
IJSRSET1844367 | Received : 25 March  | Accepted : 10 April 2018 | March-April-2018 [(4) 4 : 989-993 ] 

 

© 2018 IJSRSET | Volume 4 | Issue 4 | Print ISSN: 2395-1990 | Online ISSN : 2394-4099 
Themed Section : Engineering and Technology 

 
989 

Efficient parallelization of Inverse DWT using GPGPU 
Shailja Maniya1, Bakul Panchal2 

1Research Scholar, M.E. (I.T.), I.T. Department, L.D. College of Engineering Gujarat Technological University, 

Ahmedabad, Gujarat, India 
2Assistant Professor, M.E. (I.T.), I.T. Department, L.D. College of Engineering Gujarat Technological University, 

Ahmedabad, Gujarat, India 

 

ABSTRACT 

 

Satellite images are gaining more and more popularity in our daily life as they are helpful during situations like 

natural calamities or warfare. In order to save bandwidth as well as to speed up data transfer, compression can 

be used to download satellite images on the earth. The Consultative Committee for Space Data Systems (CCSDS) 

had proposed an image data compression standard (CCSDS-IDC) for satellite image compression. This standard 

provides good compression performance using Discrete Wavelet Transform (DWT) and Bit Plane Encoder. As 

Discrete Wavelet Transform (DWT) is time consuming, to meet real time requirement this data should be 

decompressed as soon as massive stream of bits downlinked on the earth. In this research work, efficient 

GPGPU based IDWT (Inverse DWT) computation gives better time efficiency than CPU implementation. 

Keywords:  GPGPU, CCSDS, Discrete Wavelet Transform (DWT), CUDA, NVIDIA. 

 

I. INTRODUCTION 

 

The CCSDS Image Data Compression is the most 

widely used particularly for the grayscale image data. 

This algorithm is very useful for any imaging 

instruments application. The algorithm is designed in 

such a way that its complexity remains sufficiently 

low so that it can be feasibly implemented on high-

speed hardware. 

 

This algorithm is intended to be used for on-board 

spacecraft. Compression is used in order to save 

bandwidth usage & storage space required to save the 

image data as well as time. On the other side, real 

time need is to decompress the two dimensional 

image data as soon as it is downlinked on the earth.  

 

Various data Compression technique uses wavelet 

transformed data for better compression performance. 

There are basically two types of compression 

supported by this CCSDS standard i.e. Lossless Data 

Compression and Lossy Data Compression. In Lossless 

Data Compression, data is compressed in such a way 

that it can be recovered easily on decompression 

whereas in Lossy data compression technique, data 

cannot be reproduced without some distortion. Lossy 

Compression technique uses 9/7 Float Discrete 

Wavelet Transform; Lossless Compression Technique 

uses 9/7 Integer Discrete Wavelet Transform. As 

Integer 9/7 Discrete Wavelet Transform is the most 

widely used algorithm for the compression as well as 

time consuming one, it can be efficiently parallelized 

using GPU to enhance the performance of the 

compression system. 

 

II. LITERATURE SURVEY 

 

Changhe Song, Yunsong Li, and Bormin Huang at el. 

[2] has implemented the decoding system for satellite 

images. They have implemented a wavelet based 
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decoding system which contains SPIHT with Reed-

Solomon decoding. In this paper, they have used float 

9/7 inverse DWT as a wavelet transform with SPIHT 

and Reed-Solomon decoding. They are getting IDWT 

as the most time consuming process of the decoding 

system. They have used General Purpose Graphics 

Processing Unit (GPGPU) for the faster computation 

of IDWT. They have also used shared memory for the 

better time performance of the IDWT computation.  

 

Abhishek S. Shetty, Abhijit V. Chitre and Yogesh H. 

Dandawate at el [3] has done the comparison for the 

wavelet and Inverse wavelet transform on different 

platforms. They have used 9/7 Integer Discrete 

wavelet transform and its inverse for this comparison. 

Three different platforms are used which are 

MATLAB, Python using OpenCV and Python using 

PIL (Python Imaging Library). As a result, the 

comparison chart is prepared as shown in fig. 9. It is 

observed that Pthon-OpenCV gives better result in 

terms of time and it is also open source. These results 

are being obtained using image size starting from 

512x512 to 6000x6000. 

 

Anastasis Keliris, Vasilis Dimitsasy, Olympia 

Kremmyday, Dimitris Gizopoulosy and Michail 

Maniatakosz at el [4] has implemented the Discrete 

wavelet transform on multi core cpu, Many 

Integrated Cores (MIC) cpu as well as on NVIDIA 

GPU. In this paper, 9/7 integer DWT is used as a 

wavelet transform. They have used the two 

evaluation systems; one is using AMD Pheom II X4 

965 with Nvidia Tesla C2070 & another one is Intel 

Xeon E5-2680 with Intel Xeon Phi 5110P. They have 

used the algorithm for the transpose of the matrix 

because this operation is memory intensive operation. 

 

Christofer Schwartz, Marcelo S. pinho, at el [9] has 

implemented CCSDS-122 DWT based compressor on 

the CPU as well as on the GPU. CPU specifications 

are: Intel Core i7 - 3610QM (third generation) with 4 

cores (8 threads) working at a frequency of 2; 241; 003 

KHz and GPU specifications are NVIDIA GeForce GT 

630M (2.1 Streaming Multiprocessor Capability) — 

this GPU has two multiprocessor (MP) with 48 cores 

each (total of 96 cores) working at a clock of 950; 000 

KHz. In this paper, they have implemented bit-plane 

encoder on the Host side (CPU) and DWT is 

performed on device (GPU). Timing given by the host 

and host + device system is analysed in this paper. 

