
IJSRSET151510 | Received: 14 September 2015 | Accepted: 18 September 2015 | September-October 2015 [(1)5: 51-59]

© 2015 IJSRSET | Volume 1 | Issue 5 | Print ISSN: 2395-1990 | Online ISSN: 2394-4099
Themed Section: Science and Technology

51

Focal Insight in Software Engineering towards Improvisation -
Software Industry

Sarita A. Dhawale

Ashoka Center for Business and Computer Studies, Nashik, Maharashtra, India

ABSTRACT

A major and so far unmet challenge in software engineering is to achieve and act upon a clear and sound

understanding of the relationship between formal mechanisms in the development process. The challenge is salient

in the development of cyber-physical systems, in which the computer interacts with the human and physical world

to ensure a behaviour there that satisfies the requirements of the system‟s owner. The nature of the computer as a

formally defined symbol-processing engine invites a formal mathematical approach to software development.

Contrary considerations militate against excessive reliance on formalism. The non-formal nature of the human and

physical world, the complexity of system function, and the need for human comprehension at every level demand

application of non-formal and intuitional knowledge, of insight and technique rather than calculation. The challenge,

then, is to determine how these two facets of the development process formalism and intuition can work together

most productively. This short essay describes some origins and aspects of the challenge and offers a perspective for

addressing it.

Keywords: Approximation, Behaviour, Correctness, Description, Formalism, Interpretation, Intuition, Problem

World, Requirement, Structure.

I. INTRODUCTION

This is to pay attention to the reality of software

engineering practice and to the multitude of

intuitive and informal insights that have been

offered to clarify its challenges and support its

improvement example, addressing a specific

challenge in software development practice: the

proper relationship between formal mechanism and

software engineering practices. Focal insight is the

faculty of recognition, understanding and action in

the world on the basis of experience, insight and

knowledge, with little or no appeal to conscious

reasoning. The strength of intuition is that it is

unbounded: in exercising our intuition we are not

restricted to a limited set of observations and

considerations decided a priori, but we draw

whatever presents itself to us from the situation in

hand. When we read an intuitive description the

words are not opaque: we are looking at the subject

matter through the medium of the description. This

is how human verbal and nonverbal communication

works: as we hear or we read words, I experience or

enact through them, in my imagination, what you

are saying about the world. Some extreme

examples of human intuition dispense with

conscious use of language altogether. Studying how

fire-fighters decide how to tackle a fire leads one

researcher to define intuition as “the way we

translate our experiences into judgments and

decisions ... by using patterns to recognize what‟s

going on in a situation.” Another researcher

[Rochlin97] describes how operators in military, air

traffic control, and other critical environments rely

on maintaining an integrated cognitive map drawn

from diverse inputs: they call it „having the bubble‟.

The map allows them to maintain and act on a

single picture of the overall situation and

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

52

operational status without conscious description,

analysis or reasoning. Formalism, by contrast, relies

entirely on conscious description, analysis and

reasoning. Its use is not an innate human faculty,

but a skill that must be learned. Formalism is an

intellectual artefact that evolved from the

development of mathematics in ancient civilisations.

Its essence is abstraction. Arithmetic and geometry

emerged from practical needs: counting shepherds‟

flocks, measuring farmers‟ land, paying taxes, and

laying out the structures of large buildings. The

Greeks saw that mathematics had an intrinsic

intellectual interest. Numbers, planes, points and

lines could be completely separated from their

practical utility. Plato‟s rule that no-one ignorant of

geometry should enter his Academy in Athens was

not an expression of welcome to land surveyors or

estate agents: it expressed the conviction that

knowledge of the material world was inferior to

knowledge of mathematics. Only in the abstract

world of mathematics could the conclusions of

reasoning be proved correct beyond all doubt. In

modern times some mathematicians have expressed

the essentially abstract nature of formalism

uncompromisingly. In an address [Weyl40] at the

University of Pennsylvania, the German

mathematician Hermann Weyl said: “We now come

to the decisive step of mathematical abstraction: we

forget about what the symbols stand for. [The

mathematician] need not be idle; there are many

operations he may carry out with these symbols,

without ever having to look at the things they stand

for.” Weyl‟s doctoral advisor was David Hilbert,

whom he reported [Weyl44] as saying:

