A Review on CFD Analysis of Porous Ceramic Hydrodynamic Journal Bearing
Baria Divyesh¹, Jaganiya Mayank², Saurabh Singh³, Mr. Sorathiya Mehul⁴
¹-³U.G. Student, Mechanical Engineering, Sigma Institute of Engineering, Vadodara, Gujarat, India
⁴Assistant Professor, Mechanical Engineering, Sigma Institute of Engineering, Vadodara, Gujarat, India

ABSTRACT
This paper relates to a review on cfd analysis of journal bearing for brass and silicon nitride material. This review is focused on finding velocity and pressure distribution of the journal bearing for brass and silicon nitride material. We are going to increase the bearing life and capacity. The CFD analysis in the velocity and pressure difference comparing for brass and silicon nitride material journal bearing. Hydrostatic journal bearing is a bearing operating with hydrodynamic lubrication by virtue of their overall performance porous ceramic hydrodynamic journal bearing present themselves as a viable solution to the newest severs demand for higher accuracy and overall performance levels required by spindle bearing systems.

Keywords: cfd analysis, journal bearing, hydrodynamic.

I. INTRODUCTION
In India water cooled type submersible motors are extensively manufactured and available in the market due to its simplicity in design and manufacture. The maintenance of such motors is also very simple and can be carried out t ease compared to the oil filled version.
Even with such advantages water cooled submersible motors too pose various problems especially with its bearing.
The bearing bush is brass material, we are selecting the silicon nitride material for bush bearing, and analysis of the silicon nitride material bearing.
II. Problem Identification

This was a long standing problem at M/s vira pumps, Kolhapur, Maharashtra, India for around 5 years. This industry is a reputed manufacture and exporter of submersible pumps. It has started producing 100 mm (4”) submersible motors since 2001. Figure 1.2 shows a sectional view of such a submersible motor.

For motors above 1.0 hp, it experienced bearing bush failure after just few months of operation. Where as its earlier products i.e. 150 mm and 200 mm submersible motors operated smoothly for more than 25 years. Due to this industry faced huge problems in their operations. They were not only the ones who suffered but, similar manufactures in India experienced the same problem.

This problem solving we are selecting the material for bush bearing is silicon nitride. It has a frictionless, high heat absorption, capacity, light weight.

The root cause analysis suggest that the following factors are responsible for such bearing bush failures:

1. Velocity changes
2. Pressure distributions
3. Fatigue analysis/life of bush
4. FEA structural analysis

The cfd analysis in the results is almost same in velocity changes for brass and silicon nitride material bush bearing. The pressure distribution is low in silicon nitride material bush bearings and high in the brass material bush bearings.

III. LITERATURE

This was a long standing problem at M/s vira pumps, Kolhapur, Maharashtra, India for around 5 years. This industry is a reputed manufacture and exporter of submersible pumps. It has started producing 100 mm (4”) submersible motors since 2001. Figure 1.2 shows a sectional view of such a submersible motor.

For motors above 1.0 hp, it experienced bearing bush failure after just few months of operation. Where as its earlier products i.e. 150 mm and 200 mm submersible motors operated smoothly for more than 25 years. Due to this industry faced huge problems in their operations. They were not only the ones who suffered but, similar manufactures in India experienced the same problem.

B. Manshoor, M. Jaat, Zaman Izzuddin, Khalid Amir (2013): In this, there was an introduction about cfd analysis of thin film lubricated journal bearing. In this paper, three turbulent models which are the standard k-e model and Reynolds stress model had been used to simulate the characteristics of a plain journal bearing.
Therefore, in this case study it was revealed that, the k-e model was just enough to do the simulation since it was the simplest model compared to other.

Ravindra M. Patel (2013):- This paper studies the 3D model of hydrodynamic plain journal bearing using COMSOL software. Generalized Reynolds equation is used for analysing hydrodynamic journal bearing by COMSOL as well as by analytical method by applying Somerfield boundary conditions. The pressure distribution of the hydrodynamic plain journal bearing lubricated with oil under steady state consideration has been analysed.

