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varying section (convex) resting on elastic foundation 
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ABSTRACT 

 

In this research theoretical analysis is presented to estimate in a plan large displacement elastic stability 

behavior of frames having non prismatic number of non-linearly varying section resting on elastic foundation 

( Winkler type ) using the non-prismatic segment .in the segmentation method. The stability and bowing 

function are estimated using the method of finite segment. 

Keywords : Convex, Steel Structure, Winkler Type, Segmentation Method, Non-Prismatic Segment, Stiffness 

Factor, Moment Carry-Over Factor, Sway Moment Factor, Shear Factor 

 

I. INTRODUCTION 

 

In the present research the geometric non linearly of 

the framed structure is considered the effect of 

geometric nonlinear may be shown in large 

displacement problem this type of non-linearity 

comes from the interaction effect of the axial force 

bending moment the member and moments U1, V1 

and V2 of the prismatic member are expressed in 

terms of member and rotation Q1, Q2 and deflections 

Y1 and Y2 and relative axial displacement (U) as 

follows (2) for beam an elastic formulation. 
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Where: 

S   is the stiffness factor 

SC   moment carry-over factor 

Q   sway moment factor 

qQ   sway moment carry-over factor 

T   shear factor 

tT    shear carry-over factor 

Finite segment method may be considered as physical 

inter pretention of the finite difference method that 

can be applied numerically to solve differential 

equations. The beam column problem can be 

formulation and solved approximately in terms 

behavior of these segments without recovers to 

complex differential equations. 

 
The non-prismatic member on elastic foundation is 

divided into (n) a prismatic member as shown in fig 

(1-1) below. 
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Fig.(1-1) Member segment for non-prismatic beam-

column on the elastic foundation: (I) Tapered (II) 

Concave, and (III) Convex 

 

II. OBJECTIVE OF THIS RESEARCH: 

 

the objective of this study is to present theoretical 

basis for the large displacement elastic stability 

analysis of plane frame with non-prismatic members 

resting on elastic foundation, using the non-prismatic 

segment (tapered segments), in finding the stability 

functions. 

 

III. REVIEW OF LITERATURE 

 

In 1978, Al-Sarraf (2) derive modified stability 

functions by using modified slope-deflection 

equations for a uniform beam-column supported on 

or driven into continues Winkler foundation. 

In 1997 Al-Hachami(1) presented a theatrical analysis 

for estimating in plane and in space large 

displacement elastic stability behavior structures 

subjected to either proportional or non-proportional 

increasing static loads , the analysis adopted the 

beam-column approach , large displacement analysis 

of beam-column resting on or driven into elastic 

foundation was presented. 

In 2002, Faris(3) submitted a theatrical analysis for 

estimating the in-plane large displacement elastic-

plastic stability behavior of steel frames having non-

prismatic members of non-linearly varying sections. 

The stability and bowing functions were estimated 

using four methods, finite differences, finite element, 

finite segments and exact solution by using Bessel 

functions. Also, approximate results had been 

obtained by using approximate stability and bowing 

functions for nonlinearly tapered members. 

In 2004, Ahmed Tariq, Faris, H.A., N.Al-jumaily, 

Ibrahim(4) , present a theoretical basis for the large 

displacement elastic stability analysis of plane frames 

with non-prismatic members resting on elastic 

foundation. 

 

IV. Modeling of Subgrade Reaction 

 

Large displacement analysis of beam-column on 

elastic foundation can be represented by two 

approaches(1). 

 

In the first approach, the foundation is represented 

by isolated springs at the nodes of the beam-column. 

 

In the second approach, foundation medium is 

assumed to be of Winkler type, i.e., the beam-column 

elements rest on distributed springs, Fig.(1-2) This 

study deals with the second approach in the solution 

of the geometric nonlinearity problems. 

 

Fig (1-2) soil subgrade reaction of beam-column on 

elastic foundation 

 

V. Stability and Bowing Functions 

 

The relationship between the relative 

deformations   ,   ,   , and   , and the associated 

member end forces   ,   ,   , and    can be written 

as follows: 



International Journal of Scientific Research in Science, Engineering and Technology (www.ijsrset.com) 

Dr. Hamid Abdul Mahdi Faris et al. Int J S Res Sci. Engg. Tech. 2018  July-August-2018 ; 4(9) : 404-418 
 

 406 

  =
  

 
(S        

   

 
 

    

 
)              …. 

