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ABSTRACT 
 

Spatio-temporal data containing information about space, time and its interaction allows researchers to 

describe potential geographical pattern. Bayesian method commonly used in describing spatio-temporal data 

is simulated based Markov Chain Monte Carlo (MCMC). However, MCMC may be extremely slow in the 

posterior inference simulation process and it becomes computationally unfeasible if the specified models are 

complex and designed hierarchically. The Integrated Nested Laplace Approximation (INLA) in R-INLA 

package is approximated based method and becomes a viable alternative to fundamental limitation of the 

expensive MCMC computation. This paper aims to model data using Bayes spatial and spatio-temporal 

models divided in parametric and non-parametric temporal trend specifications. We use the number of poor 

people as the response that fit to generalized extreme value distribution and investigate the geographical 

patterns among regions by adding the socioeconomics information data set in Bayes spatial model. In Bayes 

spatio-temporal models we conclude classical parametric temporal trend as the best model that can describe 

space-time interaction based on the smallest deviance criteria. All the estimation processes are performed 

efficiently with R-INLA resulting fast, accurate and guarantee of convergence posterior inferences 

compared to MCMC's convergence issues. 

Keywords: Areal Data, Gaussian Markov Random Field, Laplace Approximation, Random Walk 

 

I. INTRODUCTION 

The advances in computational tools allows 

researcher to collect real-time data from satellites, 

GPS, etc. This means, a great opportunity of geo-

reference data that contain information about space 

or also time, increase the possibility to analyze 

highly multivariate data, with many important 

response variables and predictors. Furthermore, 

geographically reference data that presented as maps 

in longitudinal data or other time series structure, 

enlarge the possibilities of the researchers to capture 

the temporal correlated structure from time to time 

(Banarjee et al., 2015). As an example, if we consider 

to the epidemiological investigation, we might 

interest to analyze the incidence of certain disease 

such as lung, breast or cervical cancer rates in given 

counties, with information available such as 

smoking, food behavior, mammography and other 

important information at the same level. It is very 

important to consider the potential geographical 

pattern of the disease that is areas are close to each 

other are more likely share the same geographical 

characteristics which are related to the disease, thus 

to have similar incidence (Blangiardo and Cameletti, 

2015). However, investigating only the spatial 

pattern of disease does not allow us to say anything 

about their temporal variation which could be 

equally or even more important and interesting. 

Spatio-temporal modeling become one of space-time 

analysis method that widely used to describe geo-

referenced data in diverse areas from climatology 

(Carvalho et al., 2016; Aravena and Luckman, 2009) 
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to environmental health (Yanosky et al., 2014; Rui 

Ye et al., 2014; Abellan et al., 2008; Zongwei Ma et 

al., 2016), from ecology (Djeckman et al., 2009) to 

epidemiology (Korennoy et al., 2014; Nazia et al., 

2017).  

 

Bayesian inferences have developed greatly and 

widely established in many scientific fields such as 

social science (Kaplan, 2014; Jackman, 2009) to 

health economic assessment (Baio et al., 2017), and 

from exposure science to epidemiology (Pirani et al., 

2014). In Bayesian perspective, there is no 

fundamental difference between unobservable data 

and unknown parameters (or also hyperparameters) 

that we also consider as random quantities. 

Therefore, usually but not necessarily, the objective 

of Bayesian inference is using the combination of 

data and current information of parameters 

described with prior distribution to derive its 

posterior distribution. Determination of prior 

distribution can be based on informative prior such 

as previous studies or expert opinion and from non-

informative prior when there is no available 

information about the characteristics of parameters. 

In non-informative cases, conjugate prior often used 

as an option to prior distribution selection to the set 

of parameters that characterized with large 

variability. There are several excellences in Bayesian 

inferences, within Bayesian approaches it is easy to 

define hierarchical structure on the data and/or 

parameters, which presents the additional benefit on 

small or missing sample prediction. Moreover, 

Bayesian inferences generally also have good 

frequentist properties, because frequentist method is 

a special case of Bayesian inference with certain 

prior distribution.  

 

Bayesian method deals with spatial and spatio-

temporal modeling, with the development of 

simulative method of Markov Chain Monte Carlo 

(MCMC) (Casella and George, 1992; Gilks et al., 

1996). Spatial and spatio-temporal models are 

specified in Bayesian framework by simply 

extending the concept of hierarchical structure, 

allowing to share the strength of geo-reference 

characteristics based on the neighborhood for area 

level data or on the distance for point level data, and 

allowing temporal effect for data with space-time 

observations. The main contribution to spatial and 

spatio-temporal statistics is Besag et al. (1991), who 

developed the Besag–York–Mollié (BYM) method 

which is commonly used for disease mapping models 

for area level data, while Banerjee et al. (2004), 

Diggle and Ribeiro (2007) and Cressie and Wikle 

(2011) have developed and concentrated on 

Bayesian geostatistical (point level) models. The 

appearance of MCMC has greatly increased the 

possibility to develop complex model with large data 

set without the need of forcing the model to the 

simplified structure. MCMC method are powerful 

computational tool for Bayesian inference and 

applied in WinBUGS (Ntzoufras, 2009) as part of 

BUGS (Bayesian inference Using Gibs Sampler) 

