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ABSTRACT 

 

In this paper we have proposed an algorithm for object detection in various situations. Nowadays object 

detection and recognition has entered in every sphere of life in one or the other form. Applications of object 

detection are video surveillance, anti-theft system using cameras, face-recognition, biometric verification etc. 

Research are going on how to improve the performance in term of space and time complexity, how to deal with 

adverse conditions like improper lightning conditions, scene clutter, occlusion etc. and to reduce false positive 

rate etc. In this paper we have explained how to deal with the any situation while acquiring the images so that 

it can be used for better scene interpretation. Results have been generated using flash of light and dark region 

present in the image as some of the adverse situations. Here we have trained the system to detect the object 

using our algorithm. The algorithm is simple and very useful as it reduces the false positive rate as compared to 

contemporary algorithms and increases the efficiency of applications like video surveillance and scene 

interpretation etc. 

 

Keywords: Object Detection, Image Classification, Image Recognition, Histogram of Oriented Gradients, 

Support Vector Machine. 

 

I. INTRODUCTION 

 

An image recognition algorithm takes an image (or a 

patch of an image) as input and outputs what the 

image contains. In other words, the output is a class 

label (e.g. “cat”, “dog”, “table” etc.). How does an 

image recognition algorithm know the contents of an 

image? Well, we have to train the algorithm to learn 

the differences between different classes. If we want 

to find cats in images, we need to train an image 

recognition algorithm with thousands of images of 

cats and thousands of images of backgrounds that do 

not contain cats. Needless to say, this algorithm can 

only understand objects / classes it has learned. 

To simplify things, we will focus only on two-class 

(binary) classifiers. One may think that this is a very 

limiting assumption, but many popular object 

detectors (e.g. face detector and pedestrian detector) 

have a binary classifier under the hood. E.g. inside a 

face detector is an image classifier that says whether a 

patch of an image is a face or background. 

 

The following diagram illustrates the steps involved 

in a traditional image classifier. 

 

 
Figure 1: Object (cat) detection using traditional 

image processing 

Interestingly, many traditional computer vision image 

classification algorithms follow this pipeline, while 

https://www.learnopencv.com/tag/image-classification/
https://www.learnopencv.com/tag/image-recognition/
https://www.learnopencv.com/tag/histogram-of-oriented-gradients/
https://www.learnopencv.com/tag/support-vector-machine/
https://www.learnopencv.com/wp-content/uploads/2016/11/image-classification-pipeline.jpg
https://www.learnopencv.com/wp-content/uploads/2016/11/image-classification-pipeline.jpg
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Deep Learning based algorithms bypass the feature 

extraction step completely. 

 

II.  METHODS AND MATERIAL  

 

A. Preprocessing 

Often an input image is pre-processed to normalize 

contrast and brightness effects. A very common 

preprocessing step is to subtract the mean of image 

intensities and divide by the standard deviation. 

Sometimes, gamma correction produces slightly 

better results. While dealing with color images, a 

color space transformation (e.g. RGB to LAB color 

space) may help get better results. 

We evaluated several input pixel representations 

including grayscale, RGB and LAB color spaces 

optionally with power law (gamma) equalization. 

These normalizations have only a modest effect on 

performance, perhaps because the subsequent 

descriptor normalization achieves similar results. We 

do use colour information when available. RGB and 

LAB colour spaces give comparable results, but 

restricting to grayscale reduces performance by 1.5% 

at 10−4 FPPW. Square root gamma compression of 

each colour channel improves performance at low 

FPPW (by 1% at 10−4 FPPW) but log compression is 

too strong and worsens it by 2% at 10−4 FPPW.” 

As part of pre-processing, an input image or patch of 

an image is also cropped and resized to a fixed size. 

This is essential because the next step, feature 

extraction, is performed on a fixed sized image. 

B. Feature Extraction 

The input image has too much extra information that 

is not necessary for classification. Therefore, the first 

step in image classification is to simplify the image by 

extracting the important information contained in the 

image and leaving out the rest. For example, if we 

want to find shirt and coat buttons in images, we will 

notice a significant variation in RGB pixel values. 

However, by running an edge detector on an image 

we can simplify the image. We can still easily discern 

the circular shape of the buttons in these edge images 

and so we can conclude that edge detection retains 

the essential information while throwing away non-

essential information. The step is called feature 

extraction. In traditional computer vision approaches 

designing these features are crucial to the 

performance of the algorithm. Turns out we can do 

much better than simple edge detection and find 

features that are much more reliable. In our example 

of shirt and coat buttons, a good feature detector will 

not only capture the circular shape of the buttons but 

also information about how buttons are different from 

other circular objects like car tires. 

