
IJSRSET1848134 | Received : 05 June 2018 | Accepted : 15 June 2018 | May-June-2018 [4 (8) : 458-463]

© 2018 IJSRSET | Volume 4 | Issue 8 | Print ISSN: 2395-1990 | Online ISSN : 2394-4099
 Themed Section : Engineering and Technology

458

Review on Version Control with Git
Pranjal Govekar 1, Dr. Shivani Budhkar 2

1Student, MCA, P.E.S’s Modern College of Engineering Pune, Maharashtra, India
2Associate Professor, MCA, P.E.S’s Modern College of Engineering Pune, Maharashtra, India

ABSTRACT

Git is a way more popular than any other VCS (Version Control System). Git comes to existence in 2005 and

since then it is getting acquired by more and more people and organization day by day. This paper take look in

Git specification comparing with others VCS tools, also taking focus on Git popularity and reasons behind

becoming popular VCS tool in market. Here, we present review on Version Control with Git that will help to

know about success of Git.

Keywords: Git, VCS (Version Control System)

I. INTRODUCTION

Version Control also known as Source Control or

Revision Control is a category of software that helps

in managing the changes made in the collection of

information, such information can be of any type like

documents, computer program, where such tools help

in tracking the changes by maintaining it into a

special kind of database. It becomes more difficult and

important when era of computing began. [14]

Nowadays need of VCS (Version Control System) is,

to collaborate on large where many people are

involved in keeping track of changes made by same or

different in the same or different file. It is essential for

every organization having multiple developers

working on same project. [14]

As team, it is common to design, develop and deploy

multiple versions of same software with different

functionalities, where developer simultaneously work

on updates and bug fixation hence, to maintain almost

same copies of the software is possible with version

control system.

A. Evolution of version control system

An easy way of VCS is by storing files in time-

stamped directory but this method is error prone as it

is easy to forget a working directory and accidentally

write to wrong file. Therefore, developer developed

local version control system where changes made to

the files are stored into the simple database. But then

the problem was, what if somebody wants to

collaborate with other people working on same

system. To overcome this problem CVCSs (Central

Version Control systems) were developed. These

systems basically have single server as central server

which is responsible to hold all version files, from

where number of clients can check the files. For

many years this was standard for version control.

These tools allow multiple developers for

simultaneous modification. But again, there is the

downside of this system. If central server goes down

for an hour nobody can collaborate for that period,

and if hard disk becomes corrupted then might have

chance to lose everything if proper backup has not

done. This is where DVCSs (Distributed Version

Control Systems) comes in, where client copies full

repository with entire history of the project, so no

worries if any server dies and developers

International Journal of Scientific Research in Science, Engineering and Technology (www.ijsrset.com)

 Pranjal Govekar et al. Int J S Res Sci. Engg. Tech. 2018 May-June; 4(8) : 458-463

 459

collaborating with each other through that server

then it can be restored by simply copying any of the

client repository to the server, because every clone is

exact full backup of the data. [10]

B. Git Overview

In April 2005, git comes to existence which is free and

open source distributed version control system made

by Linux creator Linus Torvalds to handle everything

from small to very large projects with speed and

efficiency.

As all known “Necessity is the mother of inventions”

Similarly git invention is done to fulfil Linux Kernel

project maintenance. From 1991, developers from

different places have started simultaneously to

collaborate on linux kernel project. Hence changes

made to software where exchange through Patches

and Archived files till 2002. In 2002, linux kernel

project began to use proprietary DVCS software called

BitKeeper for version controlling. Most of Linux

Kernel community members were not happy with

this move but project leader and core developer

adopted BitKeeper. That time license for “community”

version of BitKeeper to use by a developer at no cost

for open source and free project.

Due to some disputes between community of Linux

Kernel and BitMover, In April 2005, BitMover

(Original author of BitKeeper) announced that it

would stop providing free of charge version of

BitKeeper to Linux Community user. That was time

where Linux Kernel project need to be maintained by

other VCS present in the market but Linus Torvald

was not wanted any of them. This made Linux

Development community and Linus Torvald to build

their own tool based on the lesson they learned using

BitKeeper. [2]

II. LITERATURE SURVEY

There are many Version Control software in market

based on Client server model and Distributed model

where some are Open Source and some are

Proprietary, but git earned way more popularity than

any other tools.

You can compare interest in Git by time with other

VCS tools since git has been launched. The graph

below is generated with Google Trends.