software for the Bayesian analysis. In WinBUGS user 

only needs to specify a proto-type model, provide 

the data and the initial values, then the software will 

automatically select the sampling methods to 

generate values from the posterior distributions of 

the specified model. MCMC theory states that the 

distribution of simulated values converges to the 

targeted distribution (i.e the posterior distribution) 

when the iteration number goes to infinity, while it 

is not feasible to run Markov Chain infinitely. In 

other words, we do not know how fast the rate of 

generated samples convergence to the posterior 

distribution. This is equivalent to asserting that 

there is no guarantee that Markov Chain will 

converge, moreover when models are complex (e.g. 

big n problem such as spatio-temporal models) and 

designed with a hierarchical fashion, then MCMC 

maybe computationally unfeasible. 

 

A current development and viable alternative to 

MCMC methods able to reduce the computational 

costs of Bayesian inference is INLA (Integrated 

Nested Laplace Approximation) algorithm (Rue et al. 

2009). The INLA is a deterministic analytical 

approach rather than simulation based as in MCMC. 



International Journal of Scientific Research in Science, Engineering and Technology (www.ijsrset.com) 

 

 

1131 

The INLA designed with latent Gaussian model and 

provides accurate results produced in much shorter 

time than MCMC. R-INLA is the R package to 

implement approximate Bayesian inference using 

the INLA approach (Martino and Rue, 2010) with 

has flexible model and very wide class ranging from 

(generalized) linear mixed to spatial and spatio-

temporal models (Blangiardo et al., 2013). For this 

reason, the INLA is successfully used in great variety 

of applications such as Ruiz-Cárdenas et al. (2012) 

that fit the dynamic model using INLA; Martino et 

al. (2011) applicate INLA to the financial field for 

estimating the stochastic volatility models; and 

Simpson et el. (2016) using INLA for efficient 

computational to fit the log-Gaussian Cox process. In 

spatial and spatio-temporal analysis, there are 

several research publications of INLA, such as 

Blangiardo et al. (2013) using INLA to model the 

number of suicides into spatial model which assume 

Poisson distribution in the likelihood of the area 

level data; Cosandy-Godin et al. (2014) applies 

spatio-temporal models using INLA combined with 

Stochastic Partial Differential Equation (SPDE) to 

fisheries bycatch in the Canadian Arctic, which 

assume Poisson and Negative Binomial in the 

likelihood for point level data; Cameletti et al. 

(2012) using INLA and SPDE to model hierarchical 

spatio-temporal model for particulate matter (PM) 

concentration in the North-Italian region Piemonte 

during winter season October 2005 - March 2006, 

which assume Gaussian in the likelihood of point 

level data; and Papiola et al. (2013) using INLA to 

spatio-temporal analysis in Stomach cancer 

incidence in Southern Portugal year 1998-2006, 

which assume Poisson distribution in likelihood of 

area level data. 

 

This far, the application of INLA in Bayes spatio-

temporal analysis are limited and commonly used to 

assume Gaussian and Poisson likelihood in area or 

point level data, while the extreme value 

distribution which has many applications in geo-

reference extreme weather data such as rainfall 

(Aravenaa and Luckman, 2009), wind speeds 

(Mahmoudian and Mohammadzadeh, 2014) and 

precipitation events (Ghosh and Mallick, 2011) still 

use simulation based on MCMC in its estimation 

method. In financial fields the extreme values 

distribution can be represented in risk, large 

fluctuations in exchange rate and market crashes. In 

socioeconomics, extreme value distribution can be 

represented as salary income in a country (see 

Pindado et al. 2017), the number of poor people in 

given regions divided with rural or urban status and 

the consumer behavior of people life style who live 

in city and villages regions. Because the limitation or 

even no specific literatures describe the generalized 

extreme value with INLA method, this paper aims 

to: (1) give the illustration of INLA’s estimation 

using the latent Gaussian model and Gaussian 

Markov Random Field property as the foundation of 

the excellence of INLA in computational benefit 

aspect rather than MCMC. The INLA’s illustration is 

given in section 2.4; (2) find the best model to the 

number of poor people data set in East Java 

province, Indonesia that fit generalized extreme 

value distribution, using Bayes spatial and spatio-

temporal models using R-INLA package. The R code, 

model analysis and results detail explained in section 

3. While the theoretical background of Bayes spatial, 

spatio-temporal models and generalized extreme 

value distribution, will be explained briefly in 

section 2.1-2.3; and discussion in section 4 is the 

summary of the whole models used in this paper, 

with some review and explanation of the limitation 

of this paper and at the same time become the 

opportunity for further research analysis. 