 “It must be possible to replace in all geometric

statements the words point, line, plane, by table,

chair, mug.” For Weyl and Hilbert, the symbols

used in a formal description are arbitrarily chosen:

any reference to the material world is a mischievous

and misleading irrelevance. Extreme forms of pure

intuition or pure formalism are unlikely to appear in

any practical enterprise, and certainly not in

software development. In practice, formalism is

more like applied than like pure mathematics:

application to the material world is never very far

away, and intuition plays a significant part. In

practice, intuition finds expression in semi-formal

documents and discourse: some lightweight formal

notions may be introduced to avoid obvious

potential confusions, and sound reasoning is

recognised—though not always achieved as a

desirable goal. How the two should be balanced and

combined, both in the large and in the small, is still

an open question.

Some Software History

Two streams may be distinguished in the evolving

modern practice of software development since it

began in the 1940s. One may be called the formal

stream. Programs are regarded as mathematical

objects: their properties and behaviour can be

analysed formally and predictions of the results of

execution can be formally proved or disproved. The

other stream may be called the intuitive stream.

Programs are regarded as structures inviting human

comprehension: the results of their execution can be

predicted—not always reliably—by an intuitive

process of mental enactment combined with some

informal reasoning. Both streams have a long

history. A talk by Alan Turing in 1949 [Turing49]

used assertions over program variables to construct

a formal proof of correctness of a small program to

compute the factorial function. Techniques of

program structuring, devised and justified by

intuition, came to prominence in the 1960s with the

control structures of Algol 60 [Naur60], Conway‟s

invention of coroutines [Conway63], and the class

concept of Simula67 [Dahl72]. Dijkstra‟s advocacy

of restricted control flow patterns in the famous GO

TO letter [Dijkstra68] rested on their virtue of

minimising the conceptual gap between the static

program text and its dynamic execution: the

program would be more comprehensible. In further

developments in structured programming the two

streams came together. A structured program text

was not only easier to understand: the nested

structure of localised contexts allowed a structured

proof of correctness based on formal reasoning. At

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

53

this stage the academic and research communities

made an implicit choice with far-reaching

consequences. Some of the intellectual leaders of

those communities were encouraged by the success

and promise of formal mathematical techniques to

focus their attention and efforts on that stream.

They relaxed, and eventually forsook, their interest

in the intuitive aspects of program design and

structure. For those researchers themselves the

choice was fruitful: study of the more formal

aspects of computing stimulated a rich flow of

results in that particular branch of logic and

mathematics. For the field of software

development as a whole this effective separation of

the formal and intuitive streams was a major loss.

The formal stream flowed on, diverging further and

further from the concerns and practices of realistic

software development projects. The intuitive stream,

too, flowed on, but in increasing isolation. Systems

became richer and more complex, and the

computer‟s role in them became increasingly one of

intimate interaction with the human and physical

world. Software engineering came to be less

concerned with purely symbolic computation and

more concerned with the material world and with

the economic and operational purposes of the

system of which software was now only a part.

Development projects responded increasingly to

economic and managerial imperatives and trends

rather than to intellectual or scientific disciplines.

In recent decades advocates of formal methods have

made admirable efforts to reconnect the two

streams to their mutual advantage; but the very

necessity of these efforts is an indictment of the

present state of software development practice and

theory as a whole. Formalism and intuition are still

too often seen as competing adversaries. Some

formalists believe that their work offers powerful

solutions that practitioners have wilfully ignored.

Some practitioners believe that formalists have

simply ignored the real problems and difficulties of

software engineering. The purpose of this essay is

to offer a little relationship counselling to the

parties, and to address the implicit challenge: How

can we combine the undoubted benefits of formal

techniques with the more intuitive and informal

aspects that have always been an integral part of the

practice of traditional branches of engineering?

Software Engineering

Structured programming was ideally suited to what

we may call pure programming. The archetypical

expository examples of pure programming are

calculating the greatest common divisor of two

integers, sorting an array of integers, solving the

travelling salesman problem, or computing the

convex hull of a set of points in 3-space. These

problems proved surprisingly fertile in stimulating

insights into program design technique, but they

were all limited in a crucial way: they required only

computation of symbolic output results from

symbolic input data. The developer investigates the

problem world, identifies a symbolic computational

problem that can usefully be solved by computer,

and constructs a program to solve it. The user

captures the input data for each desired program

execution and presents it as input to the machine.