(1-1) 

  =
  

 
(S         

    

 
 

   

 
)              

….(1-2) 

  =
  

  
(Q         

   

 
 

    

 
)                  

….(1-3) 

  =
  

  
(qQ        

    

 
 

   

 
)                  

….(1-4) 

 

Where: 

S   is the stiffness factor 

SC   moment carry-over factor 

Q   sway moment factor 

qQ   sway moment carry-over factor 

T   shear factor 

tT    shear carry-over factor 

 

and the relation between the axial 

deformation u and the axial force P can be 

expressed according to Oran(5) : 

p=
  

 
                                                      

….(1-5) 

where the    is the length correction factor 

due to bowing. 

Fig (1-3) member forces and deformation in local 

coordinate 

The stability function ( S, SC, Q, qQ, T, and tT ) and 

bowing function (          for the prismatic beam 

on elastic foundation may derived depending on the 

force affected and the parameters [  
 

 ⁄   -4     ](6) 

where  Ψ=  p. 

(i) Case-1: compressive axial force 

 Case-1 (a): [  
 

 ⁄   -4     ] >= 0 

S= (W2-N2) 
                   

                                
                

….(1-6) 

 

SC= (W2-N2) 
             

                                 
            

…..(1-7) 

 

Q=  
                                      

                                 
                 

….(1-8) 

 

q Q=  
   (     )            

                                    
                       

….(1-9) 

 

T=  
   (     )                           

                                 
                         

….(1-10) 

 

tT=  
   (     )              

                                 
                         

….(1-11) 

 

 

 

where 

W2=(Ψ2/2)2-[  
 

 ⁄   -4     ]1/2                                       

….(1-12) 

N2=(Ψ2/2)2+[  
 

 ⁄   -4     ]1/2                                      

….(1-13) 

And the relationships of bowing functions b1 and b2 

for a prismatic beam on elastic foundation also 

depend on the parameter [  
 

 ⁄   -4     ], which 

are 
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b1=*
    

        
+
 
  

(

         

      
 ,       

        

       
-

  
         

      
 ,       

        

       
-
)   ….(1-15) 

 

 Case-1 (b): [  
 

 ⁄   - 4     ] < 0 

 

S = - (λL) sin d 
                                    

                                   
      ….(1-16) 

 

SC = √  (λL)sind 
                                   

                                   
        ….(1-17) 

 

Q = 2(λL)2 sin d 
                                  

                                   
              …..(1-18) 

 

qQ = 2 (λL)2 sin d 
             

                                   
        ….(1-19) 

 

T = 2√ (λL)3 sin (d/2) 
                                   

                                   
    ….(1-20) 

 

tT = 2√ (λL)3 sin d 
                                     

                                   
    …..(1-21) 

 

A=√ (λL) sin (d/2)                                         ….(1-22) 

B=√ (λL) cos (d/2)                                       ……(1-23) 

d=                                                   …..(1-24) 

b1= 
         

 
 (f1+f2+f3)                                   …..(1-25) 

b2= 
         

 
 (f1-f2+f3)                                   …..(1-26) 

where 

f1= f0 (f4+f5+f6+f7+f8+f9+f10+f12+f13) 

f2= f0 (f14+f15+f16+f17+f18+f19+f20) 

f3= f0 (f21+f22+f23) 

in which 

f0=
 

                           
                             ….(1-27) 

K=EI/L 

f4= (1/4) (B sinh 2A – A sin 2B)2 

*
  

      

  
  

     

  

  
                            

           

+ 

 

f5= (1/4) (A sinh 2A + B sin 2B)2 

*
   

      

  
  

     

  

  
                            

           

+ 

 

f6=-

B2           

         *
   

      

  
  

     

  

  
                            

           

+ 

 

f7=-

A2          

          *
  

      

  
  

     

  

  
                            

           

+ 

 

f8= (1/2)(B sinh 2A – A sin 2B )(A sinh 2A + B sin 

2B)(A cosh 2A sin 2B – B sinh 2A cos 2B) / 2(A2 + B2) 

f9= -B(sinh2 A + sin2 B)(B sinh 2A – A sin 2B) 

*
        

  
  

                             

         
+ 

f10= -A(sinh2 A + sin2 B)(B sinh 2A – A sin 2B) 

*
       

  
  

                             

         
+ 

f11= -B(sinh2 A + sin2 B)(A sinh 2A + B sin 2B) 