Miss. Kirtee L. Chidle, Dr. Mrs. R.N. Baxi (2016):- This paper presents a review of the performance analysis of journal bearing. Major emphasis is given to the pressure and temperature distribution based identification analysis on bearing. This paper attempts to evaluate the journal bearing performance on various parameters such as pressure distribution, bearing surface deformation, temperature distribution and load carrying capacity.

Dinesh Dhande, Dr. D. W. Pande, Vikas Chatarkar (2013):- In this paper, journal bearing models are developed for different speeds and eccentricity ratios to study the interaction between the fluid and elastic behaviour of the bearing. The nodal fluid forces computed by CFD are used in order to find deflection of the bearing. Cavitations in the bearing are neglecting by setting all negative pressure to ambient pressures. The bearing wall is considered as stationary and journal is modelled as moving wall. The sides of the lubricant volume have been assigned with a zero pressure condition, meaning that the lubricant is free to flow rate.

Amit Chauhan (2016):- In this paper, The model has been simulated using the ANSYS Fluent Software which solves 3-Dimensional Navier Stokes and Energy equation for finding the thermal performance characteristics of the bearing. The lubricant flow has been considered as laminar. The distribution of pressure and temperature throughout the bearing has been obtained by Iso-thermal approach and by thermo-hydrodynamic approach. Thermo-hydrodynamic analysis for circular journal bearing has been carried out using the application of Computational Fluid Dynamics.

P Hanoca, H. V. Ramakrishna (2015):- In this paper the oil film thickness between slider and shoe is a significant parameter and has a strong influence on the bearings performance. A CFD analysis has been carried out to find the effect of oil film thickness at the entrance of the slider using ANSYS workbench. Laminar viscous model with SIMPLE pressure-velocity coupling are used for the analysis. 2-D steady state, Navier-Stoke equations are discretized with finite volume approximations using structured grids. Pressure distribution over the slider and load carrying capacity increases up to some extent later decreases. Viscosity plays a very vital role in load carrying capacity. As the viscosity drops, the load carrying capacity also decreases.

IV. RESULTS

CFD Analysis Of bush bearings

The conventional method in designing a journal bearing is by using a bearing pressure recommended for specific applications. In the case of submersible motor it is recommended to use a bearing pressure in the range 0.7 to 1.4 as shown in table 1.0

<table>
<thead>
<tr>
<th>Machinery</th>
<th>Bearing</th>
<th>l/d</th>
<th>Permissible bearing Pressure (N/mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas And oil</td>
<td>Main</td>
<td>0.6-2.0</td>
<td>4.9-8.4</td>
</tr>
</tbody>
</table>
Instead of taking the value directly from the above table, we will perform CFD analysis on the bearing; by this we will also be able to verify the value of bearing pressure ‘p’. We can use then the value obtained from the analysis and perform the design step to calculate the length of bush bearing.

Figure shows the CFD analysis, ansys software is used for the CFD analysis. The journal in this case is rotated at 1800 rpm which is rated speed of motor. The working fluid is chosen as water.

Figure 3.1.1 ISO VIEW
Figure 3.1.1 describe Iso-metric image after simulate the model with the help of input data we can see the contour line present in the bush which is made by Velocity contours. In addition, material applied to the model so, it represents the BRASS textures.

Figure 3.1.2 VELOCITY CONTOUR AT CENTRE
Figure 3.1.2 describe Iso-metric image after simulate the model with the help of input data we can see the
sectioned contour over the section plane present in the bush which is made by Velocity contours. Outer material made transparent, so, inside section contour can be visible. Section plane contour is located at particular location in the model.

Figure 3.1.3 VELOCITY PROFILE AT CENTRE
Figure 3.1.3 describe left hand side view image after simulate the model with the help of input data we can see the sectioned contour over the section plane present in the bush which is made by Velocity contours. We can see that at the boundary of bush the velocity is low as compared to centre of the bush. Which represent the frictional effect of the wall boundary. Section plane contour is located at particular location in the model.

