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ABSTRACT 
 

A major and so far unmet challenge in software engineering is to achieve and act upon a clear and sound 

understanding of the relationship between formal mechanisms in the development process. The challenge is salient 

in the development of cyber-physical systems, in which the computer interacts with the human and physical world 

to ensure a behaviour there that satisfies the requirements of the system‟s owner. The nature of the computer as a 

formally defined symbol-processing engine invites a formal mathematical approach to software development. 

Contrary considerations militate against excessive reliance on formalism. The non-formal nature of the human and 

physical world, the complexity of system function, and the need for human comprehension at every level demand 

application of non-formal and intuitional knowledge, of insight and technique rather than calculation. The challenge, 

then, is to determine how these two facets of the development process formalism and intuition can work together 

most productively. This short essay describes some origins and aspects of the challenge and offers a perspective for 

addressing it.   

Keywords: Approximation, Behaviour, Correctness, Description, Formalism, Interpretation, Intuition, Problem 

World, Requirement, Structure.   

 

I. INTRODUCTION 

 

This is to pay attention to the reality of software 

engineering practice and to the multitude of 

intuitive and informal insights that have been 

offered to clarify its challenges and support its 

improvement example, addressing a specific 

challenge in software development practice: the 

proper relationship between formal mechanism and 

software engineering practices. Focal insight is the 

faculty of recognition, understanding and action in 

the world on the basis of experience, insight and 

knowledge, with little or no appeal to conscious 

reasoning. The strength of intuition is that it is 

unbounded: in exercising our intuition we are not 

restricted to a limited set of observations and 

considerations decided a priori, but we draw 

whatever presents itself to us from the situation in 

hand. When we read an intuitive description the 

words are not opaque: we are looking at the subject 

matter through the medium of the description. This 

is how human verbal and nonverbal communication 

works: as we hear or we read words, I experience or 

enact through them, in my imagination, what you 

are saying about the world.  Some extreme 

examples of human intuition dispense with 

conscious use of language altogether. Studying how 

fire-fighters decide how to tackle a fire leads one 

researcher to define intuition as “the way we 

translate our experiences into judgments and 

decisions ... by using patterns to recognize what‟s 

going on in a situation.” Another researcher 

[Rochlin97] describes how operators in military, air 

traffic control, and other critical environments rely 

on maintaining an integrated cognitive map drawn 

from diverse inputs: they call it „having the bubble‟. 

The map allows them to maintain and act on a 

single picture of the overall situation and 
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operational status without conscious description, 

analysis or reasoning. Formalism, by contrast, relies 

entirely on conscious description, analysis and 

reasoning. Its use is not an innate human faculty, 

but a skill that must be learned. Formalism is an 

intellectual artefact that evolved from the 

development of mathematics in ancient civilisations. 

Its essence is abstraction. Arithmetic and geometry 

emerged from practical needs: counting shepherds‟ 

flocks, measuring farmers‟ land, paying taxes, and 

laying out the structures of large buildings. The 

Greeks saw that mathematics had an intrinsic 

intellectual interest. Numbers, planes, points and 

lines could be completely separated from their 

practical utility. Plato‟s rule that no-one ignorant of 

geometry should enter his Academy in Athens was 

not an expression of welcome to land surveyors or 

estate agents: it expressed the conviction that 

knowledge of the material world was inferior to 

knowledge of mathematics. Only in the abstract 

world of mathematics could the conclusions of 

reasoning be proved correct beyond all doubt.  In 

modern times some mathematicians have expressed 

the essentially abstract nature of formalism 

uncompromisingly. In an address [Weyl40] at the 

University of Pennsylvania, the German 

mathematician Hermann Weyl said: “We now come 

to the decisive step of mathematical abstraction: we 

forget about what the symbols stand for. [The 

mathematician] need not be idle; there are many 

operations he may carry out with these symbols, 

without ever having to look at the things they stand 

for.” Weyl‟s doctoral advisor was David Hilbert, 

whom he reported [Weyl44] as saying:  