The resulting output is then taken by the same or

another user and applied in some way to guide

action in the problem world. The process is shown

in the upper part of Figure 1.

Figure 1: A Pure Program and a Software Engineered Cyber-

Physical System

A realistic program of this kind may be designed to

solve a general mathematical problem—for

example, to solve a set of partial differential

equations. It may or may not embody some more

specialised theory of the problem world. For

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

54

example, an early use of electronic computing was

to print tables of calculated trajectories for artillery

under test at the Aberdeen Proving grounds in

Maryland USA [Dickinson67]. The programs may

have explicitly embodied a substantial ballistic

theory, or they may have been programmed only to

solve general systems of partial differential

equations. In either case, the machine executing a

pure program is isolated from the problem world by

the operators who prepare and present the

machine‟s inputs and collect and use its outputs.

By contrast, the lower part of Figure 1 shows a

cyber-physical system, whose development is a task,

not of pure programming but of software

engineering. In such a system the machine—the

computing part—is introduced into a material

problem world to serve specific purposes. The

problem world consists of interconnected problem

domains. some of these domains are physical parts

of the world such as mechatronic devices, other

computer systems, parts of the built environment,

parts of the natural world, and objects such as credit

cards that encode lexical information in physical

form. Additionally, some other problem domains

are human beings participating in the system

behaviour, interacting with each other and with the

other domains, in both active and passive roles as

users, operators, patients, subjects, passengers,

drivers, and so on. All of these problem domains

have their own given properties and behaviours.

The function of the machine is to ensure a certain

desired behaviour in this world, by monitoring and

controlling the parts of the world to which it is

directly interfaced.

The desired behaviour in the world is not limited to

these directly interfaced parts, but also embraces

other more remote parts which are monitored and

controlled through their interactions with other,

neighbouring, parts and thus, indirectly, with the

machine. The purpose of this desired behaviour is

to satisfy the needs of the system‟s stakeholders.

Some stakeholders, such as operators, patients and

users, are not mere observers but also participate as

problem domains in the system behaviour. Others,

such as safety regulators and business managers,

observe the system behaviour only from a distance.

All stakeholders legitimately expect the system

behaviour, seen in particular projections from their

individual perspectives, to satisfy their needs and

purposes.

II. METHODS AND MATERIAL

The Development Task

The behaviour of a cyber-physical system is governed

by the interacting behaviours of the machine and the

problem domains. Within the limits of the hardware and

operating system, the machine‟s behaviour can be freely

defined by the software developed for the system. The

behaviour of each problem domain is constrained by its

given properties; superimposed on these is the effect of

its interactions with other parts of the system. To

achieve the desired overall system behaviour the

machine must both respect and exploit the given

properties and behaviours of all the problem domains.

The overall system behaviour must satisfy the needs of

the stakeholders. It is a mistake to suppose that this

behaviour is understood in advance by the stakeholders,

either individually or collectively, and is waiting only to

be discovered and documented. The stakeholders do

have various needs and desires, but they may be only

dimly perceived. A major part of the development

task—explicitly recognised in the past twenty years as

requirements engineering—is designing behaviour

projections that will satisfy the needs of each

stakeholder, and combining these projected behaviours

into a design for the overall system behaviour. Each

desired projected behaviour, and the complete system

behaviour that somehow combines them all, must be

feasible: that is, it must be achievable by the machine,

suitably programmed and interacting with the problem

domains. The development task, then, has many facets

and parts. The properties of each problem domain must

be studied, described and analysed; the many projections

of the desired system behaviour must be designed,

described and presented to the stakeholders for their

critical approval; the combination of these projections

must itself be designed; and the behaviour of the

machine must be designed and specified at its interface

to the problem world. The resulting system is a complex

artifact. Before examining the sources and nature of its

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

55

complexity we will first look briefly at the ubiquitous

intellectual activity of software engineering: describing a

material reality and reasoning about its properties and

behaviour.

Describing and Reasoning

Figure 2 outlines the general process of forming a

description and reasoning about it to draw useful

conclusions about the machine or the problem world,

expressed in a modified or new description.

