [84-86], three-dimensional problems [87], functionally graded materials [88-90], bioheat transfer problems [91-97], thermal elastic problems [98], hole problems [99, 100], heat conduction problems [71, 101], micromechanics problems [46, 47], and anisotropic elastic problems [102-104].

Following this introduction, the present review consists of 3 sections. Special n-sided Voronoi fiber/matrix elements for clustering thermal effect is presented in Section 2. It describes in detail the method of deriving element stiffness equations. Section 3 focuses on the essentials of Voronoi polygonal hybrid finite elements with boundary integrals. Finally, a brief summary of the developments of the Voronoi element methods is provided.

II. SPECIAL N-SIDED VORONOI FIBER/MATRIX ELEMENTS

2.1 Micromechanical model of clustered composite

For a periodic cement-based composite containing clustered hemp fibers, the representative unit cell is the smallest repeated microstructure of the composite that can be isolated from the composite to estimate the composite’s effective properties. It is assumed that the unit cell has same thermal properties and fiber volume contents as the composite under consideration.

Figure 1. Schematic representation of regularly and randomly clustered fibers within the cement matrix

Figure 1 shows a representative unit cell containing clustered hemp fibers. In Fig. 1, L denotes the cell length, \(D\) is the diameter of the hemp fiber, and \(x_1\) and \(x_2\) are the global coordinate axial directions. Under the assumptions that (1) all material constituents are isotropic and homogeneous, and (2) the hemp fiber and the cement matrix are perfectly bonded, the steady-state local temperature fields in the matrix and the fiber, denoted by \(T_m\) and \(T_f\), should satisfy the two-dimensional heat conduction governing equations respectively, given by

\[
\frac{\partial^2 T_m}{\partial x_1^2} + \frac{\partial^2 T_m}{\partial x_2^2} = 0, \quad \frac{\partial^2 T_f}{\partial x_1^2} + \frac{\partial^2 T_f}{\partial x_2^2} = 0 \tag{1}
\]

and the continuous conditions at the interface between the hemp fiber and the matrix

\[
T_m = T_f, \quad k_m \frac{\partial T_m}{\partial n} = k_f \frac{\partial T_f}{\partial n} \tag{2}
\]

where \(n\) is the unit direction normal to the fiber/matrix interface.

According to Fourier’s law of heat transfer in isotropic media, we have the following relationship of the temperature variable \(T\) and the heat flux component \(q_i\):

\[
q_i = -k \frac{\partial T}{\partial x_i} \quad (i = 1, 2) \tag{2}
\]
from which the effective thermal conductivity k_e of the homogenized composite can be determined by

$$k_e = \frac{\bar{q}_i}{\bar{\varepsilon}_i}$$ \hspace{1cm} (3)

where \bar{q}_i stands for the area-averaged heat flux component along the i-direction and $\bar{\varepsilon}_i$ the temperature gradient component along the i-direction. For example, for the applied temperature boundary conditions below

$$T_m = T_0 \quad \text{on edge AB}$$
$$T_m = T_1 \quad \text{on edge CD}$$
$$k_m \frac{\partial T_m}{\partial n} = 0 \quad \text{on edges AC and BD}$$ \hspace{1cm} (4)

the effective thermal conductivity k_e of the composite can be calculated by the 1-directional average heat flux component on the surface CD and the 1-directional temperature gradient component respectively given by

$$\bar{q}_i = \frac{1}{L} \int_{AB} q_i(x_1, x_2) \, dx_2$$ \hspace{1cm} (5)
$$\bar{\varepsilon}_i = \frac{(T_i - T_j)}{L}$$ \hspace{1cm} (6)