 

 “It must be possible to replace in all geometric 

statements the words point, line, plane, by table, 

chair, mug.”  For Weyl and Hilbert, the symbols 

used in a formal description are arbitrarily chosen: 

any reference to the material world is a mischievous 

and misleading irrelevance. Extreme forms of pure 

intuition or pure formalism are unlikely to appear in 

any practical enterprise, and certainly not in 

software development. In practice, formalism is 

more like applied than like pure mathematics: 

application to the material world is never very far 

away, and intuition plays a significant part. In 

practice, intuition finds expression in semi-formal 

documents and discourse: some lightweight formal 

notions may be introduced to avoid obvious 

potential confusions, and sound reasoning is 

recognised—though not always achieved as a 

desirable goal. How the two should be balanced and 

combined, both in the large and in the small, is still 

an open question.   

 

Some Software History  

 

Two streams may be distinguished in the evolving 

modern practice of software development since it 

began in the 1940s. One may be called the formal 

stream. Programs are regarded as mathematical 

objects: their properties and behaviour can be 

analysed formally and predictions of the results of 

execution can be formally proved or disproved. The 

other stream may be called the intuitive stream. 

Programs are regarded as structures inviting human 

comprehension: the results of their execution can be 

predicted—not always reliably—by an intuitive 

process of mental enactment combined with some 

informal reasoning.  Both streams have a long 

history. A talk by Alan Turing in 1949 [Turing49] 

used assertions over program variables to construct 

a formal proof of correctness of a small program to 

compute the factorial function. Techniques of 

program structuring, devised and justified by 

intuition, came to prominence in the 1960s with the 

control structures of Algol 60 [Naur60], Conway‟s 

invention of coroutines [Conway63], and the class 

concept of Simula67 [Dahl72]. Dijkstra‟s advocacy 

of restricted control flow patterns in the famous GO 

TO letter [Dijkstra68] rested on their virtue of 

minimising the conceptual gap between the static 

program text and its dynamic execution: the 

program would be more comprehensible. In further 

developments in structured programming the two 

streams came together. A structured program text 

was not only easier to understand: the nested 

structure of localised contexts allowed a structured 

proof of correctness based on formal reasoning.  At 
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this stage the academic and research communities 

made an implicit choice with far-reaching 

consequences. Some of the intellectual leaders of 

those communities were encouraged by the success 

and promise of formal mathematical techniques to 

focus their attention and efforts on that stream. 

They relaxed, and eventually forsook, their interest 

in the intuitive aspects of program design and 

structure. For those researchers themselves the 

choice was fruitful: study of the more formal 

aspects of computing stimulated a rich flow of 

results in that particular branch of logic and 

mathematics.  For the field of software 

development as a whole this effective separation of 

the formal and intuitive streams was a major loss. 

The formal stream flowed on, diverging further and 

further from the concerns and practices of realistic 

software development projects. The intuitive stream, 

too, flowed on, but in increasing isolation. Systems 

became richer and more complex, and the 

computer‟s role in them became increasingly one of 

intimate interaction with the human and physical 

world. Software engineering came to be less 

concerned with purely symbolic computation and 

more concerned with the material world and with 

the economic and operational purposes of the 

system of which software was now only a part. 

Development projects responded increasingly to 

economic and managerial imperatives and trends 

rather than to intellectual or scientific disciplines.  

In recent decades advocates of formal methods have 

made admirable efforts to reconnect the two 

streams to their mutual advantage; but the very 

necessity of these efforts is an indictment of the 

present state of software development practice and 

theory as a whole. Formalism and intuition are still 

too often seen as competing adversaries. Some 

formalists believe that their work offers powerful 

solutions that practitioners have wilfully ignored. 

Some practitioners believe that formalists have 

simply ignored the real problems and difficulties of 

software engineering. The purpose of this essay is 

to offer a little relationship counselling to the 

parties, and to address the implicit challenge: How 

can we combine the undoubted benefits of formal 

techniques with the more intuitive and informal 

aspects that have always been an integral part of the 

practice of traditional branches of engineering?   