*
       

  
  

                             

         
+ 

f12= -A(sinh2 A + sin2 B)(A sinh 2A + B sin 2B) 

*
        

  
  

                           

         
+ 

f13=-AB(sinh2A+sin2B)* 
                           

         
+ 

f14= (B sinh 2A - Asin 2B)(B sinh A cos B - A sin B 

coshA)**  
      

  
 

     

  
 

 
                            

         
+ 

f15= (A sinh 2A + B sin 2B)(A sinh A cos B + B sin B 

cosh A)* 

*   
      

  
 

     

  
 

 
                            

         
+ 
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f16= [2(A+B) sinh A cos B -2(A-B) sin B cosh A] 

*
                           

         
+ 

f17= -2B(sinh2 A + sin2 B)(B sinh A cos B - A sin B 

cosh A) *
       

  
  

                              

         
+ 

f18= -2A(sinh2 A + sin2 B)(B sinh A cos B - A sin B 

cosh A) *
       

  
  

                              

         
+ 

f19= -2B(sinh2 A + sin2 B)(A sinh A cos B + B sin B 

cosh A) *
       

  
  

                              

         
+ 

f20= -2A(sinh2 A + sin2 B)(A sinh A cos B + B sin B 

cosh A) *
        

  
  

                              

         
+ 

f21=                         * 

[
 
 
   

      

  
  
     

  

  
                            

           ]
 
 
 
 

 

f22=                         * 

[
 
 
    

      

  
  
     

  

  
                            

           ]
 
 
 
 

   = 2(B sinh A cos B – A sin B cosh A)(A sinh A cos 

B + B sin B cosh A)* 

*
                            

         
+                  …..(1-28) 

 

(ii) case-2: tensile axial force 

case-2 (a): if [  
 

 ⁄   - 4     ] >= 0 

S=(W2-N2) 
                       

                                    
         

…(1-29) 

 

SC=(W2-N2) 
              

                                    
        

…..(1-30) 

 

Q= 
    (     )                                    

                                 
       

…..(1-31) 

 

qQ=  
   (     )              

                                 
                  

…….(1-32) 

 

T=  
   (     )                               

                                 
        

…..(1-33) 

 

tT=  
   (     )                

                                 
              

…..(1-34) 

 

the relation of bowing function b1 and b2 for a 

prismatic beam column on elastic foundation also 

depend on the axial force and the parameter  

[  
 

 ⁄   - 4     ] which are 

 

b1 = *
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 Case-2 (b): [  
 

 ⁄   - 4     ] < 0 

 

S = -√  (λL) sin d 
                                   

                                   
               …(1-37) 

SC = √  (λL) sin d 
                                   

                                   
             …..(1-38) 

Q = 2(λL)2 sin d 
                                 

                                   
                   ……(1-39) 

qQ = 2 (λL)2 sin d 
             

                                   
                     …..(1-40) 
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T = 2√ (λL)3 cos (d/2) 
                                   

                                   
             …..(1-41) 

tT = 2√ (λL)3 sin d 
                                     

                                   
             ….(1-42) 

 

b1= 
         

 
 (f1+f2+f3)                                   ……(1-43) 

b2= 
         

 
 (f1-f2+f3)                                      ….(1-44) 

where 

f1= f0 (f4+f5+f6+f7+f8+f9+f10+f12+f13) 

f2= f0 (f14+f15+f16+f17+f18+f19+f20) 

f3= f0 (f21+f22+f23) 

in which 

f0= 
 

                           
                            …..(1-45) 

K=EI/L 

f4= (1/4) (A sinh 2B – B sin 2A)2 

*
  

      

  
  

     

  

  
                            

           

+ 

f5= (1/4) (B sinh 2B + A sin 2A)2 

*
   

      

  
  

     

  

  
                            

           

+ 

f6=-

A2          

         *
   

      

  
  

     

  

  
                            

           

+ 

f7=-

B2          

          *
  

      

  
  

     

  

  
                            

           

+ 

f8= (1/2)(A sinh 2B – B sin 2A )(B sinh 2B + A sin 

2A)(B cosh 2B sin 2A – A sinh 2B cos 2A) / 2(A2 + B2) 

f9= -A(sinh2 B + sin2 B)(A sinh 2B – B sin 2A) 

*
        

  
  

                             

         
+ 

f10= -B(sinh2 B + sin2 A)(A sinh 2B – B sin 2A) 

