
IJSRSET1844367 | Received : 25 March | Accepted : 10 April 2018 | March-April-2018 [(4) 4 : 989-993]

© 2018 IJSRSET | Volume 4 | Issue 4 | Print ISSN: 2395-1990 | Online ISSN : 2394-4099
Themed Section : Engineering and Technology

989

Efficient parallelization of Inverse DWT using GPGPU
Shailja Maniya1, Bakul Panchal2

1Research Scholar, M.E. (I.T.), I.T. Department, L.D. College of Engineering Gujarat Technological University,

Ahmedabad, Gujarat, India
2Assistant Professor, M.E. (I.T.), I.T. Department, L.D. College of Engineering Gujarat Technological University,

Ahmedabad, Gujarat, India

ABSTRACT

Satellite images are gaining more and more popularity in our daily life as they are helpful during situations like

natural calamities or warfare. In order to save bandwidth as well as to speed up data transfer, compression can

be used to download satellite images on the earth. The Consultative Committee for Space Data Systems (CCSDS)

had proposed an image data compression standard (CCSDS-IDC) for satellite image compression. This standard

provides good compression performance using Discrete Wavelet Transform (DWT) and Bit Plane Encoder. As

Discrete Wavelet Transform (DWT) is time consuming, to meet real time requirement this data should be

decompressed as soon as massive stream of bits downlinked on the earth. In this research work, efficient

GPGPU based IDWT (Inverse DWT) computation gives better time efficiency than CPU implementation.

Keywords: GPGPU, CCSDS, Discrete Wavelet Transform (DWT), CUDA, NVIDIA.

I. INTRODUCTION

The CCSDS Image Data Compression is the most

widely used particularly for the grayscale image data.

This algorithm is very useful for any imaging

instruments application. The algorithm is designed in

such a way that its complexity remains sufficiently

low so that it can be feasibly implemented on high-

speed hardware.

This algorithm is intended to be used for on-board

spacecraft. Compression is used in order to save

bandwidth usage & storage space required to save the

image data as well as time. On the other side, real

time need is to decompress the two dimensional

image data as soon as it is downlinked on the earth.

Various data Compression technique uses wavelet

transformed data for better compression performance.

There are basically two types of compression

supported by this CCSDS standard i.e. Lossless Data

Compression and Lossy Data Compression. In Lossless

Data Compression, data is compressed in such a way

that it can be recovered easily on decompression

whereas in Lossy data compression technique, data

cannot be reproduced without some distortion. Lossy

Compression technique uses 9/7 Float Discrete

Wavelet Transform; Lossless Compression Technique

uses 9/7 Integer Discrete Wavelet Transform. As

Integer 9/7 Discrete Wavelet Transform is the most

widely used algorithm for the compression as well as

time consuming one, it can be efficiently parallelized

using GPU to enhance the performance of the

compression system.

II. LITERATURE SURVEY

Changhe Song, Yunsong Li, and Bormin Huang at el.

[2] has implemented the decoding system for satellite

images. They have implemented a wavelet based

International Journal of Scientific Research in Science, Engineering and Technology (www.ijsrset.com)

Shailja Maniya et al. Int J S Res Sci. Engg. Tech. 2018 Mar-Apr;4(4) : 989-993

 990

decoding system which contains SPIHT with Reed-

Solomon decoding. In this paper, they have used float

9/7 inverse DWT as a wavelet transform with SPIHT

and Reed-Solomon decoding. They are getting IDWT

as the most time consuming process of the decoding

system. They have used General Purpose Graphics

Processing Unit (GPGPU) for the faster computation

of IDWT. They have also used shared memory for the

better time performance of the IDWT computation.

Abhishek S. Shetty, Abhijit V. Chitre and Yogesh H.

Dandawate at el [3] has done the comparison for the

wavelet and Inverse wavelet transform on different

platforms. They have used 9/7 Integer Discrete

wavelet transform and its inverse for this comparison.

Three different platforms are used which are

MATLAB, Python using OpenCV and Python using

PIL (Python Imaging Library). As a result, the

comparison chart is prepared as shown in fig. 9. It is

observed that Pthon-OpenCV gives better result in

terms of time and it is also open source. These results

are being obtained using image size starting from

512x512 to 6000x6000.