2.2 Formulation of special n-sided Voronoi fiber/matrix element

The representative unit cell with the specified temperature conditions along the outer boundary of the cell is solved by a fundamental-solution-based hybrid finite element formulation with special n-sided Voronoi fiber/matrix elements. To efficiently treat regularly and randomly clustered distributions of hemp fibers in the unit cell and obtain a mesh with relatively high quality, the centroidal Voronoi tessellation technique is employed such that the generators for the Voronoi tessellation and the centroids of the Voronoi regions coincide. The centroidal Voronoi tessellation technique can be viewed as an optimal partition corresponding to an optimal distribution of generators. Fig. 2 displays a typical n-sided Voronoi fiber/matrix element division for the composite cell including hemp fiber and cement material constituents. As an example, in Fig. 2, the centroidal Voronoi elements are iteratively generated by the matlab source code using 25 random points in the cell and the fibers are located at the centroids of the Voronoi elements.

For a typical n-sided Voronoi fiber/matrix element e, with element domain Ω_e and element boundary Γ_e, the assumed fields include:

(a) Non-conforming interior temperature field

$$T(x) = \sum_{j=1}^{m} G(x, x_j)c_{e_j} = N_e c_e \quad x \in \Omega_e$$ \hspace{1cm} (7)

(b) Auxiliary conforming frame temperature field

$$\tilde{T}(x) = \tilde{N}_e d_e \quad x \in \Gamma_e$$ \hspace{1cm} (8)

where G is the fundamental solutions satisfying equilibrium and continuity within the element, $x(x_1, x_2)$ and $x_j(x_{i_1}, x_{j_2})$ are the field point and source point, respectively, N_e is a row vector of fundamental solutions, c_e is a column vector of the unknown coefficient c_{e_j}, \tilde{N}_e represents a row vector of the conventional interpolating shape functions, and d_e is a column vector of the nodal degree of freedom of the element.

Subsequently, the heat flux field in the element can be derived by means of Fourier’s law

$$q_i(x) = -k \frac{\partial T(x)}{\partial x_i} = T_i c_e \quad x \in \Omega_e$$ \hspace{1cm} (9)

with
\[T_{ei} = -k \frac{\partial N_e}{\partial x_i} \]

(10)

Furthermore, the outward normal heat flux \(q_n \) derived from the interior field \(T_e \) can be expressed as

\[q_n = q_{n1} + q_{n2} = Q_e c_e \]

(11)

with

\[Q_e = T_{ei} n_1 + T_{e2} n_2 \]

(12)

and \(n_j (i = 1, 2) \) are components of the outward unit normal to the element boundary.

To link the two independent fields above, the element variational functional is of the form

\[\Pi_{me} = -\frac{1}{2} \left[k \int_{\Omega} \left(\frac{\partial^2 T}{\partial x_1^2} + \frac{\partial^2 T}{\partial x_2^2} \right) d\Omega - \int_{\Gamma_{eq}} \bar{q} d\Gamma + \int_{\Gamma_{e}} q_n (\bar{T} - T) d\Gamma \right] \]

(13)

in which \(\Gamma_{eq} \) is the element heat flux boundary, and \(\bar{q} \) is the specified normal heat flux.

Application of the divergence theorem to the functional (13) yields

\[\Pi_{me} = -\frac{1}{2} \left[\int_{\Gamma} q_n T d\Gamma - \int_{\Gamma_{eq}} \bar{q} d\Gamma + \int_{\Gamma_{e}} q_n (\bar{T} - T) d\Gamma \right] \]

(14)

Then, substituting Eqs. (7) and (8) into the functional (14) yields

\[\Pi_{me} = -\frac{1}{2} c_e^T H_e c_e - d_e^T g_e + c_e^T G_e d_e \]

(15)

in which

\[H_e = \int_{\Gamma} Q_e^T N_e d\Gamma \], \[G_e = \int_{\Gamma} Q_e^T \bar{N}_e d\Gamma \], \[g_e = \int_{\Gamma_{eq}} \bar{N}_e^T \bar{q} d\Gamma \]