 

Software Engineering   

 

Structured programming was ideally suited to what 

we may call pure programming. The archetypical 

expository examples of pure programming are 

calculating the greatest common divisor of two 

integers, sorting an array of integers, solving the 

travelling salesman problem, or computing the 

convex hull of a set of points in 3-space. These 

problems proved surprisingly fertile in stimulating 

insights into program design technique, but they 

were all limited in a crucial way: they required only 

computation of symbolic output results from 

symbolic input data. The developer investigates the 

problem world, identifies a symbolic computational 

problem that can usefully be solved by computer, 

and constructs a program to solve it. The user 

captures the input data for each desired program 

execution and presents it as input to the machine. 

The resulting output is then taken by the same or 

another user and applied in some way to guide 

action in the problem world. The process is shown 

in the upper part of Figure 1.   

 
Figure 1: A Pure Program and a Software Engineered Cyber-

Physical System 

 

A realistic program of this kind may be designed to 

solve a general mathematical problem—for 

example, to solve a set of partial differential 

equations. It may or may not embody some more 

specialised theory of the problem world. For 
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example, an early use of electronic computing was 

to print tables of calculated trajectories for artillery 

under test at the Aberdeen Proving grounds in 

Maryland USA [Dickinson67]. The programs may 

have explicitly embodied a substantial ballistic 

theory, or they may have been programmed only to 

solve general systems of partial differential 

equations. In either case, the machine executing a 

pure program is isolated from the problem world by 

the operators who prepare and present the 

machine‟s inputs and collect and use its outputs.  

By contrast, the lower part of Figure 1 shows a 

cyber-physical system, whose development is a task, 

not of pure programming but of software 

engineering. In such a system the machine—the 

computing part—is introduced into a material 

problem world to serve specific purposes. The 

problem world consists of interconnected problem 

domains. some of these domains are physical parts 

of the world such as mechatronic devices, other 

computer systems, parts of the built environment, 

parts of the natural world, and objects such as credit 

cards that encode lexical information in physical 

form. Additionally, some other problem domains 

are human beings participating in the system 

behaviour, interacting with each other and with the 

other domains, in both active and passive roles as 

users, operators, patients, subjects, passengers, 

drivers, and so on. All of these problem domains 

have their own given properties and behaviours.  

The function of the machine is to ensure a certain 

desired behaviour in this world, by monitoring and 

controlling the parts of the world to which it is 

directly interfaced. 

 

The desired behaviour in the world is not limited to 

these directly interfaced parts, but also embraces 

other more remote parts which are monitored and 

controlled through their interactions with other, 

neighbouring, parts and thus, indirectly, with the 

machine. The purpose of this desired behaviour is 

to satisfy the needs of the system‟s stakeholders. 

Some stakeholders, such as operators, patients and 

users, are not mere observers but also participate as 

problem domains in the system behaviour. Others, 

such as safety regulators and business managers, 

observe the system behaviour only from a distance. 

All stakeholders legitimately expect the system 

behaviour, seen in particular projections from their 

individual perspectives, to satisfy their needs and 

purposes.  

 

II. METHODS AND MATERIAL 

 

The Development Task  

 

The behaviour of a cyber-physical system is governed 

by the interacting behaviours of the machine and the 

problem domains. Within the limits of the hardware and 

operating system, the machine‟s behaviour can be freely 

defined by the software developed for the system. The 

behaviour of each problem domain is constrained by its 

given properties; superimposed on these is the effect of 

its interactions with other parts of the system. To 

achieve the desired overall system behaviour the 

machine must both respect and exploit the given 

properties and behaviours of all the problem domains.  