Figure 2: Describing a Material Reality and Reasoning about it

Description A is constructed first. Phenomena of the

reality, relevant to the concern in hand, are selected and

named, the mapping between names and phenomena

being given by the interpretation. The meaning of the

description—what it says about the world—depends on

the interpretation and on the language in which the

description is expressed? Given description A, it is then

possible to reason about the world on the basis of that

description, deducing a conclusion in the form of

description B. This conclusion has a meaning in the

reality, which can be understood by reading the derived

description in the light of the interpretation. This

simplified account allows us to recognise the difference

between formal and non-formal description and

reasoning. In a formal setting the chosen language of

description is a formal language, rigorously specified.

The selected phenomena must then be regarded as

elements of types supported by the language. For

example: in the language of propositional calculus each

relevant phenomenon must be an atomic uninterpreted

truth-functional proposition; in the language of predicate

calculus it must be a predicate, a function, or an

individual. The grammar of the language also includes a

small set of connectives, such as logical operators,

allowing meaningful statements to be made in the

language and combined in various ways. Descriptions

are assembled from these elements according to rigid

syntactic rules. The advantage purchased by this

linguistic rigidity is a formal calculus of reliable

reasoning. All or part of the initial description can be

treated as a premiss from which conclusions can be

derived and proved with mathematical certainty. The

diagram applies equally well to the structure of intuitive

or informal description and reasoning. An informal

description must be expressed in some language. The

language has symbols, and the symbols have some

interpretation—that is, they denote some phenomena of

the described reality. Yet the content, character and

virtues of the intuitive process are quite different from

the formal. Symbol choices are very significant in

informal description, especially if the descriptions are

expressed in natural language: they remind us to look

across from the description to the reality it describes and

to check continually whether the description remains

valid. The logic of informal description is unconstrained:

it is nearly true to say that in a rich natural language like

English we can say anything whatsoever. We can even

define and use new linguistic features within one

description. The price for this linguistic freedom is some

imprecision in description, and unreliability in both the

process and the results of reasoning. Nonetheless,

intuition and informality are not merely degraded and

incompetent cousins of formalism. Imprecision and

unreliability bring major compensating benefits. In

practice the activity of describing and reasoning is rarely

perfectly formal or perfectly informal. Rejecting

Hilbert‟s maxim, most formalists usually choose

symbols intended to remind the reader of the phenomena

they denote in the reality; and many intuitive

practitioners use natural language description with

careful definitions of the meanings of names, or include

embedded formal notations such as finite state machines

where greater precision seems necessary.

Formal mechanism and System Complexities

Cyber-physical systems exhibit complexity in more than

one dimension. The functional complexity of a realistic

system is immediately obvious. Typically a system has

many functional features whose purposes are not

harmonious or even consistent. The individual features

may be intrinsically complex, and the complexity of the

whole system is greatly increased by their interactions.

Some features may be mutually exclusive in time, but

during system operation multiple features may be

simultaneously active. Further, many systems are

required to operate essentially continuously, scarcely

ever reaching a quiescent state in which the system can

be removed from service, isolated from the rest of the

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

56

world, and returned to a well understood initial state

before resuming operation. So the system may be

required to achieve smooth transitions between different

functional behaviours adjacent in time. For an avionics

system, for example, there are transitions from taking-

off to climbing, from landing to taxiing, and so on; and a

lift control system must maintain user safety and

reasonable convenience in the transition from normal lift

service to fire-fighter operation. One effect of this

functional complexity is that there are few or no

invariant properties of the required system behaviour.

For example, it might be thought that in a system to

control the movement of railway trains over a region of

track a safety invariant must hold: no two trains must

ever be present in the same track segment. But in reality

this cannot be a required invariant: it would make it

impossible to assemble a train from two trains, or for a

breakdown train to deal with the aftermath of a collision

or to rescue a locomotive that has lost tractive power.

An access control system might seem to demand that no

person is ever present in a room for which they have no

access authorisation. But this property would restrict

escape routes from the building in case of fire, and in

that context would be forbidden by fire regulations. In a

lift control system an apparent safety invariant stipulates

that the lift car doors are never open unless the lift is in

home position at a floor. But a fire-fighter who is in the

lift at a high floor must not be prevented from

descending even if the doors refuse to close. The given

properties and behaviours of a problem domain—those

that it possesses independently of the behaviour of the

machine—exhibit a similar dynamic complexity. The

given properties and behaviours are determined by four

factors, at least two of which are dynamic. A fifth factor

determines which properties are of interest at any time.