 

II.  THEORETICAL BACKGROUND AND 

METHODS 
 

2.1 Bayes spatial model 

Spatial data are defined as stochastic process 

realizations indexed by space 

 ( )  * ( )    +  

where   is a (fixed) subset of  -dimensional of real 

number,   . In area level data,  ( ) is a random 

aggregate value over an areal unit   with well-
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(1) 

(2) 

(1) 

(2) 

(3) 

defined boundaries in  , which is define a countable 

collection of  -dimensional spatial units. Spatial 

dependency is taken from the neighborhood 

structure, by simplifying the notation, so that 

(          ) becomes (       )  furthermore if 

given the area  ,  ( ) is the set of first order (or 

second order) neighbor(s) of area  .   

An important property in spatial analysis is that 

specific area shares the strength geostatistical 

characteristics with its neighbors, thus the area 

which close to each other tend to have the same 

characteristics than areas that are far apart. So that 

the parameter    for the  th area is independent of 

all other parameters, given the set of its first order 

neighbors  ( ), in other words, for any pair of 

elements (   ) in   

                  

where      indicates all elements in   but the  ,jth 

and   is the precision matrix of   is sparse, thus 

      only if      ( ), which produces great 

computational benefits. This specification called 

Gaussian Markov Random Field (GMRF) (Rue and 

Held, 2005). 

Besag–York–Molliè (BYM) model presented by 

Besag et al. (1991) specifies the linear predictor as 

             

where    is the intercept, represents the average 

outcome in the entire study of region, while    and 

   is spatially structured risk effect and spatially 

unstructured risk effect for specific area   

respectively. In addition, Besag, et al. (1974) 

specifies this model using exchangeable prior for   , 

while in BYM specification the spatially 

unstructured component is set to be the Normal 

prior distribution, i.e.          (    
 ), with   

  is 

variance parameter that presents the amount of 

spatially unstructured random effect. We will focus 

on intrinsic conditional autoregressive one as 

implemented in R-INLA, so that spatially structured 

component of (1) stated as 

             (
 

  ( )
∑     

 

   

   
 )  

where     represents the neighboring criteria with 

for    ,       if area   and   are neighbors, and   

otherwise, and   
    

   ( )⁄  is the variance for 

area   depends on its numbers of neighbors,   ( ). 

The variance in BYM specification as in equation (2) 

implicitly state that if an area has many neighbors 

then the variance will be smaller, while the variance 

parameter   
  controls the amount of variation 

between the spatially structured random effects 

(Blangiardo and Cameletti, 2015). So that, the 

parameters and hyperparameters to be estimated are 

  *      + and   *     + respectively, with 

     ⁄  defines its precision or the invers of 

variance parameters. 

 

2.2.  Bayes spatio-temporal models 

As stated in Herrmann et al. (2015), there is a 

significant trend numbers of cancers in Switzerland 

which almost six times reduction in the last 40 years, 

and in Cosandy-Godin et al. (2014) stated that there 

are certain types of fish will be in a certain place at a 

certain time as well. Example of such research 

suggests that there is a real relationship between a 

phenomenon over time. However, section 2.1 only 

allows us to evaluate spatial risk pattern in single 

specified year, we are not able to say anything about 

the temporal trend of risk for a series of observation 

years. In spatio-temporal models we can now 

investigate a temporal trend, and as in spatial process 

data are now defined by a process indexed by space 

and time 

 (   )  * (   ) (   )        + 

observed at   spatial locations or areas and at   time 

points.  

For poin level data, as described in Gneiting et al. 

(2006) to overcome the computational complexity, 

the spatio-temporal models simply assume 

separability in space-time covariance function, so 

that the covariance can be decomposed into the sum 
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(6) 

(5) 

(or product) of a purely spatial and purely temporal 

term, i.e.    (       )    (   )  (   ), where 

  (   ) and   (   ) are covariance function for 

purely spatial in between location   and   and 

covariance function for purely temporal between 

time   and  , respectively. In area level data, GMRF 

can be applied to include a precision matrix defined 

also in terms of time and assuming a neighboring 

structure. If space-time interaction is included in the 

model (Clayton, 1996; Knorr-Held, 2000), its 

precision can be obtained through the Kronecker 

product. 

2.2.1 Classical parametric trend 

BYM specification as in equation (1) is extended to 

allow temporal term, as in Bernardinelli et al. (1995) 

presents a parametric trend for the temporal 

component which assumes that the linear predictor 

can be written as  

             (    )   

where the main spatial effect is BYM specification as 

stated in section 2.1,   is the global temporal effect 

for all areas and    as differential trend specified for 

area   for year  .    is set to be exchangeable prior, 

while in this paper we assume as Normal(    
 ) with 

the precision is defined with       
 ⁄   The 

parameters and hyperparameters to be estimated in 

this model are   *          + and   

*        + respectively, with      ⁄  still defines 

its precision. 