The overall system behaviour must satisfy the needs of 

the stakeholders. It is a mistake to suppose that this 

behaviour is understood in advance by the stakeholders, 

either individually or collectively, and is waiting only to 

be discovered and documented. The stakeholders do 

have various needs and desires, but they may be only 

dimly perceived. A major part of the development 

task—explicitly recognised in the past twenty years as 

requirements engineering—is designing behaviour 

projections that will satisfy the needs of each 

stakeholder, and combining these projected behaviours 

into a design for the overall system behaviour. Each 

desired projected behaviour, and the complete system 

behaviour that somehow combines them all, must be 

feasible: that is, it must be achievable by the machine, 

suitably programmed and interacting with the problem 

domains.  The development task, then, has many facets 

and parts. The properties of each problem domain must 

be studied, described and analysed; the many projections 

of the desired system behaviour must be designed, 

described and presented to the stakeholders for their 

critical approval; the combination of these projections 

must itself be designed; and the behaviour of the 

machine must be designed and specified at its interface 

to the problem world. The resulting system is a complex 

artifact. Before examining the sources and nature of its 
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complexity we will first look briefly at the ubiquitous 

intellectual activity of software engineering: describing a 

material reality and reasoning about its properties and 

behaviour. 

   

Describing and Reasoning 

  

Figure 2 outlines the general process of forming a 

description and reasoning about it to draw useful 

conclusions about the machine or the problem world, 

expressed in a modified or new description. 

 

 
 
Figure 2: Describing a Material Reality and Reasoning about it 

 

Description A is constructed first. Phenomena of the 

reality, relevant to the concern in hand, are selected and 

named, the mapping between names and phenomena 

being given by the interpretation. The meaning of the 

description—what it says about the world—depends on 

the interpretation and on the language in which the 

description is expressed? Given description A, it is then 

possible to reason about the world on the basis of that 

description, deducing a conclusion in the form of 

description B. This conclusion has a meaning in the 

reality, which can be understood by reading the derived 

description in the light of the interpretation.  This 

simplified account allows us to recognise the difference 

between formal and non-formal description and 

reasoning. In a formal setting the chosen language of 

description is a formal language, rigorously specified. 

The selected phenomena must then be regarded as 

elements of types supported by the language. For 

example: in the language of propositional calculus each 

relevant phenomenon must be an atomic uninterpreted 

truth-functional proposition; in the language of predicate 

calculus it must be a predicate, a function, or an 

individual. The grammar of the language also includes a 

small set of connectives, such as logical operators, 

allowing meaningful statements to be made in the 

language and combined in various ways. Descriptions 

are assembled from these elements according to rigid 

syntactic rules. The advantage purchased by this 

linguistic rigidity is a formal calculus of reliable 

reasoning. All or part of the initial description can be 

treated as a premiss from which conclusions can be 

derived and proved with mathematical certainty.  The 

diagram applies equally well to the structure of intuitive 

or informal description and reasoning. An informal 

description must be expressed in some language. The 

language has symbols, and the symbols have some 

interpretation—that is, they denote some phenomena of 

the described reality. Yet the content, character and 

virtues of the intuitive process are quite different from 

the formal. Symbol choices are very significant in 

informal description, especially if the descriptions are 

expressed in natural language: they remind us to look 

across from the description to the reality it describes and 

to check continually whether the description remains 

valid. The logic of informal description is unconstrained: 

it is nearly true to say that in a rich natural language like 

English we can say anything whatsoever. We can even 

define and use new linguistic features within one 

description. The price for this linguistic freedom is some 

imprecision in description, and unreliability in both the 

process and the results of reasoning. Nonetheless, 

intuition and informality are not merely degraded and 

incompetent cousins of formalism. Imprecision and 

unreliability bring major compensating benefits. In 

practice the activity of describing and reasoning is rarely 

perfectly formal or perfectly informal. Rejecting 

Hilbert‟s maxim, most formalists usually choose 

symbols intended to remind the reader of the phenomena 

they denote in the reality; and many intuitive 

practitioners use natural language description with 

careful definitions of the meanings of names, or include 

embedded formal notations such as finite state machines 

where greater precision seems necessary.   