*
       

  
  

                             

         
+ 

f11= -A(sinh2 B + sin2 A)(B sinh 2B + A sin 2A) 

*
       

  
  

                             

         
+ 

f12= -B(sinh2 B + sin2 A)(B sinh 2B + A sin 2A) 

*
        

  
  

                             

         
+ 

f13= -AB(sinh2 B + sin2 A) 

*
                           

         
+ 

f14= (A sinh 2B – B sin 2A)(A sinh B cos A - B sin A 

cosh B)* 

*  
      

  
 

     

  
  

                            

         
+ 

f15= (B sinh 2B + A sin 2A)(B sinh B cos A + A sin A 

cosh B)* 

*   
      

  
 

     

  
  

                            

         
+ 

f16= [2(A+B) sinh B cos A - 2(B-A) sin A cosh B] 

*
                           

         
+ 

f17= -2A(sinh2 B + sin2 A)(A sinh B cos A - B sin A 

cosh B) *
       

  
  

                              

         
+ 

f18= -2B(sinh2 B + sin2 A)(A sinh B cos A - B sin A 

cosh B) *
       

  
  

                              

         
+ 

f19= -2A(sinh2 B + sin2 A)(B sinh B cos A + A sin A 

cosh B) *
       

  
  

                              

         
+ 

f20= -2B(sinh2 B + sin2 A)(B sinh B cos A + A sin A 

coshB)*
        

  
  

                              

         
+ 

f21=                         * 

[
 
 
   

      

  
  
     

  

  
                            

           ]
 
 
 
 

f22=                         * 

[
 
 
    

      

  
  
     

  

  
                            

           ]
 
 
 
 

   = 2(A sinh B cos A – B sin A cosh B)(B sinh B cos 

A + A sin A cosh B)* 

*
                            

         
+                       …..(1-46) 

 

(iii) Case-3: zero axial force (beam on elastic 

foundation) 

This is a special case, in which Ψ= 0 ; d= 

π/2 ; A=B=(λL) 

Thus: 
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S= - 2(λL) 
                               

                 
                

….(1-47) 

 

SC= 2(λL) 
                       

                 
                         

…..(1-48) 

 

Q= 2(λL)2 
                

                 
                                       

……(1-49) 

 

qQ= 2(λL)2 
           

                 
                                      

…….(1-50) 

 

T= 4(λL)3 
                       

                 
                          

……(1-51) 

 

tT= 4(λL)3 
                       

                 
                        

……(1-52) 

 

Equation (1-47) to (1-52) must be used in the first 

load increment. 

The value of the stability and bowing functions are 

shown graphically in figures (1-4), (1-5), (1-6), (1-7), 

(1-8), (1-9), (1-10) and (1-11) for different values of 

soil subgrade parameter (λL) and different values of 

axial force parameters (P). 

 

 
Fig.(1-4) Graphs of the function S 

 

 
Fig.(1-5) Graphs of the function SC 

 
Fig.(1-6) Graphs of the function Q 

 

 
Fig.(1-7) Graphs of the function qQ 
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Fig.(1-8) Graphs of the function T 

 

 
Fig.(1-9) Graphs of the function tT 

 

 
Fig.(1-10) Graphs of the function b1 

 

 
Fig.(1-11) Graphs of the function b2 

 

 

 

VI. Modified stability function 

 

The basic differential equation for a non-prismatic 

beam on elastic foundation is(6): 

 
 

   
 (     

   

   
) +ky=0                              ….(1-53) 

 

If the effect of axial force (P) is considered, eq. (1-53) 

becomes 

 
 

   
 (     

   

   
) +P 

   

   
 +ky=0           ….(1-54) 

 

where y represents lateral deflection at distance x 

along the member, El(x) is the flexural stiffness of the 

member, P is axial force, and k represents the 

stiffness of the foundation. 

For non-prismatic beam-column on elastic 

foundation, similar representation can be considered 

to that which is not resting on elastic foundation, 

which was presented by Al-Sarraf(2), as shown in 

Fig.(1-12 ). From Fig.(1-12), it is clear that a is 

considered as the distance of end 2 from the origin O, 

point of zero depth, and b = a + L. 