Energy consumption of the GPU + CPU system was 

less than CPU system. 

 

III. INVERSE DISCRETE WAVELET TRANSFORM 

 

The Inverse Discrete Wavelet Transform (IDWT) can 

be considered as correlation module, as with every 

level of transform data gets correlated.  Inverse 

Integer 9/7 DWT maps two sets of wavelet 

coefficients, a low-pass set, Cj, and a high-pass set, Dj, 

back to a signal vector xj. Special boundary filters are 

required at either end of the data sets, for j=0, j=1, 

j=2N-3, and j=2N-1. 

x1 = D0 +   
 

  
 (x0+x2) - 

 

  
 (x2+x4) + 

 

 
  (1) 

x2j+1 = Dj +   
 

  
 (x2j+x2j+2) -  

 

  
 (x2j-2+x2j+4) +  

 

 
           

for j=1,…,N-3    (2) 

x2N-3 = DN-2 +   
 

  
 (x2N-4+x2N-2) -  

 

  
 (x2N-6+x2N-2) 

+ 
 

 
             (3) 

x2N-1 = DN-1 +  
 

 
 x2N-2- 

 

 
 x2N-4+ 

 

 
           

                 (4) 

x0 = C0 + - 
  

 
 + 

 

 
                 (5) 

 x2j = Cj+ - 
 j-1    

 
 + 

 

 
   for j=1,…, N-1  (6) 

 

IV. IMPLEMENTATION DETAILS 

 

This inverse DWT problem can be parallelized. As we 

are going to use three level inverse DWT and each 

level computation depends on the previous level 

result, it cannot be parallelized. The parallelizable 

task is to perform the computation of inverse 

horizontal filter and inverse vertical filter.  

 

Eq. (5) & (6) should be computed in parallel for 

inverse horizontal & inverse Vertical filter for each 
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pixel values LL, LH as well as HL, HH subbands. After 

that, Eq. (1) to (4) can be computed in parallel for 

inverse horizontal & inverse Vertical filter. Total 

number of threads launched for each filter is same as 

total pixel values of the subband. One thread 

computes one-pixel value for next level subband. 

 

From the given equations we can say that odd 

elements can only be computed after the computation 

of even elements is completed. Eq. (1) to (4) depends 

on Eq. (5) & (6). In our implementation, four kernels 

are made to compute one level inverse 2-D DWT. The 

fetch and copy step of this inverse vertical filter and 

inverse horizontal filter is shown in below figutr  2 

 

 
Figure  2. Fetch and copy step for inverse vertical 

filter and inverse horizontal filter 

 

In the GPU computation, the memory access pattern 

matters a lot. There are many types of memory 

defined in CUDA programming model. One should 

choose the memory access pattern very carefully for 

achieving desired speedups. 

 

 
Figure 3. Memory load step of kernel in shared 

memory 

 

 Inverse Discrete Wavelet Transform Optimization 

In the parallel implementation, the time consuming 

part is the memory load store operation. Considering 

previous version of decompressor, result of all four 

kernels are stored in the global memory. Thus, in one 

level inverse 2-D DWT is accessing global memory six 

times. AS Time required for memory load store 

operation in the global memory has significant impact 

on the performance, access global memory for one 

time during all computation of one level 2-D Inverse 

DWT to optimize the performance. It can be done by 

using tiling approach and shared memory. 

 
In this optimized version, we have done the 

computation on block size of 36x36 by launching 

only 32x32 threads in the one block. Here we have 

hallo region of 2 columns and 2 rows. We require 

total 36x36 load operation for computation of 

32x32 block size. We also have overlapping in 
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loading in tiling approach. This Loading operation 

from global to shared memory is shown in figure 3. 

 
 

Figure  5. Fetch & Computation step for Eq. (6) for 

Inverse Vertical Filter 

 

In the implementation, we have used Tesla K40c 

Accelerator for the parallel computation of Inverse 

Discrete wavelet transform. In this GPU, when we 

read any data from the global memory it takes 256 

bytes (128 pixel values) at a time. When we request 

again same values then it is fetched from the L1 cache 

which reads 128 bytes (64 pixel values) at a time. In 

previous case, we were using only 32 pixel values out 

of 64 pixel values at a time for the computation of 

IDWT.  

 

In the optimized version, one thread is going to 

compute two pixel values at a time which in turns 

uses all 64 pixel values which are being fetched in one 

clock cycle from L1 cache. Thus, we get higher hit 

ratio for L1 cache and speedup is achieved. This 

memory fetch and computation step is as shown in 

figure 5. 

V. EXPERIMENTAL RESULTS 

 

 
Figure 7. Time Performance Comparison chart for 

Decompressor Versions 

 

The computation time for GPU depends upon 

memory load store operations as well as kernel 

computation time. IDWT_two_pixel_computation 

takes least amount of time for kernel computation 

whereas IDWT_Shared_Memory takes least number 

of load-store operations. The comparison results are as 

shown in the below graph. 

 

VI. CONCLUSION 

 

The inverse DWT problem can be computed in 

parallel in order to get decompression of satellite 

image as soon as it is downlinked on the earth. For 

the parallel implementation, GPU is very useful. 

NVIDIA CUDA programming is used to program 

GPU for the parallel implementation. From all the 

versions of IDWT, the Two_Pixel_Computation gave 

best results in terms of time. It is also analysed that 

how we are going to use parallelism in our 

implementation as well as the memory access pattern 

has significant impact on the performance.  

IDWT_two_pixel_computation gives best result in 

terms of time among all implementations of IDWT 

considering time for memory load-store operation as 

well as for kernel computation.  
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