 

Formal mechanism and System Complexities  

 

Cyber-physical systems exhibit complexity in more than 

one dimension. The functional complexity of a realistic 

system is immediately obvious. Typically a system has 

many functional features whose purposes are not 

harmonious or even consistent. The individual features 

may be intrinsically complex, and the complexity of the 

whole system is greatly increased by their interactions. 

Some features may be mutually exclusive in time, but 

during system operation multiple features may be 

simultaneously active. Further, many systems are 

required to operate essentially continuously, scarcely 

ever reaching a quiescent state in which the system can 

be removed from service, isolated from the rest of the 
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world, and returned to a well understood initial state 

before resuming operation. So the system may be 

required to achieve smooth transitions between different 

functional behaviours adjacent in time. For an avionics 

system, for example, there are transitions from taking-

off to climbing, from landing to taxiing, and so on; and a 

lift control system must maintain user safety and 

reasonable convenience in the transition from normal lift 

service to fire-fighter operation.  One effect of this 

functional complexity is that there are few or no 

invariant properties of the required system behaviour. 

For example, it might be thought that in a system to 

control the movement of railway trains over a region of 

track a safety invariant must hold: no two trains must 

ever be present in the same track segment. But in reality 

this cannot be a required invariant: it would make it 

impossible to assemble a train from two trains, or for a 

breakdown train to deal with the aftermath of a collision 

or to rescue a locomotive that has lost tractive power. 

An access control system might seem to demand that no 

person is ever present in a room for which they have no 

access authorisation. But this property would restrict 

escape routes from the building in case of fire, and in 

that context would be forbidden by fire regulations. In a 

lift control system an apparent safety invariant stipulates 

that the lift car doors are never open unless the lift is in 

home position at a floor. But a fire-fighter who is in the 

lift at a high floor must not be prevented from 

descending even if the doors refuse to close.  The given 

properties and behaviours of a problem domain—those 

that it possesses independently of the behaviour of the 

machine—exhibit a similar dynamic complexity. The 

given properties and behaviours are determined by four 

factors, at least two of which are dynamic. A fifth factor 

determines which properties are of interest at any time.  

The first determining factor is scientific law—for 

example, the laws of physics. At the granularity relevant 

to most software engineering these laws are constant and 

well understood.  The second factor is what we may call 

the constitution of the domain. This is its shape and 

material, and the designed, evolved or otherwise 

determined configuration of its constituent parts. For 

example, within the bounds set by physics, a person‟s 

body weight, physical strength and reaction speed are 

determined by human physiology in general and the 

individual‟s physiology in particular. The maximum 

acceleration of a lift car rising in its shaft is determined 

not only by the laws of physics but also by the design of 

the motor, the power supply and the lift car and 

counterweight. This second factor, constitution, is more 

or less constant for each particular problem domain, and 

is open to study and analysis.  A third, time-varying, 

factor is the condition of the domain. Engineered 

devices degrade over time, especially if they are not 

properly maintained or subjected to misuse or to 

excessive loads. A human operator becomes tired in an 

extended session of participation in the system; and, in 

the contrary direction, an operator‟s speed and skill may 

increase with practice over a number of similar sessions.  

A fourth factor is variation of the environment over time. 

Carefully engineered devices assume an acceptable 

operating environment, specifying such conditions as 

wind speed, ambient temperature, air purity and 

atmospheric pressure. Human behaviour, too, depends 

on such environmental conditions. If the environment 

changes the domain may exhibit changed properties.  

Broadly, we may say that the first two of these four 

factors—scientific law and domain constitution—can be 

investigated and analysed at system design time. The 

third and fourth—condition and environment—vary 

during system operation.  The fifth factor, domain role, 

is of a different kind. At any particular time, a problem 

domain has a large set of potentially observable 

properties subject to the first four factors, but only a 

small subset are significant for the system behaviour. 