All the members considered have uniform taper in 

either one or two directions. Therefore, the depth dx 

may be expressed by: 
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dx = d2 (x/a)                                                  ……(1-55) 

 

The moment of inertia of the cross-sectional area of 

the member about the axis of buckling may be 

expressed in the form 

 

I(x) = I2 (x/a)m                                                  …..(1-56) 

  

where I(x) is the moment of inertia at distance x from 

the origin O, and m is the shape factor that depends 

on the cross-sectional shape and dimensions of the-

member. The shape factor m may be evaluated by 

observing that Eq.(1-56) must give I(x) =I1 when x = b. 

This condition yields the relation: 

 

m = log (I1 / I2) / log U                                   ….(1-57) 

 

where U is (d1 / d2) end depth ratio. 

 

So, the value of shape factor can be determined only 

when the dimensions of the cross-sections are 

known. 

The values of the shape factor in are shown in Table 

(1-1) for different cross-sectional shapes(7). 

 

Fig (1-12) Tapered beam-column 

 

By substituting Eq.(1-56) into Eq.(1-54) yields: 
 

   
 (           

   

   
) +P 

   

   
 +ky=0              ….(1-58) 

And the above equation will be solved later by two 

approximate methods; finite differences and finite 

segments. 

Table (1-1) Tapered beam cross-sectional shapes and 

shapes factors 

 
 

6.1 nonlinearly tapered members: 

 

For a member having nonlinear tapering in the either 

on or two directions as shown in fig.(1-13), the depth 

dx may be expressed by 

dx= d2 (x/a)Ψ                                                   …..(1-59) 

where a is the distance of end 2 from the origin O, 

point of zero depth, and d2 is the depth at end 2, Ψ is 

the degree of variation. 

From eq. (1-59) the depth of end 1 can be obtained as: 

d1= d2 (b/a)Ψ                                                 ……(1-60) 

where b is the distance of end 1 from the origin O, 

and: 

U1/Ψ =b/a                                                     …… (1-61) 

Where U=d1/d2 , eq.(1-60) can be written as: 
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 ̅ = b/a                                                         …… (1-62) 

Where the   ̅  is the modified taper ratio and may be 

obtained as: 

 ̅  = U1/Ψ                                                      …. (1-63) 

The moment of inertia of the cross-sectional area of 

the member about the axis of the bending may be 

expressed in the form: 

I(x) = I2 (x/a)Ψm                                            …..(1-64) 

Where the I(x) is the moment of inertia of a section at 

distance x from the origin for the nonlinearly tapered 

member eq. (1-64) can be written as: 

I(x) = I2       ̅                                           ……(1-65) 

Where  ̅ is the modified shape factor and may be 

determined as: 

 ̅= Ψm                                                      …. (1-66) 

Where m= log (I1/I2) / log U                    ...… (1-67) 

Fig.(1-13) nonlinear Tapered beam-column: (I) 

concave Ψ>1 

(II) concave Ψ<1 

6.2 Estimating of modified stability and bowing 

functions using finite segment method: 

 

Finite segment method may be considered as a 

physical interpretation of the finite differences 

method that can be applied numerically to solve 

differential equations. 

Now, the beam-column problem can be formulated 

and solved approximately in terms of the behavior or 

these segments without recourse to complex 

differential equations. In this method, the non-

prismatic member on elastic foundation is divided 

into (n) prismatic members, as shown in Fig.(1-14) 

 

Fig.(1-14) member segment for non-prismatic beam –

column on elastic foundation: (I) Tapered (II) 

Concave and (III) convex 

 

6.2.1 estimation of modified stability functions: 

The exact stability function derived by Al-Hachami(1) , 

are used to calculate the modified stability functions 

For the segment m, the local end force-deformation 

relationships 

Are: 

 

Mi= 
   

  
 *                     

  

  
 

         
  

  
+ …..(1-68) 

 

Mj= 
   

  
 *                     

  

  
 

         
  

  
+ …..(1-69) 

 

Vi= 
   

   
 *                          

  

  
 

  
  

  
+ …....(1-70) 

 

Vi= 
   

   
 *                         

  
  

  
   

  

  
+ …..(1-71) 
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equation (1-63) to (1-71) can be written in matrix 

form as: 

 

                                                        …. (1-72) 

     [

   
  
   
  

]                                                  …. (1-73) 

 

    = 

[
 
 
 
 
  
 ⁄

  
  
 ⁄

  ]
 
 
 
 

                                                 …..(1-74) 

And the stiffness matrix     can be written as: 

    = 
   

 
 

[
 
 
 
 
 
 
 
 
  

   
     

         

   
  

  

   
   