2.2.2 Dynamic nonparametric trend 

Implicitly in model (3) we assume linearity 

constraint in its differential trend,   . In 

nonparametric model, allows us to model the 

temporal trend using dynamic formulation as 

introduced in Knorr-Held (2000)  

                    

This model replaces the global temporal effect and 

differential trend with two others term, i.e. the 

structured temporal trend    and the unstructured 

temporal trend   , while   ,    and    is BYM 

specification as in previous models. The structured 

temporal trend modeled dynamically using random 

walk of order one (or two), defined as 

        

{
 

 
      (       )        

      (
         

 
 
  

 
)               

      (       )        

 

 

while       
 ⁄  is the precision and    is assumed 

by means of Gaussian exchangeable prior, i.e. 

         (     ⁄ )  The parameters and 

hyperparameters to be estimated in this model are 

  *          + and   *           + 

respectively. 

2.2.3 Space-time interaction nonparametric trend 

Expanding model (4) and allowing interaction 

between space and time is easily formulated using 

the following specification 

                        

The first five elements in (6) using the same 

specification as model (4), with space-time 

interaction effect     assumed follows a Gaussian 

distribution, i.e.           (     ⁄ ), with the 

structure matrix   , identify the type of spatial and 

temporal dependence between the elements of  . 

Clayton (1996) using    as the Kronecker product of 

structure matrixes interaction, so if we assume there 

is an interaction between the spatially unstructured 

effect and unstructured temporal trend, then we can 

write the structure matrix as            

   , because both   and   have no spatial and 

temporal structure. 

 

2.3 Generalized extreme value (GEV) distribution  

Extreme value theory plays an important role in 

socioeconomics phenomena. Statistical model with 

extreme value data enable us to make forecasts about 

the occurrences of such events with fairly high 

accuracy. Such forecasts can help to minimize the 

loss of human and economic assets caused by such 

extreme phenomenon. This fact motivates 

researchers to develop predictive models for extreme 

events. The GEV known as Fisher-Tippet 
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(7) 

distribution is a family of continuous distribution 

developed with extreme value theory which 

combined type I, type II and type III extreme value 

distribution also known as Gumbel, Fréchet and 

Weibull families respectively. Unlike the normal 

distribution that arises from the use of the central 

limit theorem on sample averages, the extreme value 

distribution arises from the limit theorem of Fisher 

and Tippet (1928) on extreme values or maxima in 

sample data. The GEV distribution is defined 

through the cumulative distribution function 

 (       )     ( [   √  (   )]
    

) 

for 

   √  (   )    

and for continuously response   where   is the 

linear predictor,   is the “precision” defined with the 

inverse of its variance parameter i.e.      and   is a 

fixed scaling    . In Bayesian perspective, GEV 

has two hyperparameters, i.e. the “precision” is 

represented as        , and the prior is defined on  

  . The shape parameter   is represented as      

and the prior is defined on   .  

2.4 INLA Estimation Method 

Purposed by Rue, et al. (2009), INLA algorithm is an 

analytical Bayesian inference using Laplace 

approximation method which designed with latent 

Gaussian models and provides accurate results and 

shorter computing time compared to MCMC. 

Suppose that   is the vector of observation with 

specified prior distribution of parameter  , Bayesian 

inference is concentrated around the posterior of its 

parameter i.e. 

 (   )   (   ) ( )  

The entire part of this section is a brief illustration of 

INLA estimation. For example, we suppose the 

specified prior density function is Gamma 

distribution with 

 ( )  
 

 ( )
   (   )               

Therefore, we interested in computing the integral  

∫ ( )   ∫   (    ( ))   

 ∫    ((   )          )    

while   is constant. Present of     ( ) can be 

approximated using means of Taylor series 

expansion, which evaluated in       

    ( )      (  )  (    )
     ( )

  
|
     

 
(    )

 

 

      ( )

   
|
     

 

 (   )          

 (    )
     ( )

  
|
     

 
(    )

 

 

      ( )

   
|
     

   

If    is set to be its mode, so that 

                ( ), then 
     ( )

  
|
      

   

results that     
   

 
  , and the approximation 

becomes 

    ( )  (   )            

 
(     ) 

 

      ( )

   
|
      

    

The integral of interest in (7) can be approximated as 

∫ ( )   ∫    ((   )             

(     ) 

 

      ( )

   
|
      

  )     

    ((   )            

  )∫   (
(     ) 

 

      ( )

   
|
      

)   

where the above integrand can be associated with 

the density of Normal distribution. By setting 

            ( )

   
|
      

⁄ results that     
   

  
 , we 

obtain 

∫ ( )       ((   )            

  )∫   ( 
(     ) 

    
)    
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(14) 

(9) 

(10) 

(11) 

(13) 

(12) 

(8) 

which associated with the kernel of Normal 

distribution with mean equal to     and variance 

   . If the integral is evaluated in the interval (   ), 

then the Laplace approximation is  

∫  ( )  
 

 

     ((   )            

  )√     ( ( )   ( ))  

where  ( ) represents the cumulative density 

function of the Normal(       ) distribution. 