Some well-known features used in computer vision 

are Haar-likefeatures introduced by Viola and 

Jones, Histogram of Oriented Gradients ( HOG ), 

Scale-Invariant Feature Transform ( SIFT ), Speeded 

Up Robust Feature ( SURF ) etc. 

As a concrete example, please look at feature 

extraction using Histogram of Oriented Gradients ( 

HOG ). 

Histogram of Oriented Gradients (HOG) 

A feature extraction algorithm converts an image of 

fixed size to a feature vector of fixed size. In the case 

of pedestrian detection, the HOG feature descriptor is 

calculated for a 64×128 patch of an image and it 

returns a vector of size 3780. Notice that the original 

dimension of this image patch was 64 x 128 x 3 = 

24,576 which is reduced to 3780 by the HOG 

descriptor. 

HOG is based on the idea that local object appearance 

can be effectively described by the distribution( 

histogram ) of edge directions ( oriented gradients ). 

The steps for calculating the HOG descriptor for a 

64×128 image are listed below. 
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Step 1: Gradient calculation: Calculate the x and the y 

gradient images,  and , from the original image. 

This can be done by filtering the original image with 

the following kernels. 

 

Using the gradient images  and , we can calculate 

the magnitude and orientation of the gradient using 

the following equations. 

   

The calcuated gradients are unsigned and 

therefore  is in the range 0 to 180 degrees. 

Step 2: Cells: Divide the image into 8×8 cells. 

Step 3: Calculate histogram of gradients in these 8×8 

cells: At each pixel in an 8×8 cell we know the 

gradient (magnitude and direction), and therefore we 

have 64 magnitudes and 64 directions—i.e. 128 

numbers. Histogram of these gradients will provide a 

more useful and compact representation. We will 

next convert these 128 numbers into a 9-bin 

histogram (i.e. 9 numbers). The bins of the histogram 

correspond to gradients directions 0, 20, 40 … 160 

degrees. Every pixel votes for either one or two bins 

in the histogram. If the direction of the gradient at a 

pixel is exactly 0, 20, 40 … or 160 degrees, a vote 

equal to the magnitude of the gradient is cast by the 

pixel into the bin. A pixel where the direction of the 

gradient is not exactly 0, 20, 40 … 160 degrees splits 

its vote among the two nearest bins based on the 

distance from the bin. E.g. A pixel where the 

magnitude of the gradient is 2 and the angle is 20 

degrees will vote for the second bin with value 2. On 

the other hand, a pixel with gradient 2 and angle 30 

will vote 1 for both the second bin (corresponding to 

angle 20 ) and the third bin ( corresponding to angle 

40 ). 

Step 4: Block normalization : The histogram 

calculated in the previous step is not very robust to 

lighting changes. Multiplying image intensities by a 

constant factor scales the histogram bin values as well. 

To counter these effects we can normalize the 

histogram — i.e. think of the histogram as a vector of 

9 elements and divide each element by the magnitude 

of this vector. In the original HOG paper, this 

normalization is not done over the 8×8 cell that 

produced the histogram, but over 16×16 blocks. The 

idea is the same, but now instead of a 9 element 

vector we have a 36 element vector. 

Step 5: Feature Vector: In the previous steps we 

figured out how to calculate histogram over an 8×8 

cell and then normalize it over a 16×16 block. To 

calculate the final feature vector for the entire image, 

the 16×16 block is moved in steps of 8 ( i.e. 50% 

overlap with the previous block ) and the 36 numbers 

(corresponding to 4 histograms in a 16×16 block ) 

calculated at each step are concatenated to produce 

the final feature vector. What is the length of the 

final vector? 

The input image is 64×128 pixels in size, and we are 

moving 8 pixels at a time. Therefore, we can make 7 

steps in the horizontal direction and 15 steps in the 

vertical direction which adds up to 7 x 15 = 105 steps. 

At each step we calculated 36 numbers, which makes 

the length of the final vector 105 x 36 = 3780. 