         

   
 

                    
   

   
   

         

   
   

   

   

                                
  

   
   

         

   
 

                                                  
   

   
 
 ]

 
 
 
 
 
 
 
 

             ……(1-75) 

In which: 

Am= 2(C1m+C2m) – π2 qm                               …… (1-76) 

qm = qe . frm2                                                 …….(1-77) 

where: 

qm is the segment m axial force parameter, while qe is 

the total element axial force parameter 

frn = hm / L                                                    ……(1-78) 

C1m and C2m : stability function of a prismatic segment, 

which are function of qm. 

yi and y2 : are sways of end i and j of segment m. 

   and    : are angle of rotations of end i and j of 

segment m. 

hm : is the length of segment m. 

Im : is the moment of inertia for segment m. 

 

For the case of beam-column resting of elastic 

foundation (Winkler model), where the soil subgrade 

reaction is assumed to be uniformly distributed along 

the beam-column, the segment stiffness matrix      

in eq.(1-76) must be rewritten as: 

    = 
   

 
 

[
 
 
 
 
 
 
   

   
     

   

   
             

   

   
   

   

   
 

                        
   

   
   

   

   
   

   

   

                                
   

   
   

   

   
 

                                               
   

   ]
 
 
 
 
 
 

                        …..(1-79) 

Where    ,     ,     ,     ,    , and     denote the 

stability function for a prismatic beam-column 

resting on elastic foundation. 

(λL)m = fm . (λL)e                                          ……(1-80) 

Where the (λL)m  is the segment m axial force 

parameter , while (λL)e is the total element axial force 

parameter. 

Now, each stability function will be derived 

depending on the applied boundary conditions, as 

follows: 

1- Determination of S1,   ̅̅̅̅ : 

The boundary conditions: (      1= yn+1 =      

 ), are seen in fig.(1-15). 

Using the equation of non-prismatic member resting 

on elastic foundation: 

M1= 
   

 
 S1                                                           …..(1-

81) 

Fig.(1-15) boundary conditions 

 

Using eq.(1-68) for the first segment gives: 

M1=
   

    
*             

  

    
+                   …..(1-82) 

Equating eqs.(1-82)and (1-81) yields: 

S1=                                            …..(1-83) 

Where the n is the number of segments. 

To find the   ̅̅̅̅  the same boundary conditions are 

used: 

Mn+1 = 
   

 
   ̅̅̅̅                                                …….(1-84) 

Using the eq.(1-69) for segment n: 

Mn+1= 
   

    
 *         

  

    
+                         …..(1-85) 

  ̅̅̅̅ =   
  
  
⁄                                    …..(1-86) 
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Where 

C11, C21, J11, and J21: are stability functions of the first 

prismatic segment. 

C1n, C2n, J1n, and J2n: are the stability functions of 

prismatic segment n 

I1, In, : is the moment of inertia at end 1 and n 

respectively. 

 

2- Determination of S2,   ̅̅̅̅ : 

The boundary conditions: (          1= yn+1 = 

    ), are seen in fig.(1-16). Using the equation: 

M1=  
   

 
 S2                                                    …..(1-87) 

 
Fig.(1-16) boundary conditions 

 

Using eq.(1-69) for the segment n gives: 

S2= -                                      …..(1-88) 

To find the   ̅̅̅̅  the same boundary conditions are 

used: 

  ̅̅̅̅ =                                                  …..(1-89) 

3- determination of Q1 and qQ1: 

the boundary conditions: (      n+1 =         

 ). 

M1= 
   

  
 Q1                                     …..(1-90) 

 

Using eq.(1-69) for 1st segment, the following is 

obtained : 

Q1=-                                          …..(1-91) 

Using the same boundary conditions, for segment n: 

qQ1=  
  
  
⁄                                   …..(1-92) 

4- determination of Q2 and qQ2: 

the boundary condition: (        1 =         

 ). 

Q2=   
  
  
⁄                           …..(1-93) 

qQ2= -           

                                                              …..(1-94) 

 

5- determination of T1 and tT1: 

the boundary conditions:  (       n+1 =    

      ). 

Using the equation: 

V1= 
   

  
 T1                                 …..(1-95) 

For segment one, eq(1-70) is used: 

V1=
   

    
*            

   

    
    

  

    
+         ....(1-96) 

T1=n2                                  .....(1-97) 

tT1=n2 
  
  
⁄                                   …..(1-98) 

6- determination of T2 and tT2: 

The boundary conditions: (         1 =    

      ). 