The domain itself participates only in some of the 

system‟s functions, and in those it plays only a limited 

role exhibiting only a subset of its given properties. For 

example, the aerodynamic properties of a car body are 

highly significant while it is being driven at high speed 

on a motorway, but irrelevant to its desired behaviour in 

automatically assisted parking, in the aftermath of a 

collision, or while undergoing maintenance in the 

workshop. These considerations may be summarised by 

saying that the rarity of required invariants of system 

behaviour is paralleled by the rarity of invariants of 

problem domain properties.   

 

Contexts of Domains and Behaviours 

 

There is an important interplay between the variation of 

domain properties and the variation of the active set of 

system functional behaviours. For each domain the 

properties of current significance varies according to its 

role in each system behaviour of the currently active set. 

They vary also with changes in the environment, and 

some of those changes will naturally demand different 

system behaviours. For example, a power failure in the 
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lift control system seriously affects the properties of the 

mechatronic equipment, which is now running on 

emergency power supplies of limited capacity; at the 

same time it also requires transition to a special parking 

behaviour in which passengers are brought safely to the 

nearest available floor.  The most obvious examples of 

this interplay of domain properties and system behaviour 

are found in fault-tolerance. In the lift control system, to 

provide normal lift service the machine must directly 

control the motor power and direction, and monitor the 

floor sensors to detect the arrival and departure of the lift 

car at each floor. This behaviour is possible only if the 

relevant problem domains of the lift equipment are in 

healthy condition: this is therefore a local assumption, 

on which the behaviour will rely [Hayes+03]. It then 

becomes necessary to develop another system behaviour 

whose specific purpose is to monitor the health of the lift 

equipment by observing its run-time behaviour. These 

are therefore at least three distinct system functional 

behaviours: one to provide normal lift service; a second 

to detect and perhaps diagnose equipment faults; and at 

least one other to provide the appropriate behaviour in 

the presence of a fault. The domain properties of the 

equipment on which they rely are quite different: one 

relies on fault-free behaviour; the second relies on the 

estimated probabilities of different equipment faults and 

on their consequences in observable phenomena; the 

third relies on the residual functionality of the faulty 

equipment.  This restriction of each projection of system 

behaviour to a particular context in which particular 

assumptions hold is only a finer-grain version of the 

inevitable restriction on the whole system‟s operating 

conditions. No system, however critical, can aspire to 

operate dependably in every circumstance that is 

logically or physically possible. Tall buildings are 

designed to withstand high wind speeds, but only up to a 

limit of what is reasonably plausible in each building‟s 

particular location. Passenger aircraft are designed to fly 

in the earth‟s atmosphere, but not in air of unlimited 

turbulence or in a high density of volcanic ash. Even 

when we choose to extend the proposed operational 

conditions to allow graceful degradation of system 

function we must still accept some limitations. We can 

aim only to choose reasonable limits on the 

circumstances our system will be designed to handle, 

and to design with adequate reliability within those 

limits.  The resolutions of functional and domain 

complexity come together in the assumed context of 

each projected functional behaviour. Each projected 

functional behaviour can then be represented as shown 

in the lower part of Figure 1. In each projection the 

impediments to successful application of appropriate 

formalism have been greatly diminished. How and why 

this is so is discussed in the following section.   

 

Structure, Invention and Proof  

 

The great French physicist and mathematician Henri 

Poincaré wrote [Poincaré08]:  “For the pure geometer 

himself, this faculty [intuition] is necessary; it is by logic 

one demonstrates, by intuition one invents. To know 

how to criticize is good, to know how to create is better. 

You know how to recognize if a combination is correct; 

what a predicament if you have not the art of choosing 

among all the possible combinations. Logic tells us that 

on such and such a way we are sure not to meet any 

obstacle; it does not say which way leads to the end. For 

that it is necessary to see the end from afar, and the 

faculty which teaches us to see is intuition. Without it 

the geometer would be like a writer who should be 

versed in grammar but had no ideas.” Poincaré is 

speaking of mathematics, but what he says applies no 

less to software engineering. It is worth understanding 

what he says.  The key point is the distinction between 

demonstration or proof on one side, and invention or 

discovery on the other side. The primary role of 

formalism is proof. Before engaging in proof we must 

know what we wish to prove and the exact context and 

subject matter for which we wish to prove it. Then we 

are able to choose an appropriate formal language for 

our description, knowing that its supported types can 

represent the relevant phenomena of the reality, and that 

its logic allows the kind of reasoning on which we are 

embarking.  In inventing and discovering, on the other 

hand, we do not know exactly what we wish to invent or 

discover: if we did we would already have it in our hand. 