 The first task in Bayesian inference is compute 

the marginal distribution of each element in 

hyperparameter vector as 

 (    )  ∫ (   )       

As stated in Blangiardo and Cameletti (2015), INLA 

exploits the assumptions of the model to produce a 

numerical approximation to the posteriors based on 

the Laplace approximation, so that the joint 

posterior of the hyperparameters can be 

approximated as 

 (   )  
 (     )

 (     )
 

 
 (     ) (   ) ( )

 (     )
 

 
 (     ) (   ) ( )

 ̃(     )
|
    ( )

 

   ̃(   )  

where  ̃(   ) is the Gaussian approximation given 

by the Laplace method, and   ( ) is the mode for 

given  . The second task is compute posterior 

marginal distribution of each element of parameter 

vector as 

 (    )  ∫ (      )  

 ∫ (      )  (   )    

Rewrite the vector of parameters as   (      ) 

and use again Laplace approximation, the joint 

posterior of parameters can be approximated as 

 (      )  
 ((      )    )

 (          )
 

 
 (     )

 (          )
 

 
 (     )

 (          )
|
       

 (    )

 

   ̃(      )  

where  ̃(      ) is the Laplace Gaussian 

approximation and    
 (    ) is its mode. Once we 

get  ̃(      ) and  ̃(   ), the marginal posterior 

distributions as equation (11) then approximated by 

 ̃(    )  ∫  ̃(      ) ̃(   )      

and the integral can be solved numerically through a 

finite weighted sum 

 ̃(    )  ∑ ̃(  | 
( )  )

 

 ̃( ( )| )    

with a corresponding set of weights *  + from some 

integration points * ( )+. 

 

III. ANALYSIS AND RESULTS 
 

3.1 Data set 

We illustrate the INLA estimation results using the 

number of poor people data set in East Java 

province, Indonesia, year 2016 to be modeled using 

Bayes spatial and year 2012-2016 modeled using 

Bayes spatio-temporal. East Java is the second largest 

province in Indonesia (according to the number of 

population), with Surabaya as its capital city. 

Although Surabaya is the second biggest metropolis 

after Indonesia capital city, Jakarta, however, in 

province level, it has the biggest number of poor 

people in year 2014-2016 according to Statistics 

Indonesia data. Furthermore, Indonesia’s economic 

crisis experienced in year 1998 produces a huge 

effect on the increase of the number of poor people 

to 49.50 (24.23%) million from, two years before in 

1996, about 34.01 (17.47%) million people. This 

phenomenon interested us to discuss poverty and try 

to link various socioeconomics variables such as 

population density, expectation years of schooling 

and construction overpriced index.  
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East Java province has 29 districts and 9 

municipalities, then we have 38 different regions 

with the average number of neighbor is 3.631579. 

Summary of the neighboring structure can be 

obtained using some of the libraries in R, such as 

maptools, spdep, and rgdal, while ploy2nb and 

nb2INLA respectively read and create the adjacency 

graph that will be used in R-INLA library package 

analysis. We concern in the number of poor people 

(in million) as the response variable, with range of 

the data is 272 and its minimum and maximum 

value are 8 and 280 respectively, thus our response 

fit to the generalized extreme value distribution 

with negative shape parameter   = -0.25222 which 

has finite right tail characteristics.  

 

3.2 Bayes spatial model 

Suppose    represents the number of poor people 

specified for  th region,          , that we 

assume with generalized extreme value distribution. 

Then with identity link function we have 

                 

with    is the intercept and use Besag–York–Molliè 

(BYM) specification, thus    is the spatially 

structured risk effect which assumed as in equation 

(2), and    is the spatially unstructured risk effect 

assumed with exchangeable prior          (    
 ).  

We now prepare the BYM model and run INLA:  

 

library(INLA) 

formula <- y ~ 1 + f(ID, model="bym", 

graph=JATIM.adj) 

mod <- 

inla(formula,family="gev",data=data,control.comput

e=list(dic=TRUE),control.family = list(gev.scale.xi = 

0.03)) 

 

R-INLA library package can be downloaded from 

http://www.r-inla.org/ which provides 

documentation for the package and discussion 

forum. Once we had downloaded the package, 

library(INLA) starts the command for all analysis in 

INLA method. We define the regression formula, 

with 1 as the intercept, while f() states the model 

specification. We set the BYM regression model, 

model="bym", for each ID region with the 

JATIM.adj as the graph of its adjacency matrix. By 

default, R-INLA specified minimally informative 

priors on the log of the structured effect precision: 

              (1, 0.0005) and the unstructured 

effect precision:               (1, 0.0005). If 

the model has been specified, we can use the inla 

function to run INLA algorithm. In inla function, 

the formula is specified before using BYM 

specification, using the number of poor people as our 

data set with gev as the names of generalized 

extreme value for family distribution in inla 

function. For model comparisons we evaluate the 

Deviance Information Criteria (DIC) and use the 

scaling of shape parameter    is given by the 

argument gev.scale.xi with the default scaling is set 

to 0.01. The scaling of the shape parameter is 

purposed to improve the numerical calculation if   is 

small, so the shape parameter   (  ) will appear as 

     . Scaling may vary for different data 

characteristics while in our case we set the scale to 

0.03.  