Minimization of the functional \(\Pi_{me} \) with respect to \(c_e \) and \(d_e \), respectively, yields

\[\frac{\partial \Pi_{me}}{\partial c_e^T} = -H_e c_e + G_e d_e = 0 \], \[\frac{\partial \Pi_{me}}{\partial d_e} = G_e^T c_e - g_e = 0 \]

from which the optional relationship between \(c_e \) and \(d_e \) for enforcing inter-element continuity on the common element boundary

\[c_e = H_e^{-1} G_e d_e \]

(17)

and the element stiffness equation including the element stiffness matrix \(K_e \) and the equivalent nodal force vector \(g_e \)

\[K_e d_e = g_e \]

(18)

can be obtained. In Eq. (18), \(K_e = G_e^T H_e^{-1} G_e \) is symmetric. Evidently, evaluation of \(K_e \) involves inversion of the symmetric square He matrix, and it’s advantageous to use a minimum number of source points outside the element for improving inversion efficiency. In contrast, accuracy is generally improved if a large number of source points is used. In this study, the number of source points is chosen to be same as that of element nodes to balance the requirements of efficiency and accuracy. Certainly, the rank sufficiency condition in the hybrid finite element method is also satisfied. In addition, different to the Voronoi cell finite element method, the present method is a type of hybrid displacement finite element method and all integrals involved are along element boundary only. However, the present method requires the fundamental solutions of the related problem, which are not available for some physical problems.

The following two-component heterogeneous fundamental solutions satisfying the equilibrium and continuity of fiber and matrix domains can be written as

\[G(z, z_{oj}) = \begin{cases} \frac{1}{2\pi k_m} \left[\text{Re} \left[\ln(z - z_{oj}) \right] \right] & \text{for } z \in \Omega_m \\ \frac{1}{(k_m + k_f)\pi} \text{Re} \left[\ln(z - z_{oj}) \right] & \text{for } z \in \Omega_f \end{cases} \]

(19)

where \(z = x_1 + ix_2 \) and \(z_{oj} = x_1^j + ix_2^j \) are the complex coordinates of the field point and the source point, respectively, \(R \) is the radius of fiber inclusion, and \(i = \sqrt{-1} \) is the imaginary unit. \(\Omega_m \) and \(\Omega_f \) are respectively the cement matrix domain and the hemp fiber domain. In particular, if \(k_m = k_f = k \), Eq. (19) reduces to

\[G(z, z_{oj}) = -\frac{1}{2k\pi} \text{Re} \left[\ln(z - z_{oj}) \right] \]

(20)
which corresponds to the heat transfer caused by a point heat source in an isotropic homogeneous medium.

III. YORONOI POLYGONAL HYBRID FINITE ELEMENTS

3.1 Governing Equations for Plane Elasticity

For simplicity, our attention in this study is restricted to the classic linear isotropic elasticity in two dimensions, which have been solved by various numerical methods, i.e. FEM, BEM and meshless methods. As indicated in Fig. 1, a two-dimensional (2D) static linear isotropic elasticity domain Ω is bounded by the boundary $\Gamma = \Gamma_u \cup \Gamma_t$, $\Gamma_u \cap \Gamma_t = 0$. Γ_u and Γ_t are displacement and traction boundaries, respectively. Referred to the Cartesian coordinate system (x_1, x_2), the static equilibrium equation for the dashed linear elastic element around an arbitrary point $x = (x_1, x_2)$ (see Fig. 1) in the absence of body force is given in matrix form by

$$\mathbf{L}^T \mathbf{u} = 0$$

(22)

where $\mathbf{u} = [u_1, u_2]^T$ is the displacement vector, and \mathbf{L} is the strain-displacement operator matrix

$$\mathbf{L}^T = \left[\begin{array}{ccc} \frac{\partial}{\partial x_1} & 0 & \frac{\partial}{\partial x_2} \\ 0 & \frac{\partial}{\partial x_2} & \frac{\partial}{\partial x_1} \end{array} \right]$$

(23)

The strain vector $\mathbf{\varepsilon} = [\varepsilon_{11}, \varepsilon_{12}, \gamma_{12}]^T$ is defined by the kinematic relation as

$$\mathbf{\varepsilon} = \mathbf{L} \mathbf{u}$$

(24)