The first determining factor is scientific law—for

example, the laws of physics. At the granularity relevant

to most software engineering these laws are constant and

well understood. The second factor is what we may call

the constitution of the domain. This is its shape and

material, and the designed, evolved or otherwise

determined configuration of its constituent parts. For

example, within the bounds set by physics, a person‟s

body weight, physical strength and reaction speed are

determined by human physiology in general and the

individual‟s physiology in particular. The maximum

acceleration of a lift car rising in its shaft is determined

not only by the laws of physics but also by the design of

the motor, the power supply and the lift car and

counterweight. This second factor, constitution, is more

or less constant for each particular problem domain, and

is open to study and analysis. A third, time-varying,

factor is the condition of the domain. Engineered

devices degrade over time, especially if they are not

properly maintained or subjected to misuse or to

excessive loads. A human operator becomes tired in an

extended session of participation in the system; and, in

the contrary direction, an operator‟s speed and skill may

increase with practice over a number of similar sessions.

A fourth factor is variation of the environment over time.

Carefully engineered devices assume an acceptable

operating environment, specifying such conditions as

wind speed, ambient temperature, air purity and

atmospheric pressure. Human behaviour, too, depends

on such environmental conditions. If the environment

changes the domain may exhibit changed properties.

Broadly, we may say that the first two of these four

factors—scientific law and domain constitution—can be

investigated and analysed at system design time. The

third and fourth—condition and environment—vary

during system operation. The fifth factor, domain role,

is of a different kind. At any particular time, a problem

domain has a large set of potentially observable

properties subject to the first four factors, but only a

small subset are significant for the system behaviour.

The domain itself participates only in some of the

system‟s functions, and in those it plays only a limited

role exhibiting only a subset of its given properties. For

example, the aerodynamic properties of a car body are

highly significant while it is being driven at high speed

on a motorway, but irrelevant to its desired behaviour in

automatically assisted parking, in the aftermath of a

collision, or while undergoing maintenance in the

workshop. These considerations may be summarised by

saying that the rarity of required invariants of system

behaviour is paralleled by the rarity of invariants of

problem domain properties.

Contexts of Domains and Behaviours

There is an important interplay between the variation of

domain properties and the variation of the active set of

system functional behaviours. For each domain the

properties of current significance varies according to its

role in each system behaviour of the currently active set.

They vary also with changes in the environment, and

some of those changes will naturally demand different

system behaviours. For example, a power failure in the

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

57

lift control system seriously affects the properties of the

mechatronic equipment, which is now running on

emergency power supplies of limited capacity; at the

same time it also requires transition to a special parking

behaviour in which passengers are brought safely to the

nearest available floor. The most obvious examples of

this interplay of domain properties and system behaviour

are found in fault-tolerance. In the lift control system, to

provide normal lift service the machine must directly

control the motor power and direction, and monitor the

floor sensors to detect the arrival and departure of the lift

car at each floor. This behaviour is possible only if the

relevant problem domains of the lift equipment are in

healthy condition: this is therefore a local assumption,

on which the behaviour will rely [Hayes+03]. It then

becomes necessary to develop another system behaviour

whose specific purpose is to monitor the health of the lift

equipment by observing its run-time behaviour. These

are therefore at least three distinct system functional

behaviours: one to provide normal lift service; a second

to detect and perhaps diagnose equipment faults; and at

least one other to provide the appropriate behaviour in

the presence of a fault. The domain properties of the

equipment on which they rely are quite different: one

relies on fault-free behaviour; the second relies on the

estimated probabilities of different equipment faults and

on their consequences in observable phenomena; the

third relies on the residual functionality of the faulty

equipment. This restriction of each projection of system

behaviour to a particular context in which particular

assumptions hold is only a finer-grain version of the

inevitable restriction on the whole system‟s operating

conditions. No system, however critical, can aspire to

operate dependably in every circumstance that is

logically or physically possible. Tall buildings are

designed to withstand high wind speeds, but only up to a

limit of what is reasonably plausible in each building‟s

particular location. Passenger aircraft are designed to fly

in the earth‟s atmosphere, but not in air of unlimited

turbulence or in a high density of volcanic ash. Even

when we choose to extend the proposed operational

conditions to allow graceful degradation of system

function we must still accept some limitations. We can

aim only to choose reasonable limits on the

circumstances our system will be designed to handle,

and to design with adequate reliability within those

limits. The resolutions of functional and domain

complexity come together in the assumed context of

each projected functional behaviour. Each projected

functional behaviour can then be represented as shown

in the lower part of Figure 1. In each projection the

impediments to successful application of appropriate

formalism have been greatly diminished. How and why

this is so is discussed in the following section.