Figure 1: Google trends for VCS

A. Comparison of version control software

a. General Information [13]

Softwar

e

(Maintai

ner)

Reposi

tory

Model

Platform

Supporte

d

Lice

nse

Cost

CVS

(The

CVS

Team)

Client

–

server

Unix-

like,

Window

s, OS X

GN

U

GPL

Free

Git

(Junio

Hamano

)

Distrib

uted

POSIX,

Window

s, OS X

GN

U

GPL

Free

Mercuri

al

(Matt

Mackall

)

Distrib

uted

Unix-

like,

Window

s, OS X

GN

U

GPL

Free

Subversi

on

(Apache

Softwar

e

Foundat

ion)

Client

–

server

Unix-

like,

Window

s, OS X

Apa

che

Free

International Journal of Scientific Research in Science, Engineering and Technology (www.ijsrset.com)

 Pranjal Govekar et al. Int J S Res Sci. Engg. Tech. 2018 May-June; 4(8) : 458-463

 460

Team

Foundat

ion

Server

(Micros

oft)

Client

–

server,

Distrib

uted

Window

s, cross-

platform

via

Visual

Studio

Team

Services

Prop

rieta

ry

Free for up to

5 users in the

Visual Studio

Team

Services or

for open

source

projects

through

codeplex.com

; else non-

free, licensed

through

MSDN

subscription

or direct buy.

b. Technical Information

Programming language: The coding language in

which the application is being developed

Scope of change: Describes whether changes are

recorded for individual files or for entire directory

trees.

Network protocols: lists the protocols used for

synchronization of changes. [13]

Softwar

e

Progra

mming

Languag

e

Scope

of

Chan

ge

Network protocols

CVS C File pserver, ssh

Git C, shell

scripts,

Perl

Tree custom (git), custom

over ssh,

HTTP/HTTPS, rsync,

email, bundles

Mercur

ial

Python,

C

Tree custom over ssh,

HTTP, email bundles

(with standard

plugin)

Subvers

ion

C Tree custom (svn), custom

over ssh, HTTP and

SSL (using WebDAV)

Team

Founda

C++ and

C#

File

and

SOAP over HTTP or

HTTPS, Ssh

tion

Server

Tree

B. Version Control System Review

a. Concurrent Version System (CVS)

Very first popular central version control system for

collaborative work is Concurrent Versions System

(CVS). It has been in the market since 80s.

CVS uses client server architecture, where server is

responsible to hold current project and its history.

Which allows client connected to server to “Check

out” complete copy of project, work on this copy and

later “Check in” their changes.

 Moving or renaming files does not include a

version update

 Security risks from symbolic links to files

 No atomic operation support, leading to source

corruption

 Branch operations are expensive as it is not

designed for long-term branching [16]

b. Apache Subversion (SVN)

SVN is abbreviation of Apache Subversion

which is originally developed by CollabNet to

provide alternative for CVS with some

improvements.

Many developers switch to SVN as it is like

improved version of CVS

 Newer system based on CVS

 Includes atomic operations

 Insufficient repository management commands

 Slower comparative speed [16]

c. Git

Git is completely different from CVS and SVN. The

main purpose of git is to make faster distributed

revision control where it was primarily developed for

Linux.

Git also comes with wide variety of tools which helps

user to navigate through history of system. As Git

allows cloning entire repository it is possible to work

without internet connection.

 Full history tree available offline

 Distributed, peer-to-peer model

 Not optimal for single developers [16]

International Journal of Scientific Research in Science, Engineering and Technology (www.ijsrset.com)

 Pranjal Govekar et al. Int J S Res Sci. Engg. Tech. 2018 May-June; 4(8) : 458-463

 461

d. Mercurial

Mercurial is software belong to same time when Git

was released. Mercurial was designed and developed

with same motive as Git was, that is to maintain

Linux kernel project. But git was selected for

maintaining Linux kernel project.

 Easier to learn than Git

 No merging of two parents [16]

C. The top 6 easiest to use Version Control System –

G2 Crowd

Figure 2: Best Version Control System of 2018 [4]

D. Benchmarks

Figure 3: Benchmarks [17]

III. BLOCK DIAGRAM/ ARCHITECTURE AND

APPLICATION DESCRIPTION

Figure 4: Git Workflow [15]

The above diagram shows how Git tool works to

handle collaborative work between multiple

developers. Each of them having entire copy of

repository as local repository. Also, there is no need of

remote repository if you don't want work

collaboratively. So private repository are full-featured

Git project maintaining all history of versions. [15]

As we can see in above diagram, Git allows us to do

changes in working directory where we can store

those changes in the staged area for now and commit

it to your repo. When you want to share these

changes with other then you can push those changes

to remote repository.