For the case of linear elastic solid body, the stress vector is related to the strain vector by the Hooke’s law in matrix form

$$\mathbf{\sigma} = \mathbf{D} \mathbf{\varepsilon}$$

(25)

where \mathbf{D} is the constitutive matrix and has the form

$$\mathbf{D} = \left[\begin{array}{ccc} E & \frac{\nu E}{1-\nu^2} & 0 \\ \frac{\nu E}{1-\nu^2} & \frac{E}{1-\nu^2} & 0 \\ 0 & 0 & \frac{E}{2(1+\nu)} \end{array} \right]$$

(26)

for plane stress cases.

Besides, the following displacement and traction boundary conditions prescribed on the displacement boundary Γ_u and the traction boundary Γ_t,

$$\mathbf{u} = \mathbf{u}^* \quad \text{on } \Gamma_u$$

$$\mathbf{t} = \mathbf{t}^* \quad \text{on } \Gamma_t$$

(27)

should be augmented to form a complete solving system. In Eq. (27), \mathbf{u}^* and \mathbf{t}^* are respectively the specified displacement and traction constraints. According to the equilibrium of the dashed triangle shown in Fig. 3, the traction vector $\mathbf{t} = [t_1, t_2]^T$ is expressed by

$$\mathbf{t} = \mathbf{A} \mathbf{\sigma}$$

(28)

where

$$\mathbf{A} = \begin{bmatrix} n_1 & 0 & n_2 \\ 0 & n_2 & n_1 \end{bmatrix}$$

(29)

and n_i $(i = 1,2)$ are the unit outward normal components.

Figure 3. Schematic diagram for plane elastic problems

3.2 Conventional Finite Element Formulation

In this section, the finite element formulation with polygonal elements is reviewed for the purpose of comparison. In the conventional polygonal finite element theory, the displacement field at point with coordinate $x \in \Omega$ is approximated for a typical polygonal finite element occupying the domain Ω_i by

$$\mathbf{u} = \sum_{i=1}^{n} \mathbf{U}_i \mathbf{d}_i = \mathbf{U} \mathbf{d}$$

(30)

where n is the total number of element nodes, $\mathbf{d}_i = [u_i, v_i]^T$ is the column vector of nodal degrees of freedom related to the ith node, $\mathbf{d}_i = [d_{i1}^x, d_{i1}^y, \ldots, d_{in}^y]^T$
is the final nodal displacement vector of the element \(e \), and \(\mathbf{U}_e = [U_1, U_2, ..., U_n] \) is the resulted finite element shape function matrix in which

\[
\mathbf{U}_e = \begin{bmatrix} \phi_1 & 0 \\ 0 & \phi_e \\ \end{bmatrix}
\]
(31)

is the element shape submatrix associated with the \(\phi \)th node and usually consists of two-dimensional element shape functions \(\phi \) expressed in the following general form

\[
\phi_i(x) = \frac{w_i(x)}{\sum_{j=1}^{n} w_i(x)}
\]
(32)

In Eq. (32), \(w_i(x) \) are non-negative weight functions, which have differently defined for difference shape functions, i.e. Wachspress shape functions and Laplace shape functions.

Subsequently, the strain and stress fields defined by Eqs. (24) and (25) can be expressed in terms of nodal displacement vector \(\mathbf{d} \), that is

\[
\varepsilon = \mathbf{L} \mathbf{U} = \mathbf{B}_e \mathbf{d}_e, \quad \sigma = \mathbf{D} \varepsilon = \mathbf{DB}_e \mathbf{d}_e
\]
(33)

where

\[
\mathbf{B}_e = \mathbf{L} \mathbf{U}_e = [\mathbf{L}U_1, \mathbf{L}U_2, ..., \mathbf{L}U_n]
\]
(34)

The final discrete equations can be formulated from the Galerkin weak or variational form

\[
\int_\Omega \delta \varepsilon^T \sigma \, d\Omega - \int_{\Gamma_e} \delta \mathbf{u}^T \mathbf{t} \, d\Gamma = 0
\]
(35)

where \(\delta \) denotes the variational operator and \(\Gamma_e = \Gamma_e \cap \Gamma_r \) is the element traction boundary.