Structure, Invention and Proof

The great French physicist and mathematician Henri

Poincaré wrote [Poincaré08]: “For the pure geometer

himself, this faculty [intuition] is necessary; it is by logic

one demonstrates, by intuition one invents. To know

how to criticize is good, to know how to create is better.

You know how to recognize if a combination is correct;

what a predicament if you have not the art of choosing

among all the possible combinations. Logic tells us that

on such and such a way we are sure not to meet any

obstacle; it does not say which way leads to the end. For

that it is necessary to see the end from afar, and the

faculty which teaches us to see is intuition. Without it

the geometer would be like a writer who should be

versed in grammar but had no ideas.” Poincaré is

speaking of mathematics, but what he says applies no

less to software engineering. It is worth understanding

what he says. The key point is the distinction between

demonstration or proof on one side, and invention or

discovery on the other side. The primary role of

formalism is proof. Before engaging in proof we must

know what we wish to prove and the exact context and

subject matter for which we wish to prove it. Then we

are able to choose an appropriate formal language for

our description, knowing that its supported types can

represent the relevant phenomena of the reality, and that

its logic allows the kind of reasoning on which we are

embarking. In inventing and discovering, on the other

hand, we do not know exactly what we wish to invent or

discover: if we did we would already have it in our hand.

In Poincaré‟s words, it is necessary to see the end from

afar, and the faculty that teaches us to see is intuition.

By this we do not mean that we should leap foolishly to

a wild guess, impatient of careful thought and reasoning.

Rather, invention and discovery are learning processes

of a particular kind, in which we need to explore a space

of possibilities, sketching our thoughts and perceptions

at each resting place that seems promising. For this kind

of intellectual activity we need freedom to record our

perceptions while they are inchoate, imprecise and even

inconsistent. We need a loose structuring of our

descriptions and reasoning in which we can reconsider

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

58

any step without invalidating every other part of what

we have done so far. We need to be able to add modal

statements about time or obligation to a description that

so far contains nothing alien to classical logic. We need

to be able to offer temporary accommodation to

counterexamples to ensure that they will not be forgotten,

without undermining or erasing the imperfectly general

but still valuable observation or conclusion that they

disprove. Formalism militates strongly against these

purposes. Even if we eschew Hilbert‟s insistence on

extreme mathematical abstraction, the very formality of

the chosen language focuses our attention on its abstract

logical content and distracts us from attending to the

reality described. We are compelled to choose the

descriptive language at the outset, when we know least

about the terrain to be explored and the flora and fauna

we will find there. Worse, a formalism encourages the

construction of a single mathematical structure whose

virtue is founded on its internal consistency. A single

counterexample or a discovered contradiction is a

complete disproof: from the contradiction every truth

and every falsehood follows without distinction, and the

whole edifice becomes discredited. By contrast, an

informal process of discovering properties of the

problem world and of the stakeholders‟ requirements

allows the invention of instances of a conceptual

structure such as the assemblage of system behaviours

sketched in the preceding section. Within such a

structure it is possible to separate distinct projections of

the system behaviour. Each such projection rests on

explicit assumptions of problem domain properties in

the context for which the behaviour is designed, and is

accompanied by an informal design of the relevant

projection of the machine behaviour relying on those

assumptions. Within each of these limited projections

formalism can then play its most effective role. The

operational context, the problem domain properties, and

the desired functionality are restricted: within those

restrictions, uniform and relatively simple assumptions

can be captured in axioms and a well-chosen

formalisation can achieve a good approximation to the

problem world reality. The informal design explains

how the projected system behaviour is to be achieved,

and this explanation can then be made precise and

subjected to formal analysis to detect any logical errors.

Formalism is deployed locally within each part of the

structure. The structure itself, and the substance of its

parts, are the product of an intuitive and informal

approach.