Anastasis Keliris, Vasilis Dimitsasy, Olympia

Kremmyday, Dimitris Gizopoulosy and Michail

Maniatakosz at el [4] has implemented the Discrete

wavelet transform on multi core cpu, Many

Integrated Cores (MIC) cpu as well as on NVIDIA

GPU. In this paper, 9/7 integer DWT is used as a

wavelet transform. They have used the two

evaluation systems; one is using AMD Pheom II X4

965 with Nvidia Tesla C2070 & another one is Intel

Xeon E5-2680 with Intel Xeon Phi 5110P. They have

used the algorithm for the transpose of the matrix

because this operation is memory intensive operation.

Christofer Schwartz, Marcelo S. pinho, at el [9] has

implemented CCSDS-122 DWT based compressor on

the CPU as well as on the GPU. CPU specifications

are: Intel Core i7 - 3610QM (third generation) with 4

cores (8 threads) working at a frequency of 2; 241; 003

KHz and GPU specifications are NVIDIA GeForce GT

630M (2.1 Streaming Multiprocessor Capability) —

this GPU has two multiprocessor (MP) with 48 cores

each (total of 96 cores) working at a clock of 950; 000

KHz. In this paper, they have implemented bit-plane

encoder on the Host side (CPU) and DWT is

performed on device (GPU). Timing given by the host

and host + device system is analysed in this paper.

Energy consumption of the GPU + CPU system was

less than CPU system.

III. INVERSE DISCRETE WAVELET TRANSFORM

The Inverse Discrete Wavelet Transform (IDWT) can

be considered as correlation module, as with every

level of transform data gets correlated. Inverse

Integer 9/7 DWT maps two sets of wavelet

coefficients, a low-pass set, Cj, and a high-pass set, Dj,

back to a signal vector xj. Special boundary filters are

required at either end of the data sets, for j=0, j=1,

j=2N-3, and j=2N-1.

x1 = D0 + 

 (x0+x2) -

 (x2+x4) +

 (1)

x2j+1 = Dj + 

 (x2j+x2j+2) -

 (x2j-2+x2j+4) +

 

for j=1,…,N-3 (2)

x2N-3 = DN-2 + 

 (x2N-4+x2N-2) -

 (x2N-6+x2N-2)

+

  (3)

x2N-1 = DN-1 + 

 x2N-2-

 x2N-4+

 

 (4)

x0 = C0 + -

 +

  (5)

 x2j = Cj+ -
 j-1

 +

  for j=1,…, N-1 (6)

IV. IMPLEMENTATION DETAILS

This inverse DWT problem can be parallelized. As we

are going to use three level inverse DWT and each

level computation depends on the previous level

result, it cannot be parallelized. The parallelizable

task is to perform the computation of inverse

horizontal filter and inverse vertical filter.

Eq. (5) & (6) should be computed in parallel for

inverse horizontal & inverse Vertical filter for each

International Journal of Scientific Research in Science, Engineering and Technology (www.ijsrset.com)

Shailja Maniya et al. Int J S Res Sci. Engg. Tech. 2018 Mar-Apr;4(4) : 989-993

 991

pixel values LL, LH as well as HL, HH subbands. After

that, Eq. (1) to (4) can be computed in parallel for

inverse horizontal & inverse Vertical filter. Total

number of threads launched for each filter is same as

total pixel values of the subband. One thread

computes one-pixel value for next level subband.

From the given equations we can say that odd

elements can only be computed after the computation

of even elements is completed. Eq. (1) to (4) depends

on Eq. (5) & (6). In our implementation, four kernels

are made to compute one level inverse 2-D DWT. The

fetch and copy step of this inverse vertical filter and

inverse horizontal filter is shown in below figutr 2

Figure 2. Fetch and copy step for inverse vertical

filter and inverse horizontal filter

In the GPU computation, the memory access pattern

matters a lot. There are many types of memory

defined in CUDA programming model. One should

choose the memory access pattern very carefully for

achieving desired speedups.

Figure 3. Memory load step of kernel in shared

memory

 Inverse Discrete Wavelet Transform Optimization

In the parallel implementation, the time consuming

part is the memory load store operation. Considering

previous version of decompressor, result of all four

kernels are stored in the global memory. Thus, in one

level inverse 2-D DWT is accessing global memory six

times. AS Time required for memory load store

operation in the global memory has significant impact

on the performance, access global memory for one

time during all computation of one level 2-D Inverse

DWT to optimize the performance. It can be done by

using tiling approach and shared memory.