Substituting the variational forms of the strain and displacement fields

\[
\delta \mathbf{u} = \mathbf{U}_e \delta \mathbf{d}_e, \quad \delta \varepsilon = \mathbf{B}_e \delta \mathbf{d}_e
\]
(36)

and Eq. (33) into Eq. (34) yields

\[
\delta \mathbf{d}_e^T \left(\int_\Omega \mathbf{B}_e^T \mathbf{DB}_e \, d\Omega \right) \mathbf{d}_e - \delta \mathbf{d}_e^T \left(\int_{\Gamma_e} \mathbf{U}_e^T \mathbf{t} \, d\Gamma \right) = 0
\]
(37)

Invoking the arbitrariness of nodal variation \(\delta \mathbf{d}_e \), we have

\[
\mathbf{K}_e \delta \mathbf{d}_e = \mathbf{f}_e
\]
(38)

where

\[
\mathbf{K}_e = \int_\Omega \mathbf{B}_e^T \mathbf{DB}_e \, d\Omega, \quad \mathbf{f}_e = \int_{\Gamma_e} \mathbf{U}_e^T \mathbf{t} \, d\Gamma
\]
(39)

It’s obviously seen that the shape function and its derivatives are vital for the implementation of conventional finite element. The shape functions are defined for the entire element domain to locate and relate element nodes, so different shape functions bring different element matrices and different degrees of precision. For polygonal finite elements with large numbers of sides and nodes, it’s very complicated to construct suitable weight functions so that the shape function satisfies all required properties, especially for polygonal elements with curved edges. This is the main reason that the topology of conventional finite element is usually restricted to triangle and quadrilateral for two-dimensional problems or tetrahedral and hexahedral for three-dimensional problems. Another key issue to be addressed is the evaluation of such domain integral in Eq. (39). So far, the numerical quadrature rule over arbitrary polygons has not yet reached a mature stage and the most popular approach is to partition the \(n \)-sided polygonal finite element \((n>4) \) into \(n \) triangles by the centroid of the element and then use well-known quadrature rules on each triangle.

In this study, a different Voronoi polygonal hybrid finite element formulation based on the fundamental solutions of the two-dimensional linear elastic problem is presented below, which is fully independent of the construction of shape functions and the polygonal element domain integration.

3.3 Voronoi Polygonal Hybrid FE Formulation

The implementation of polygonal hybrid finite elements involves two important issues: (1) the geometrical description and mesh discretization of the enclosed computing domain with finite number of convex polygons and (2) element-level approximations of physical fields to accurately compute the design response.

For the first issue, the advanced Voronoi polygon meshing technique developed by Talischi et al [105] can be utilized to represent flexible mesh generation in arbitrary geometries. Mathematically, every
common edge of a Voronoi polygonal cell is defined as being normal to the line connecting two neighboring seed points and has equivalent distance to them, so that Voronoi cells can easily possess more connected neighbors. Fig. 4(a) shows a Voronoi diagram and its Delaunay triangulation generated by the Voronoi tessellation technique and a particular polygonal Voronoi cell associated with seed point \(p \) is hatched as an example in the figure. As one of Voronoi cells, the centroidal Voronoi tessellation possessing the added attribute that the seed points are coincident with the cell centroids is employed in the study to produce high-quality convex polygonal discretization in the computing domain [106]. Moreover, to approximate the practical boundary of the domain during Voronoi meshing, the signed distance function is defined in Paulino’s meshing scheme [107] to provide all essential information of the domain geometry so that one can flexibly construct the desired domain by algebraic expressions.