 In spatial analysis, it will be interesting to 

investigate the proportion of variance explained by 

the spatially structured component. The variance of 

the conditional autoregressive specification   
  is not 

directly comparable with the variance of the 

marginal unstructured component   
 . Blangiardo 

and Cameletti (2015) obtain an estimate of the 

posterior marginal variance for the structured effect 

empirically through 

  
  

∑ (    ̅)
  

   

   
  

where  ̅ is the average of   and then compare it to 

  
 , so we have the fraction of spatially structured 

effect as 

             
  
 

  
    

   

In our data set, the proportion of spatial variation is 

about 29.88% where these numbers have small 

spatial effect to represents data variability. One of 

the excellences of Bayesian analysis is the flexibility 

on its prior distribution that may have a 

considerable impact on the results including on its 
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spatial fraction. We improve the spatial fraction 

with define other assumption of its structured and 

unstructured effect prior distribution with the 

following argument 

 

formula <- y ~ 1 + f(ID, model="bym", 

graph=JATIM.adj,hyper=list(prec.unstruct=list(prior

="loggamma",param=c(1,0.0001)),prec.spatial=list(pri

or="loggamma",param=c(1,0.001)))) 

The above modification of the prior distribution is 

specified using the option hyper in the formula 

specification, note that now we use the minimally 

informative priors on the log of the structured effect 

precision as               (1, 0.001) and the 

unstructured effect precision as 

              (1, 0.0001). The improvement of 

its spatial fraction is simply by setting bigger 

precision (or equivalently smaller variance) for the 

spatially structured rather than the unstructured 

effect. By setting this new prior distribution for the 

structured and the unstructured effect, the spatial 

fraction increases to about 81.72%, therefore we will 

use this assumption for the BYM specification in 

Bayes spatial and Bayes spatio-temporal models.   

 

With respect to Section 2.1, the parameters 

estimated by R-INLA are   *      + and the 

hyperparameters are given by the precisions  

  *     +. The information about posterior mean, 

standard deviation and a 95% credibility interval for 

the fixed effect (its intercept,   ) and the random 

effect (the structured and unstructured,    ) can be 

obtained respectively with mod$summary.fixed and 

mod$summary.random. Our next interesting 

objective is to map the relative risk of number of 

poor people of each region compared to the whole of 

East Java province, so we need to calculate the 

marginal distribution of each province using 

mod$marginals.random, transform to its natural 

scale then calculate the posterior distribution as 

follows 

 

m <- mod$marginals.random$ID[1:Nareas] 

zeta <- 

lapply(m,function(x)inla.emarginal(function(x) x,x)) 

m represents the marginal distribution of the linear 

combination of random effects as          for 

each ID region which Nareas identifies the 38 

regions in East Java, and inla.emarginal is the 

transformation function to its natural scale, while in 

our generalized extreme value the transformation 

function is identity, identified with 

inla.emarginal(function(x) x,x). Using built-in 

function in R-INLA, we calculate the posterior mean 

distribution with lapply function. The posterior 

mean of the intercept,   , implies a 134.235 (in 

million) increasing number of poor people, with 

95% credibility interval ranging from 112.6586 to 

156.1339. Figure 1(a) shows the map of the posterior 

mean of relative risk for number of poor people of 

each region     compared to the whole of East Java. 

The posterior means of the uncertainty can also be 

mapped and can provide useful information and 

visualized with  (      ) using the built-in 

function inla.pmarginal, and the resulting map 

presented in Figure 1(c).  

 

We investigate the relationship of the number of 

poor people using the additional socioeconomics 

covariates, so we define their impact in spatial 

regression formula  

                                  

where   ,           for each region respectively 

describe population density, expectation years of 

schooling and construction overpriced index. Then 

we specify the formula.cov in inla function as below 

 

formula.cov <- y ~ 1 + f(ID, model="bym", 

graph=JATIM.adj,hyper=list(prec.unstruct=list(prior

="loggamma",param=c(1,0.0001)),prec.spatial=list(pri

or="loggamma",param=c(1,0.001)))) + x1 + x2 + x3  

mod.cov <- 

inla(formula.cov,family="gev",data=data,control.com

pute=list(dic=TRUE),control.family = list(gev.scale.xi 

= 0.03)) 
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(17) 

Summary of INLA estimation for the fixed effects 

*           + are presented in Table 1. On its 

natural scale, the increase of 1 unit in population 

density and construction overpriced index are 

associated respectively with an increase of around 

(in million) 13.74 and 10.70 in the number of poor 

people, while decrease around 46.40 for 1 unit 

increases in expectation years of schooling. Map of 

the residuals relative risks for each region and the 

uncertainty of their probability of exceeding 0 are 

presented in Figure 1(b, d).  