C. Learning Algorithm for Classification 

In the previous section, we learned how to convert an 

image to a feature vector. In this section, we will 

learn how a classification algorithm takes this feature 

vector as input and outputs a class label (e.g. cat or 

background). 

https://www.learnopencv.com/wp-content/uploads/2016/11/gradient-kernels.jpg
https://www.learnopencv.com/wp-content/uploads/2016/11/gradient-kernels.jpg
https://www.learnopencv.com/wp-content/uploads/2016/11/gradient-kernels.jpg
https://www.learnopencv.com/wp-content/uploads/2016/11/gradient-kernels.jpg
https://www.learnopencv.com/wp-content/uploads/2016/11/gradient-kernels.jpg
https://www.learnopencv.com/wp-content/uploads/2016/11/gradient-kernels.jpg
https://www.learnopencv.com/wp-content/uploads/2016/11/gradient-kernels.jpg
https://www.learnopencv.com/wp-content/uploads/2016/11/gradient-kernels.jpg
https://www.learnopencv.com/wp-content/uploads/2016/11/gradient-kernels.jpg
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Before a classification algorithm can do its magic, we 

need to train it by showing thousands of examples of 

cats and backgrounds. Different learning algorithms 

learn differently, but the general principle is that 

learning algorithms treat feature vectors as points in 

higher dimensional space, and try to find planes / 

surfaces that partition the higher dimensional space in 

such a way that all examples belonging to the same 

class are on one side of the plane / surface. 

To simplify things, let us look at one learning 

algorithm called Support Vector Machines (SVM) in 

some detail. 

Support Vector Machine (SVM) is one of the most 

popular supervised binary classification algorithm. 

Although the ideas used in SVM have been around 

since 1963, the current version was proposed in 1995 

by Cortes and Vapnik. 

In the previous step, we learned that the HOG 

descriptor of an image is a feature vector of length 

3780. We can think of this vector as a point in a 3780-

dimensional space. Visualizing higher dimensional 

space is impossible, so let us simplify things a bit and 

imagine the feature vector was just two dimensional. 

 

      Figure 2: Classifying image points using SVM 

In our simplified world, we now have 2D points 

representing the two classes (e.g. cats and 

background). In the image above, the two classes are 

represented by two different kinds of dots. All black 

dots belong to one class and the white dots belong to 

the other class. During training, we provide the 

algorithm with many examples from the two classes. 

In other words, we tell the algorithm the coordinates 

of the 2D dots and also whether the dot is black or 

white. 

Different learning algorithms figure out how to 

separate these two classes in different ways. Linear 

SVM tries to find the best line that separates the two 

classes. In the figure above, H1, H2, and H3 are three 

lines in this 2D space. H1 does not separate the two 

classes and is therefore not a good classifier. H2 and 

H3 both separate the two classes, but intuitively it 

feels like H3 is a better classifier than H2 because H3 

appears to separate the two classes more cleanly. 

Why? Because H2 is too close to some of the black 

and white dots. On the other hand, H3 is chosen such 

that it is at a maximum distance from members of the 

two classes. 

Given the 2D features in the above figure, SVM will 

find the line H3 for us. If we get a new 2D feature 

vector corresponding to an image the algorithm has 

never seen before, we can simply test which side of 

the line the point lies and assign it the appropriate 

class label. If our feature vectors are in 3D, SVM will 

find the appropriate plane that maximally separates 

the two classes. If our feature vector is in a 3780-

dimensional space, SVM will find the 

appropriate hyperplane. 

Optimizing SVM 

So far so good, but we have one important 

unanswered question. What if the features belonging 

to the two classes are not separable using a 

hyperplane? In such cases, SVM still finds the best 

hyperplane by solving an optimization problem that 

tries to increase the distance of the hyperplane from 

the two classes while trying to make sure many 
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training examples are classified properly. This tradeoff 

is controlled by a parameter called C. When the value 

of C is small, a large margin hyperplane is chosen at 

the expense of a greater number of misclassifications. 

Conversely, when C is large, a smaller margin 

hyperplane is chosen that tries to classify many more 

examples correctly. 

 

 

III. RESULTS AND DISCUSSION  

 

The results of our proposed algorithm are shown in 

Figure 3 and Figure 4. 

It can be seen from the Figure 3 and Figure 4 that the 

proposed algorithm can accurately detect objects such 

as humans and car. In addition, the moving car is also 

difficult to detect in the detection task. But the 

moving car can be detected by the proposed 

algorithm. In summary, the proposed algorithm can 

achieve better results of these samples and locate the 

objects reasonably. 

 
 

Figure 3: Human detection using pretrained SVM 

with HOG features. 

 
Figure 4: Moving cars detection using SVM classifier 

 

IV. CONCLUSION 

 

On the basis of summarizing the limitations of the 

existing algorithm for the object detection, this paper 

presents object detection based on deep learning of 

small samples. The proposed algorithm contains 

modules as: preprocessing, feature extraction and 

support vector machine, which can realize object 

detection of a scene. Experimental results show the 

proposed method is significantly better than the 

existing techniques in terms of both subjective and 

objective. In the future work, we will combine object 

detection with attitude estimation to make the object 

detector better used in the service robotics. 
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