Secondly, after convex polygonal meshing is obtained, the fundamental solution based hybrid finite element technique is formulated here to convert the element domain integral into element boundary integrals and obtain the final solving system of equations. For a typical Voronoi polygonal hybrid finite element \(e \) occupying the domain \(\Omega_e \), as shown in Fig. 4(b), the linear combinations of displacement and stress fundamental solutions of the problem are respectively used as the approximation functions to model the intra-element displacement and stress fields within the element domain \(\Omega_e \).

\[
\begin{align*}
\mathbf{u}(x) &= \sum_{i=1}^{m} \mathbf{N}_i(x) \mathbf{c}_i = \mathbf{N}_e(x) \mathbf{c}_e, \\
\mathbf{\sigma}(x) &= \sum_{i=1}^{m} \mathbf{T}_i(x) \mathbf{c}_i = \mathbf{T}_e(x) \mathbf{c}_e, \quad x \in \Omega_e
\end{align*}
\]

(40)

where \(m \) is the number of source points \(x'_k \) \((k = 1, \ldots, m) \) and in practice it can be chosen to be same as the number of nodes, as done in literature for general and special quadrilateral case. \(\mathbf{c}_e = [c_{e1}^T, c_{e2}^T, \ldots, c_{en}^T]^T \) is the unknown coefficient vector. \(\mathbf{N}_e = [\mathbf{N}_1 \mathbf{N}_2 \ldots \mathbf{N}_n] \) and \(\mathbf{T}_e = [\mathbf{T}_1 \mathbf{T}_2 \ldots \mathbf{T}_n] \) denote the matrices consisting of displacement fundamental solution \(\mathbf{\hat{u}}_e(x, x'_k) \) \((l,i=1,2) \) and stress fundamental solution \(\mathbf{\hat{\sigma}}_e(x, x'_k) \) \((l,i,j=1,2) \) at the field point \(x \) due to the unit force along the \(J \) direction at the source points \(x'_k \), respectively.

It’s evident that the intra-element displacement and stress fields (40) can naturally satisfy the linear elastic governing equations (43) because of the physical definition of fundamental solutions, if a series of source points are placed outside the element as they are well done in the standard meshless method of fundamental solutions (MFS) [108].

However, the intra-element displacement field given by Eq. (40) is non-conforming across the inter-element boundary, as indicated by the shaded region in Fig. 4(b). To deal with such problem, the hybrid technique popularly used in the hybrid finite element method pioneered by Pian [109] is employed to introduce an auxiliary conforming displacement frame field which has similar form as that in the conventional FEM. Here, the independent displacement frame field defined along the element boundary \(\Gamma_e \) is written as

\[
\mathbf{\tilde{u}}(x) = \tilde{\mathbf{N}}_e(x) \mathbf{d}_e, \quad x \in \Gamma_e
\]

(42)

where \(\mathbf{d}_e \) is the nodal displacement vector same as that in Eq. (30), and \(\tilde{\mathbf{N}}_e \) is the standard FE shape function matrix with one-dimensional shape functions for the two-dimensional problem considered in the paper. For example, if there are two
nodes on a particular edge for the linear case, the shape function matrix over this edge can be written by

\[
\begin{bmatrix}
\tilde{N}_1 & 0 & \tilde{N}_2 & 0 \\
0 & \tilde{N}_1 & 0 & \tilde{N}_2
\end{bmatrix}
\]

(43)

where \(\tilde{N}_i = (1 - \xi)/2\), \(\tilde{N}_i = (1 + \xi)/2\) are respectively the classic one-dimensional linear shape functions in terms of the natural coordinate \(\xi\) varying from -1 to 1, whose definition can be found in most of books on FEM.