T2=-n2 
  
  
⁄                             ....(1-99) 

tT2=-n2                                  …..(1-100) 

7. estimation of modified stability and bowing 

functions using finite non-prismatic (tapered) 

segments method. 

Figure (1-17) non prismatic segment 

 

  =
   

  
(S             

    

  
)            …. (1-101) 

  =
   

  
(S              

     

  
 

    

  
)              

….(1-102) 

  =
   

  
 (Q1        

    

  
 

     

  
)            ….(1-103) 

 

  =
   

  
 (qQN           

      

  
 

     

  
)        

….(1-104) 
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1. Determination of S11 :      (         

           ) 

S11=  *            
    

 
+ 

2. Determination of  SC1  :    (         

           ) 

SC1=  
  

  
*          

     

 
+ 

3. Determination of  S22 :   (              

      ) 

S22=  
  

  
*               

 

 
+ 

4. Determination of  Q11 :   (          

         ) 

Q11=  *            
    

 
+ 

5. Determination of  qQ11 :    (         

           ) 

qQ11=   *      
    

 
+ 

6. Determination of  T11 :   (          

          

T11=   *      
 

 
          + 

7. Determination of  tT11  :   (          

        ) 

tT11=   *     
 

 
    + 

 

where : 

S11, SC1, S22, Q11, qQ11, T11, tT11 : are the stability 

functions of the non-prismatic beam of nonlinearly 

varying section . 

 
Fig. (1-18) Graphs of S1 for non-linear tapered 

member using finite element method. 

Fig. (1-19) Graphs of SC for non-linear tapered 

member using finite element method. 

Fig. (1-20) Graphs of S2 for non-linear tapered 

member using finite element method. 

 

Example (1-1): 

Simply supported beam with uniformly distributed 

load 

Figure (1-20) shows the geometry and loading 

conditions for example (1-1) finite difference, finite 

segment, and approximate methods are used to solve 

this problem. Two elements and five load increments 

are considered. Figure (1-21) shows the load mid-

span deflection for this beam. Good agreement exists 

between the results obtained by above three methods. 

Example (1-2): 

Nonlinearly tapered (convex) cantilever beam with 

two-concentrated loads 

this application with nonlinearly convex varying 

section, figure (1-23). Same methods of analysis are 

used here too. Results are listed in table (1-2). 

Example (1-3): 

Nonlinearly tapered (convex) column 
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This example above is repeated here with convex 

variation in section in order to illustrate the 

difference between the use of various type of 

nonlinearly in sections. The beam is shown in figure 

(1-24). Consistency can be seen between results 

obtained by methods of analysis as explained in figure 

(1-25). 

 

Figure (1-21) Geometry and loading of Ex. (1-1) 

 

Figure (1-22) load – mid – span deflection for Ex. (1-1) 

Figure (1-23) loading of Ex. (1-2) 

Table (1-2) results of Ex. (1-2) 

 δHc/L δVc/L 

Finite non-

prismatic 

segment 

0.0157 0.1665 

Finite prismatic 

segment 

0.0158 0.1670 

 

Figure (1-24) loading of Ex. (1-2) 

 

Table (1-3) results of Ex. (1-2) 

 δHc/L δVc/L 

Finite non-

prismatic 

segment 

0.0153 0.160 

Finite prismatic 

segment 

0.0154 0.1649 

 

 
Figure (1-25) Geometry and load of Ex. (1-3) 

 

Figure (1-26) load – displacement curve for Ex. 

(1-3) 

 

VII. CONCLUSIONS: 

 

The following conclusions can be drawing depending 

on the results obtained from the present work: 
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1. This study shows that the large displacement 

elastic behavior of plan frames having linearly 

and nonlinearly tapered members resting on 

elastic foundation (winkler model) can be 

accurately predicted by using the beam-column 

approach. 

2. The stability and bowing functions can be 

derived using finite segment method. 

3. For linearly and nonlinearly tapered members 

resting on elastic foundation, the stability and 

bowing functions can be estimated 

approximately by using the stability and 

bowing functions for prismatic and non-

prismatic members using different factors 

depending on the tapering ratio, shape factor, 

axial force parameter and sometimes non-

dimensional soil parameter. 

4. In the segmentation method, the non-prismatic 

segment gives more accurate results than these 

of prismatic segment. 
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