Table 1. Summary Of Fixed Effects Estimation, 

Standard Deviation And 95% Credibility Interval 

 Mean 
Standard 

Deviation 
2.5% 50% 97.5% 

   123.2651 10.7423 101.3054 123.3054 144.2790 

   13.7441 10.1164 -7.8815 14.0649 33.7265 

   -46.4029 10.7544 -67.4138 -46.4906 -25.0979 

   10.7012 10.5411 -9.9642 10.6671 31.4241 

 

3.3 Bayes spatio-temporal models 

This section we model the number of poor people of 

East Java, year 2012-2016 to build space-time 

relative risk of each region and then compare the 

resulted models from section 2.2.1 – 2.2.3 using DIC 

criteria. The classical non-parametric formulation as 

in equation (3) with identity link function can be 

written as 

                 (    )   

In R-INLA model in equation (17) is specified 

through the following formula.1 

 

formula.1<- y ~ 1 + 

f(ID.area,model="bym",graph=Jatim.adj,hy

per=list(prec.unstruct=list(prior="logga

mma",param=c(1,0.0001)),prec.spatial=lis

t(prior="loggamma",param=c(1,0.001)))) + 

f(ID.area1,year,model="iid") + year 

model.inla.1 <- 

inla(formula.1,family="gev",data=data, 

control.predictor=list(compute=TRUE), 

control.compute=list(dic=TRUE,cpo=TRUE),

control.family = list(gev.scale.xi = 

0.03)) 

 

Model (17) includes the same spatial structured and 

unstructured components as in (16), with year is the 

global time effect ( ). The linear combination of their 

random effects are          using the BYM 

specification identified in 

f(ID.area,model=”bym”,…). Note that each function 

f() only assigned with one unique covariate in R-

INLA, so that we have to define ID.area1 to 

duplicate ID.area used in previous specification. 

Therefore f(ID.area1,year,model=”iid”) are the 

random effects represents for space (ID.area1) and 

time (year)interaction (  ) and modeled using 

exchangeable prior Normal(      ) with 

              (1, 0.0005).  

 

Using dynamic parametric trend, global time effect 

is replaced with the structured and unstructured 

temporal component, so that with identity link 

function equation (4) can be written as 

                        

In R-INLA model in equation (18) is specified 

through the following formula.2 

 

formula.2<- y ~ 1 + 

f(ID.area,model="bym",graph=Jatim.adj,hy

per=list(prec.unstruct=list(prior="logga

mma",param=c(1,0.0001)),prec.spatial=lis

t(prior="loggamma",param=c(1,0.001)))) + 

f(ID.year,model="rw1") + 

f(ID.year1,model="iid") 

model.inla.2 <- 

inla(formula.2,family="gev",data=data, 

control.predictor=list(compute=TRUE), 

control.compute=list(dic=TRUE,cpo=TRUE),

control.family = list(gev.scale.xi = 

0.03)) 

 

The structured temporal trends (  ) modeled using 

random walk of order one as in equation (5) through 

f(ID.year,model="rw1"), and 

f(ID.year1,model="iid")is the unstructured 

temporal trends with exchangeable prior Normal(    

  ) with               (1, 0.0005). 

In space-time interaction model, we define specifically 

the interaction between the spatially unstructured 

random effects (  ) and the unstructured temporal 

trends (  ), so that according to equation (6) with 

identity link function, the linear predictor can be 

written as 
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In R-INLA model in equation (18) is specified 

through the following formula.3 

 

formula.3<- y ~ 1 + 

f(ID.area,model="bym",graph=Jatim.adj,hy

per=list(prec.unstruct=list(prior="logga

mma",param=c(1,0.0001)),prec.spatial=lis

t(prior="loggamma",param=c(1,0.001)))) + 

f(ID.year,model="rw1") + 

f(ID.year1,model="iid") + 

f(ID.area.year,model="iid") 

lcs = inla.make.lincombs(ID.year = 

diag(5),  ID.year1 = diag(5)) 

model.inla.3 <- 

inla(formula.3,family="gev",data=data,  

control.predictor=list(compute=TRUE), 

control.compute=list(dic=TRUE,cpo=TRUE), 

lincomb=lcs,control.inla = 

list(lincomb.derived.only=TRUE),control.

family = list(gev.scale.xi = 0.03)) 

 

Model (19) has the same structured and 

unstructured temporal trends as in (18), while the 

space-time interaction specified using 

f(ID.area.year,model="iid") with follows a Gaussian 

distribution, i.e.           (     ⁄ ) with 

              (1, 0.0005) and the structure 

matrix defined as in Section 2.2.3. The two temporal 

effects *     + can be combined through a linear 

combination using inla.make.lincombs before 

running the model, in this case we store in lcs 

variable. The linear combination is obtained using 

the 5 elements of two diagonal matrices, one for the 

structured and one for the unstructured temporal 

trend parameters.  