In Poincaré‟s words, it is necessary to see the end from 

afar, and the faculty that teaches us to see is intuition. 

By this we do not mean that we should leap foolishly to 

a wild guess, impatient of careful thought and reasoning. 

Rather, invention and discovery are learning processes 

of a particular kind, in which we need to explore a space 

of possibilities, sketching our thoughts and perceptions 

at each resting place that seems promising. For this kind 

of intellectual activity we need freedom to record our 

perceptions while they are inchoate, imprecise and even 

inconsistent. We need a loose structuring of our 

descriptions and reasoning in which we can reconsider 
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any step without invalidating every other part of what 

we have done so far. We need to be able to add modal 

statements about time or obligation to a description that 

so far contains nothing alien to classical logic. We need 

to be able to offer temporary accommodation to 

counterexamples to ensure that they will not be forgotten, 

without undermining or erasing the imperfectly general 

but still valuable observation or conclusion that they 

disprove.  Formalism militates strongly against these 

purposes. Even if we eschew Hilbert‟s  insistence on 

extreme mathematical abstraction, the very formality of 

the chosen language focuses our attention on its abstract 

logical content and distracts us from attending to the 

reality described. We are compelled to choose the 

descriptive language at the outset, when we know least 

about the terrain to be explored and the flora and fauna 

we will find there. Worse, a formalism encourages the 

construction of a single mathematical structure whose 

virtue is founded on its internal consistency. A single 

counterexample or a discovered contradiction is a 

complete disproof: from the contradiction every truth 

and every falsehood follows without distinction, and the 

whole edifice becomes discredited.  By contrast, an 

informal process of discovering properties of the 

problem world and of the stakeholders‟ requirements 

allows the invention of instances of a conceptual 

structure such as the assemblage of system behaviours 

sketched in the preceding section. Within such a 

structure it is possible to separate distinct projections of 

the system behaviour. Each such projection rests on 

explicit assumptions of problem domain properties in 

the context for which the behaviour is designed, and is 

accompanied by an informal design of the relevant 

projection of the machine behaviour relying on those 

assumptions.  Within each of these limited projections 

formalism can then play its most effective role. The 

operational context, the problem domain properties, and 

the desired functionality are restricted: within those 

restrictions, uniform and relatively simple assumptions 

can be captured in axioms and a well-chosen 

formalisation can achieve a good approximation to the 

problem world reality. The informal design explains 

how the projected system behaviour is to be achieved, 

and this explanation can then be made precise and 

subjected to formal analysis to detect any logical errors. 

Formalism is deployed locally within each part of the 

structure. The structure itself, and the substance of its 

parts, are the product of an intuitive and informal 

approach.   

III. CONCLUSION 

 

To a committed formalist, advocacy of intuition in 

software engineering may seem a heretical denial of 

the value of formalism and rigour. Not so. The 

point is that formalism has its proper place. Its 

place is not in the early stages of exploration and 

learning, where it is premature and restrictive, but 

in the later stages, where we need to validate our 

informal discoveries, designs and inferences by 

submitting them to the rigour of formal proof. Its 

place is not in the processes of conceiving, 

designing and forming large structures, but in the 

later stage of constructing and checking the smaller 

parts for which those structures provide their 

carefully defined and restricted contexts, and the 

relationships among those parts. The essential point 

is that at every level informal and intelligent use of 

intuition must precede application of formalism. It 

must shape the large structure of the whole set of 

development artifacts; and within that structure it 

must guide the process of learning, understanding, 

inventing and documenting the given and desired 

properties and behaviours of the problem domains. 