Inlet | Outlet

Figure 3.1.4 VELOCITY PROFILE SECTION VIEW
Figure 3.1.4 describe top view side view image after simulate the model with the help of input data we can see the sectioned contour over the section plane present in the bush which is made by Velocity contours. We can see that at the boundary of bush the velocity is low as compared to centre of the brass material bush. Which represent the frictional effect of the wall boundary. Section plane contour is located at particular location in the model.

3.1.6 Velocity Graph of Brass Material Journal Bearing
Velocity vs chart count graph shows the velocity of fluid flows from inlet to outlet in which velocity is higher at centre portion and low at nearer to wall area.

Figure 3.1.7 Pressure Distribution Graph for Brass
Pressure vs chart count graph shows the pressure distribution of fluid from inlet to outlet in which pressure is higher at inlet side of the component and lower at the outlet side.
IV.II. CFD Analysis for silicon nitride material
Journal bearing

Figure ISO VIEW

Figure 3.2.1 describe Iso-metric image after simulate the model with the help of input data we can see the contour line present in the bush which is made by Velocity contours. In addition, material applied to the model so, it represents the SILICON-NITRIDE textures.

Figure 3.2.2 VELOCITY CONTOUR AT CENTRE
Figure 3.2.1 describe Iso-metric image after simulate the model with the help of input data we can see the sectioned contour over the section plane present in the bush which is made by Velocity contours. Outer material made transparent, so, inside section contour can be visible. Section plane contour is located at particular location in the model.

Figure 3.2.3 VELOCITY PROFILE AT CENTRE
Figure 3.2.3 describe left hand side view image after simulate the model with the help of input data we can see the sectioned contour over the section plane present in the bush which is made by Velocity contours. We can see that at the boundary of bush the velocity is low as compared to centre of the bush. Which represent the frictional effect of the wall boundary. Section plane contour is located at particular location in the model.

Figure 3.2.4 VELOCITY PROFILE SECTION VIEW
Figure 3.2.4 describe top view side view image after simulate the model with the help of input data we can see the sectioned contour over the section plane present in the bush which is made by Velocity contours. We can see that at the boundary of bush the velocity is low as compared to centre of the silicon nitride material bush. Which represent the frictional effect of the wall boundary. Section plane contour is located at particular location in the model.

Figure 3.2.5 VELOCITY PROFILE
Figure 3.2.5 describe top view side view image after simulate the model with the help of input data we can see the sectioned contour over the section plane present in the bush which is made by Velocity contours. We can see that at the boundary of bush the velocity is low as compared to centre of the bush. Which represent the frictional effect of the wall boundary. Section plane contour is located at
particular location in the model. The graph shown at the left side of the image represents minimum and maximum value of the velocity.

![Figure 3.2.6 Velocity Graph of Brass Material Journal Bearing](image1)

| Velocity vs chart count graph shows the velocity of fluid flows from inlet to outlet in which velocity is higher at centre portion and low at nearer to wall area. |

![Figure 3.2.7 Pressure Distribution Graph for Brass](image2)

| Pressure vs chart count graph shows the pressure distribution of fluid from inlet to outlet in which pressure is higher at inlet side of the component and lower at the outlet side. |

V. CONCLUSION

With the help of CFD analysis on both materials, We can conclude that,

Uses of different material Brass and Silicon Nitride

1. There is not any difference in fluid flow pattern.
2. There is not any difference in contour.
3. Velocity profiles are remaining same for both materials.

Therefore, Velocity flow profile remains the same for all type of materials.

VI. Future scope

Working on process Structural load carrying capacity, Working on process Bearing life / Fatigue analysis, Manufacture ceramic bearing, testing the new bearing in comparison to steel bearing.

VII. REFERENCES

[6] P Hanoca, H. V. Ramakrishna (2015); “To Investigation the Effect of Oil Thickness at the Entrance of the Infinitely Long Slider
Bearing Using CFD Analysis” International conference on computational heat and mass transfer, maland collage of engineering Hassan, India.