In this optimized version, we have done the

computation on block size of 36x36 by launching

only 32x32 threads in the one block. Here we have

hallo region of 2 columns and 2 rows. We require

total 36x36 load operation for computation of

32x32 block size. We also have overlapping in

International Journal of Scientific Research in Science, Engineering and Technology (www.ijsrset.com)

Shailja Maniya et al. Int J S Res Sci. Engg. Tech. 2018 Mar-Apr;4(4) : 989-993

 992

loading in tiling approach. This Loading operation

from global to shared memory is shown in figure 3.

Figure 5. Fetch & Computation step for Eq. (6) for

Inverse Vertical Filter

In the implementation, we have used Tesla K40c

Accelerator for the parallel computation of Inverse

Discrete wavelet transform. In this GPU, when we

read any data from the global memory it takes 256

bytes (128 pixel values) at a time. When we request

again same values then it is fetched from the L1 cache

which reads 128 bytes (64 pixel values) at a time. In

previous case, we were using only 32 pixel values out

of 64 pixel values at a time for the computation of

IDWT.

In the optimized version, one thread is going to

compute two pixel values at a time which in turns

uses all 64 pixel values which are being fetched in one

clock cycle from L1 cache. Thus, we get higher hit

ratio for L1 cache and speedup is achieved. This

memory fetch and computation step is as shown in

figure 5.

V. EXPERIMENTAL RESULTS

Figure 7. Time Performance Comparison chart for

Decompressor Versions

The computation time for GPU depends upon

memory load store operations as well as kernel

computation time. IDWT_two_pixel_computation

takes least amount of time for kernel computation

whereas IDWT_Shared_Memory takes least number

of load-store operations. The comparison results are as

shown in the below graph.

VI. CONCLUSION

The inverse DWT problem can be computed in

parallel in order to get decompression of satellite

image as soon as it is downlinked on the earth. For

the parallel implementation, GPU is very useful.

NVIDIA CUDA programming is used to program

GPU for the parallel implementation. From all the

versions of IDWT, the Two_Pixel_Computation gave

best results in terms of time. It is also analysed that

how we are going to use parallelism in our

implementation as well as the memory access pattern

has significant impact on the performance.

IDWT_two_pixel_computation gives best result in

terms of time among all implementations of IDWT

considering time for memory load-store operation as

well as for kernel computation.

VII. REFERENCES

[1]. "Image Data Compression", Recommendation for

space data system standards, CCSDS 122.0-B-1.

Blue Book, November 2005.

[2]. Changhe Song, Yunsong Li, and Bormin Huang,

"A GPU-Accelerated Wavelet Decompression

System with SPIHT and Reed-Solomon Decoding

for Satellite Images", IEEE journal of selected

topics in applied earth observations and remote

sensing, vol. 4, no. 3, september 2011.

[3]. Abhishek S. Shetty, Abhijit V. Chitre and Yogesh

H. Dandawate, "Time Efficiency Comparison of

Wavelet and Inverse Wavelet Transform on

Different Platforms", International Conference on

Computing Communication Control and

automation (ICCUBEA) IEEE-2016.

International Journal of Scientific Research in Science, Engineering and Technology (www.ijsrset.com)

Shailja Maniya et al. Int J S Res Sci. Engg. Tech. 2018 Mar-Apr;4(4) : 989-993

 993

[4]. Anastasis Keliris, Vasilis Dimitsasy, Olympia

Kremmyday, Dimitris Gizopoulosy and Michail

Maniatakosz, "Efficient parallelization of the

Discrete Wavelet Transform algorithm using

memory-oblivious optimizations", 25th

International Workshop on Power and Timing

Modeling, Optimization and Simulation

(PATMOS), pp.25-32, 2015

[5]. John Nickolls, "GPU Parallel Computing

Architecture and CUDA Programming Model",

Hot chips 19 Symposium(HCS) IEEE, pp.1-12,

2007

[6]. Khoirudin and Jiang Shun-Liang, "Gpu

application in cuda memory", Advanced

Computing: An International Journal (ACIJ),

Vol.6, No.2, pp.1-10, March 2015

[7]. NVI IA, "NVI IA’s Next Generation CU ATM

Compute Architecture: Kepler TM GK110/210",

United States, 2014.

[8]. NVIDIA, "Cuda C Programming Guide", United

States, September 2017.

[9]. Christofer Schwartz, Marcelo S. pinho,"an energy

consumption analysis of ccsds image compressor

running in two different platforms", IGARSS-

IEEE, pp. 1640- 1650, 2014.