To link these two independent fields, the double-variable weak variational form originally developed in literature [20, 27] for traditional eight-node quadrilateral elements is employed:

\[
\Pi_{nw} = \frac{1}{2} \int_{\Gamma} \sigma^T d\Omega - \int_{\Gamma_e} \bar{t} d\Gamma + \int_{\Gamma_e} t(\bar{u} - u) d\Gamma
\]

(44)

where \(\Gamma_e = \Gamma_e \cap \Gamma_t\) and \(t\) is the traction field on the element boundary \(\Gamma_t\), and may be approximated by considering Eqs. (28) and (40) as

\[
t = AT \epsilon_c = Q \epsilon_c
\]

(45)

Due to the natural feature of the intra-element fields, Eq. (44) can be further simplified by applying the Gaussian theorem to the domain integral in it

\[
\Pi_{nw} = -\frac{1}{2} \int_{\Gamma_t} t u d\Gamma - \int_{\Gamma_e} \bar{t} u d\Gamma + \int_{\Gamma_e} \bar{t} u d\Gamma
\]

(46)

Substituting the intra-element fields (40), (45) and the frame field (42) into the functional (46) yields

\[
\Pi_{nw} = -\frac{1}{2} \epsilon_c^T H \epsilon_c - d_g^T g_e + \epsilon_c^T G \epsilon_c
\]

(47)

where

\[
H = \int_{\Gamma_t} Q^T N_d d\Gamma, \quad G = \int_{\Gamma_e} Q^T \tilde{N}_i d\Gamma, \quad g_e = \int_{\Gamma_e} \tilde{N}_i \bar{t} d\Gamma
\]

(48)

To enforce inter-element continuity on the common element boundary, the unknown vector \(\epsilon\) should be expressed in terms of nodal degree of freedom \(d\). The minimization of the functional \(\Pi_{nw}\) in Eq. (47) with respect to \(\epsilon\) and \(d\), respectively, yields

\[
\frac{\partial \Pi_{nw}}{\partial \epsilon} = -H \epsilon_c + G d_e = 0, \quad \frac{\partial \Pi_{nw}}{\partial d} = G^T \epsilon_c - g_e = 0
\]

(49)

from which we can obtain the element stiffness equation

\[
K \epsilon_e = g_c
\]

(50)

and the optional relationship of \(\epsilon\) and \(d\)

\[
\epsilon_c = H_c^T G_c d_c
\]

(51)

where the element stiffness matrix \(K = G_c^T H_c^T G_c\) only consists of numerical integrals of the symmetric matrix \(H_c\) and the matrix \(G_c\) over the element boundary \(\Gamma_e\). In practice, they can be evaluated by the well-known one-dimensional Gaussian quadrature rule along the element sides of the polygon one by one, without any difficulty, as indicated in Reference [27], thus the present hybrid strategy is very suitable for constructing \(n\)-sided polygonal finite elements. Besides, we observe that the introduction of conforming frame displacement field permits the direct imposition of essential
boundary conditions and the direct evaluation of effect of traction boundary conditions, as done in the classic FEM.

IV. CONCLUSIONS

On the basis of the preceding discussion, the following conclusions can be drawn. This review reports recent developments on the formulation of Voronoi hybrid FEM. It proved to be a powerful computational tool in modeling materials and structures with various mechanical properties. However, there are still many possible extensions and areas in need of further development in the future. Among those developments one could list the following:

1. Development of efficient Voronoi FE-BEM schemes for complex engineering structures containing heterogeneous materials and the related general-purpose computer codes with preprocessing and postprocessing capabilities.

2. Generation of various special-purpose elements to effectively handle singularities attributable to local geometrical or load effects (holes, cracks, inclusions, interface, corner and load singularities). The special-purpose functions warrant that excellent results are obtained at minimal computational cost and without local mesh refinement.

3. Development of Voronoi FE in conjunction with a topology optimization scheme to contribute to microstructure design.

4. Extension of Voronoi FEM to elastodynamics and fracture mechanics of FGMs.

V. REFERENCES

[7]. Q.H. Qin, 2D Green's functions of defective magnetoelastodynamic solids under thermal loading, Engineering Analysis with Boundary Elements, 29(6) (2005) 577-585.