IV. COMPANIES & PROJECTS USING GIT

As per Git website following are the companies and

projects using Git. [18]

1. Google

2. Facebook

3. Microsoft

4. Twitter

International Journal of Scientific Research in Science, Engineering and Technology (www.ijsrset.com)

 Pranjal Govekar et al. Int J S Res Sci. Engg. Tech. 2018 May-June; 4(8) : 458-463

 462

5. LinkedIn

6. Netflix

7. Perl

8. PostgreSQL

9. Android

10. Linux

11. Ruby on Rails

12. Qt

13. Gnome

14. Eclipse

15. KDE

16. X

V. ADVANTAGES

1. Location: No central repository. All working

copies is a clone of the repository itself. Not

dependent on external server for work. No

need to install or maintain a server.[1]

2. Development: Branches are easy to make.

Commit work to local repository and push

changes to others when you feel ready. Every

checkout is a copy of the repository.

Possibility to clean up your local commits if a

mistake is made. It can work in small steps.

No need to commit everything at once. [1]

3. Time Saving: Git, however, is lightning fast. [6]

4. Work Offline: With Git, we can work offline

as we can have clone of remote repository

which means we can do all operation while

disconnected from internet. [6]

5. Undo Mistakes: Git allows restoring last

commit and also allows restoring deleted

commit. [6]

6. Make Useful Commits: With its unique

“staging area” concept you can determine

exactly which changes shall be included in

your next commits, even down to single lines.

[6]

VI. DISADVANTAGE

1. If your project contains many large, binary

files that cannot be easily compressed the

space needed to store all versions of these files

can accumulate quickly.

2. If your project has a very long history (50,000

changesets or more), downloading the entire

history can take an impractical amount of

time and disk space. [8]

VII. CONCLUSION

In recent years, the Git got way more popularity than

any other VCS, though they have that much of

capability, like Mercurial got released in same time

with similar functionality to Git, move over

Mercurial is considered to be easier to use then also it

is unknown for many people. There are many reasons

behind this but main reason could be the services like

github repository for Git tool. And comparing other

VCS with Git we can found that they don’t meet the

business requirement as much of Git does.

VIII. REFERENCES

[1]. Carl Fredrik Malmsten. "Evolution of Version

Control Systems". Report No. 2010:017. ISSN

1651-4769. P 7.

[2]. Scott Chacon and Ben Straub. "A Short History

of Git". Pro Git (Second Edition). P 13 . Apress.

2014. ISBN 978-1-4842-0076-6.

[3]. Reshma Ahmed. "What Is Git ? Explore A

Distributed Version Control Tool".

https://www.edureka.co/blog/what-is-git/ .

Accessed March 6, 2018.

[4]. "The Top 6 Version Control Systems".

https://www.g2crowd.com/categories/version-

control-systems#highest_rated. Accessed March

9, 2018.

[5]. "Using GIT".

https://www.slideshare.net/wocommunity/using-

git-13552975. Accessed April 1, 2018.

[6]. " Reasons for Switching to Git". https://www.git-

tower.com/blog/8-reasons-for-switching-to-git/.

Accessed April 1, 2018.

International Journal of Scientific Research in Science, Engineering and Technology (www.ijsrset.com)

 Pranjal Govekar et al. Int J S Res Sci. Engg. Tech. 2018 May-June; 4(8) : 458-463

 463

[7]. "Git". https://en.wikipedia.org/wiki/Git. Accessed

April 1, 2018.

[8]. "What is version control: centralized vs. DVCS".

https://www.atlassian.com/blog/software-

teams/version-control-centralized-dvcs.Accessed

April 1, 2018.

[9]. "Git for Version Control".

https://courses.cs.washington.edu/courses/cse403

/13au/lectures/git.ppt.pdf. Accessed April 1,

2018.

[10]. "A History of Version Control".

http://ericsink.com/vcbe/html/history_of_versio

n_control.html. Accessed April 1, 2018.

[11]. "6 Version Control Systems Reviewed".

https://www.smashingmagazine.com/2008/09/th

e-top-7-open-source-version-control-systems/.

Accessed April 1, 2018.

[12]. "The Top 6 Easiest to Use".

https://www.g2crowd.com/categories/version-

control-systems#easiest_to_use. Accessed April

1, 2018.

[13]. "Comparison of version control software".

https://en.wikipedia.org/wiki/Comparison_of_ve

rsion_control_software#History_and_adoption.A

ccessed April 1, 2018.

[14]. "Version control".

https://en.wikipedia.org/wiki/Version_control.

Accessed April 1, 2018.

[15]. "HISTORY OF GIT".

https://hackaday.com/2017/05/11/history-of-git/.

Accessed April 1, 2018.

[16]. "2018 Version Control Software Comparison:

SVN, Git, Mercurial".

https://biz30.timedoctor.com/git-mecurial-and-

cvs-comparison-of-svn-software/. Accessed April

1, 2018.

[17]. "fast-version-control". https://git-

scm.com/about/small-and-fast. Accessed April 1,

2018.

[18]. "distributed-is-the-new-centralized". https://git-

scm.com/. Accessed April 1, 2018