Only then can these descriptions be profitably 

formalised and their formal consequences verified. 

 

IV. REFERENCES 

 
[1] [Conway63] Melvin E. Conway; Design of a separable 

transition-diagram compiler; Communications of the 

ACM Volume 6 Number 7, pages 396-408, July 1963.  

[2] [Dahl72] Ole-Johan Dahl and C A R Hoare; Hierarchical 

Program Structures; in O-J Dahl, E W Dijkstra and C A 

R Hoare; Structured Programming; Academic Press, 

1972 

[3] [Dickinson 67] Elizabeth R Dickinson; Production of 

Firing Tables for Cannon Artillery; Report No 1371, US 

Army Materiel Command, Ballistic research 

Laboratories, Aberdeen Proving ground, Maryland, 

USA, November 1967.  

[4] [Dijkstra68] E W Dijkstra; A Case Against the Go To 

Statement; EWD 215, published as a letter to the Editor 

(Go To Statement Considered Harmful): 

Communications of the ACM Volume 11 Number 3, 

pages 147-148, March 1968.  

[5] [Dijkstra89] E W Dijkstra; On the Cruelty of Really 

Teaching Computer Science; Communications of the 



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 

 

59 

ACM Volume 32 Number 12, pages 1398-1404, 

December 1989.  

[6] [Endres+03] Albert Endres and Dieter Rombach; A 

Handbook of Software and Systems Engineering, 

Addison-Wesley, 2003. 

[7] [Hayes+03] Ian J. Hayes, Michael A. Jackson, and Cliff 

B. Jones; Determining the specification of a control 

system from that of its environment; in Keijiro Araki, 

Stefani Gnesi and Dino Mandrioli eds, Formal Methods: 

Proceedings of FME2003, pages 154-169, Springer 

Verlag, Lecture Notes in Computer Science 2805, 2003. 

[8] [Jackson00] Michael Jackson; Problem Frames: 

Analysing and Structuring Software Development 

Problems; Addison-Wesley, 2000. 

[9] [Klein03] Gary Klein; Intuition at Work; Doubleday, 

2003. 

[10] [Naur60] J W Backus, F L Bauer, J Green, C Katz, J 

McCarthy, A J Perlis, H Rutishauser, K Samelson, B 

Vauquois, J H Wegstein, A van Wijngaarden, M 

Woodger, ed Peter Naur; Report on the Algorithmic 

Language ALGOL 60; Communications of the ACM 

Volume 3 Number 5, pages 299-314, May, 1960  

[11] [Poincare08] Henri Poincaré; Science et Méthode; 

Flammarion 1908; English translation by Francis 

Maitland, Nelson, 1914 and Dover 1952, 2003.  

[12] [Polanyi58] Michael Polanyi; Personal Knowledge: 

Towards a Post-Critical Philosophy; Routledge and 

Kegan Paul, London, 1958, and University of Chicago 

Press, 1974. 

[13] [Rochlin97] Gene I Rochlin; ; Trapped in the Net: The 

unanticipated consequences of computerization; 

Princeton University Press, 1997.  

[14] [Turing49] A M Turing. Checking a large routine; In 

Report on a Conference on High Speed Automatic 

Calculating Machines, pages 67-69, Cambridge 

University Mathematical Laboratory, Cambridge, 1949. 

Discussed in: Cliff B. Jones; The Early Search for 

Tractable Ways of Reasoning about Programs; IEEE 

Annals of the History of Computing Volume 25 Number 

2, pages 26-49, 2003.  

[15] [Weyl40] Hermann Weyl; The Mathematical Way of 

Thinking; address given at the Bicentennial Conference 

at the University of Pennsylvania, 1940.  

[16] [Weyl44] Hermann Weyl; David Hilbert and His 

Mathematical Work; Bulletin of the American 

Mathematical Society Volume 50, pages 612-654, 1944. 