 

Table 2. Results Of Spatio-Temporal Models 

 

Model DIC    

1 2120.101 2.159 

2 2120.921 2.777 

3 2121.062 2.858 

 

 
 

 

 
 

(b) Marginal posterior mean distribution of residual 

relative risks of number of poor people    with 

socio-economic covariates in model (16) 

 

 
 

(c) The uncertainty of relative risks probability 

 (      )  in model (15) 

 

(a) Marginal posterior mean distribution of relative risks of 

number of poor people    in model (15) 
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Figure 1. Spatial mapping results and posterior 

probabilities for Bayes spatial model 

 

Table 2 presents the results of spatio-temporal 

models defined in equation (17) – (19) with DIC 

criteria (smaller is better) and the numbers of 

effective parameters (  ) that represents the model 

complexity. Classical parametric trend improves the 

model fit with smaller DIC, suggesting that the 

added complexity from the number of parameters to 

be estimated (like in non-parametric trend models) 

does not guarantee will result in the most fit model, 

therefor we will focus on classical parametric trend 

results. In this model the intercept posterior mean is 

135.6424 (in million) ranging from (115.2128, 

156.4254) on it 95% credibility interval with 

standard deviation is 10.4910. The negative posterior 

mean of global temporal trend is    -1.6766, shows 

decreasing linear trend in number of poor people in 

5 years observations. Spatial relative risk also 

mapped in Figure 2(a) while the uncertainty of  

 (      ) is presented in Figure 2(b). 

 
(a) Marginal posterior mean distribution of relative 

risks of number of poor people    in model (17) 

 

 
(b) The uncertainty of relative risks probability 

 (      )  in model (17) 

 

Figure 2. Spatial mapping results and posterior 

probabilities for Bayes classical parametric trend 

 

IV. DISCUSSIONS 

 

This paper briefly describes INLA algorithm to 

estimate marginal posterior mean for parameters and 

hyperparameters for Bayes spatial to spatio-temporal 

models. We use the number of poor people data set 

that fit to generalized extreme value distribution to 

illustrate the INLA estimation results. The INLA 

produced great computational benefits rather than 

MCMC method in solving big-n problem that covers 

random and fixed effects to every specific region and 

time on its spatio-temporal analysis. We model the 

number of poor people in East Java province, 

Indonesia, year 2016 using Bayes spatial with Besag–

York–Molliè (BYM) specification. The spatial 

pattern of this model is described with spatial 

fraction derived from spatially structured to spatially 

unstructured effect, which produce 81.72% of data 

variability that can be described with its spatial 

relationship. We improve the spatial fraction using 

different prior assumption of hyperparameters used 

in R-INLA. This flexibility of choosing the prior 

distribution assumption is one of the excellences of 

Bayesian modeling and at the same time being an 

issue for the accuracy of prior assumption used 

against the resulting estimates. Therefore, it is 

necessary to set carefully the prior is being used and 



International Journal of Scientific Research in Science, Engineering and Technology (www.ijsrset.com) 

 

 

1141 

perform sensitivity analysis to investigate how the 

prior influences the estimators.  

We add the Bayes spatial model using 

socioeconomics covariates and explore how its 

effects to the response variable. From the result, we 

can conclude that expectation years of schooling 

have greatest effect in determining the number of 

poor people in East Java, the bigger the expectation 

years of schooling the less the number of poor 

people. In other hand, population density and 

construction overpriced index have negative 

influence, so that the bigger the values the more the 

number of poor people. Before analysis and as the 

second most densely populated province, we 

thought that population density will have the 

greatest effect in East Java poor people numbers, 

however, it is surprising that expectation years of 

schooling have more than three times effects rather 

than population density and almost five times 

greater than construction overpriced index. Therefor 

in this case, rather than density and infrastructure, 

the role of education is the most influential on the 

development of welfare population.  

 

Using the same BYM specification and assumptions, 

we again model the number of poor people year 

2012-2016 using classical, dynamic and space-time 

interaction of spatio-temporal models. The best fit 

model accordance to smallest DIC criteria is classical 

model with parametric trend. Rather than the 

nonparametric trend models, classical Bayes Spatio-

temporal is the simplest model which only assume 

the global linear trend ( ), so that with (very short) 

only five years observation it is very reasonable that 

the simplest classical model is the best fit for our 

data set. If we have longer observation, it is possible 

that the nonparametric models can have the varying 

temporal trend and may also be able to capture the 

space-time interaction. Note that in space-time 

interaction model, we only use the type I 

interaction, which interact the unstructured 

temporal effects (  ) and spatially unstructured 

effects (  ). Modelling the combination of spatial and 

temporal interaction also interesting, such as type II 

(temporal structured (  ) and spatially unstructured 

(  ) interaction), type III (unstructured temporal 

(  ) and spatially structured (  ) interaction) and 

most complex interaction type IV (temporal 

structured (  ) and spatially structured (  )) 

(Blangiardo and Cameletti (2015)). However, when 

the covariates are available, it could be interesting to 

study their effect on ecological regression 

(regression using covariates) to its spatio-temporal 

analysis.   
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