III. CONCLUSION

To a committed formalist, advocacy of intuition in

software engineering may seem a heretical denial of

the value of formalism and rigour. Not so. The

point is that formalism has its proper place. Its

place is not in the early stages of exploration and

learning, where it is premature and restrictive, but

in the later stages, where we need to validate our

informal discoveries, designs and inferences by

submitting them to the rigour of formal proof. Its

place is not in the processes of conceiving,

designing and forming large structures, but in the

later stage of constructing and checking the smaller

parts for which those structures provide their

carefully defined and restricted contexts, and the

relationships among those parts. The essential point

is that at every level informal and intelligent use of

intuition must precede application of formalism. It

must shape the large structure of the whole set of

development artifacts; and within that structure it

must guide the process of learning, understanding,

inventing and documenting the given and desired

properties and behaviours of the problem domains.

Only then can these descriptions be profitably

formalised and their formal consequences verified.

IV. REFERENCES

[1] [Conway63] Melvin E. Conway; Design of a separable

transition-diagram compiler; Communications of the

ACM Volume 6 Number 7, pages 396-408, July 1963.

[2] [Dahl72] Ole-Johan Dahl and C A R Hoare; Hierarchical

Program Structures; in O-J Dahl, E W Dijkstra and C A

R Hoare; Structured Programming; Academic Press,

1972

[3] [Dickinson 67] Elizabeth R Dickinson; Production of

Firing Tables for Cannon Artillery; Report No 1371, US

Army Materiel Command, Ballistic research

Laboratories, Aberdeen Proving ground, Maryland,

USA, November 1967.

[4] [Dijkstra68] E W Dijkstra; A Case Against the Go To

Statement; EWD 215, published as a letter to the Editor

(Go To Statement Considered Harmful):

Communications of the ACM Volume 11 Number 3,

pages 147-148, March 1968.

[5] [Dijkstra89] E W Dijkstra; On the Cruelty of Really

Teaching Computer Science; Communications of the

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

59

ACM Volume 32 Number 12, pages 1398-1404,

December 1989.

[6] [Endres+03] Albert Endres and Dieter Rombach; A

Handbook of Software and Systems Engineering,

Addison-Wesley, 2003.

[7] [Hayes+03] Ian J. Hayes, Michael A. Jackson, and Cliff

B. Jones; Determining the specification of a control

system from that of its environment; in Keijiro Araki,

Stefani Gnesi and Dino Mandrioli eds, Formal Methods:

Proceedings of FME2003, pages 154-169, Springer

Verlag, Lecture Notes in Computer Science 2805, 2003.

[8] [Jackson00] Michael Jackson; Problem Frames:

Analysing and Structuring Software Development

Problems; Addison-Wesley, 2000.

[9] [Klein03] Gary Klein; Intuition at Work; Doubleday,

2003.

[10] [Naur60] J W Backus, F L Bauer, J Green, C Katz, J

McCarthy, A J Perlis, H Rutishauser, K Samelson, B

Vauquois, J H Wegstein, A van Wijngaarden, M

Woodger, ed Peter Naur; Report on the Algorithmic

Language ALGOL 60; Communications of the ACM

Volume 3 Number 5, pages 299-314, May, 1960

[11] [Poincare08] Henri Poincaré; Science et Méthode;

Flammarion 1908; English translation by Francis

Maitland, Nelson, 1914 and Dover 1952, 2003.

[12] [Polanyi58] Michael Polanyi; Personal Knowledge:

Towards a Post-Critical Philosophy; Routledge and

Kegan Paul, London, 1958, and University of Chicago

Press, 1974.

[13] [Rochlin97] Gene I Rochlin; ; Trapped in the Net: The

unanticipated consequences of computerization;

Princeton University Press, 1997.

[14] [Turing49] A M Turing. Checking a large routine; In

Report on a Conference on High Speed Automatic

Calculating Machines, pages 67-69, Cambridge

University Mathematical Laboratory, Cambridge, 1949.

Discussed in: Cliff B. Jones; The Early Search for

Tractable Ways of Reasoning about Programs; IEEE

Annals of the History of Computing Volume 25 Number

2, pages 26-49, 2003.

[15] [Weyl40] Hermann Weyl; The Mathematical Way of

Thinking; address given at the Bicentennial Conference

at the University of Pennsylvania, 1940.

[16] [Weyl44] Hermann Weyl; David Hilbert and His

Mathematical Work; Bulletin of the American

Mathematical Society Volume 50, pages 612-654, 1944.

