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ABSTRACT 

 

Interactions of uniform supersonic streams with blunted cylinders, giving off opposite supersonic jets from 

forehead surfaces, are studied. Two-dimensional Euler equations are solved by an implicit Runge-Kutta scheme. 

Unsteady compressible flows near blunted bodies, giving off supersonic opposite jets, are found in previous 

author investigations for free stream Mach numbers 1≤ M ≤1.3. This interval of free stream Mach numbers, for 

which unsteady flows exist, is extended to 1≤ M ≤1.7 here.   
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I. INTRODUCTION 

Significant part of self-oscillatory compressible flows 

consists of jet flows. These unsteady jet flows may be 

classified into some families: 1. Flows near supersonic 

jets, inflowing to forward facing cavities (see, for 

example, [1-4]); 2. Jet impinging on a plate [5-13]; 3. 

Unsteady compressible flows near blunted bodies, 

giving off supersonic opposite jets from forehead 

surfaces [14-16].  

Investigations [14-16] gave a start to the family 3. 

Self-oscillatory regime of flows near blunted bodies 

with opposite jets were found in [15-16] at free 

stream Mach numbers, closed to 1. Here initial 

interval is studied and unsteady flows near blunted 

cylinders are found for larger free stream Mach 

numbers.  

 

Flow self-oscillations are supposed to be resulted 

from resonance interactions of flow “active” 

elements, namely, elements, which amplify 

disturbances. The hypothesis is used that contact 

discontinuities and intersection points of shocks with 

shocks or shocks with contact discontinuities 

compose the flow set of “active” elements. A search 

for new unsteady flows is carried out by 

investigations of flows, containing the most number 

of “active” elements. Calculated here flow fields 

contain shocks, contact discontinuities and 

intersection points. So, these flows may be waited to 

produce self-oscillations, according to the proposed 

mechanism of the flow unsteadiness.  

 

II. CFD DESIGN APPROACH 

 

The problem geometry may be seen in fig. 1. Solid 

walls are shown by bold lines. Opposite supersonic 

jets outflow from nozzles in forehead parts of blunted 

cylinders. These jets are supposed to be spherically 

symmetrical. Jet velocities at exits of nozzles are 

normal to spherical surfaces.      

 

Boundary conditions for computations are zero value 

of the normal velocity and extrapolation relations for 

all other variables on the body surface, extrapolations 

on the outflow boundary at right side numerical 

domain (see fig 1), prescribed variables on the inflow 

forehead boundary and on the spherical boundary, 
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corresponding to the opposite jet, zero value of the 

radial velocity and extrapolations on symmetry axis. 

 

An implicit conservative third Runge-Kutta scheme 

[17] is modified and is employed here. To avoid 

solutions with false unsteadiness, which may appear 

when flows are studied, closed to really unsteady 

flows, the Smagorinsky artificial viscosity [18] is used: 

µ= ρ|S|(C s Δ)
2

, |S| = (2S ik S ik ) 2/1 , 

S ik = ( u i / x k + u k / x i )/2,   

Δ= Δ Δη (x  y - y  x )/ 

/(Min(Δ
2

( x 2

 +y 2

 ), Δη
2

( x 2

 +y 2

 ))) 2/1 , 

where functions x=x(  ,η), y=y(  ,η) perform 

mapping of the unit square {0≤  ≤1, 0≤η≤ 1} to a 

curvilinear quadrangle on the plane of physical 

variables, Δ =1/N  , Δη=1/N ,  N  , N  - numbers 

of intervals of the quadrangular mesh in unit square, 

C s - constant, which is chosen in trial computations, 

C s =0.85. As a result of usage of this artificial viscosity 

initial third order of method decreased till second 

order. The 590 544 mesh is used.   

  

Numerical calculations deal with dimensionless 

variables. These variables are defined as relations of 

initial variables and next parameters of the 

undisturbed flow or the body size: p - for pressure, ρ

- for density,  - for velocity, r (blunt 

radiuses of cylinders) – for space variables, r/

 - for time.  

 

III. UNSTEADY FLOWS NEAR BLUNTED BODIES 

Unsteady compressible flows near blunted cylinders, 

giving off supersonic opposite jets, are defined by five 

control parameters:  M , M , ρ , P , б - free 

stream and jet Mach numbers, jet density, jet pressure, 

jet half-angle. Large number of control parameters 

makes systematic parametric study of these flows too 

expensive. So a search for self-oscillatory flows with 

free stream Mach numbers, exceeding 1.3, is 

performed step by step. Initial set of control 

parameters, providing the most intensive self-

oscillations at free stream Mach number M  =1.3 

(flows with this Mach number are presented in [15]), 

is used in trial computations at Mach number M  

=1.4. Then control parameters are changing (but 

Mach number M  =1.4 is fixed) to get more intensive 

oscillation. New set of these parameters, which 

provides the most intensive oscillations, is used at 

next free stream Mach number, which exceeds 

previous Mach number by step 0.1. This procedure is 

repeated step by step. Results of this search are 

presented in table 1. 

 

The intensity of flow oscillations may be measured by 

sound pressure level at some point:  

SPL=10 Log ( /p ),  

where =
n

(p n - ) /N,  p =20mkPa/p , p

=101325Pa (the air pressure under normal conditions) 

is used since dimensionless variables are dealt here. 

Sound pressure levels at the intersection point of 

spherical and cylindrical parts are presented in 

sevenths columns of the table below.  

Table : Sound pressure levels. 

N 
M

 

M

      
P  

 Ρ   б  SPL,db 

1 1.4 4.5 0.233 0.465 arcsin(0.4) 162.9 

2 1.4 5.5 0.157 0.459 π/6 169.1 

3 1.4 5.5 0.250 0.347 arcsin(0.4)  176.9 

4 1.4 5.5 0.250 0.289 π/6 179.8 

5 1.5 5.5 0.250 0.289 π/6 176.9 

6 1.5 5.5 0.250 0.347 π/6 173.8 

7 1.6 5.5 0.250 0.362 arcsin(0.4) 166.1 

8 1.6 5.5 0.250 0.289 π/6 178.4 

9 1.7 5.5 0.250 0.289 π/6 178.2 

10 1.7 5.5 0.250 0.347 π/6 176.2 

Fig. 1 shows density distribution for the unsteady 

flow near the spherically blunted cylinder. This flow 

corresponds to variant 1 in the table. It should be 
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noted, that contact discontinuity near the cylinder 

bound is disturbed by waves.     

 

 
Fig. 1. The density distribution, M  =1.4. 

 

Fig. 2 shows the pressure history at the interface 

point of spherical and cylindrical parts of the body. It 

may be seen that there are both fast vibrations with 

the period τ=1.42 and slow vibrations with the period 

T=5τ  

 

 
Fig. 2. The pressure history, M =1.4. 

 

Fig. 3 shows the density distribution for the flow, 

presented in table in line 6. The density distribution 

shows shock waves moving from the body bold 

region to the main forehead shock wave. Vortexes, 

appearing near the body bold and moving 

downstream along the cylinder, are seen in this fig. 

 

 
Fig. 3. The density distribution, M  =1.5. 

 

Fig. 4 shows the pressure history for the flow 6 (see 

table) at the interface point of spherical and conical 

parts of the body. If to see at this fig. attentively, two 

main vibrations may be seen. Fast vibrations have the 

period τ=1.81 and slow vibrations have the period 

T=4τ. 

 

 
Fig. 4. The pressure history, M =1.5. 

 

Fig. 5 shows the density distribution for the flow, 

presented in table in line 9. The density distribution 

shows shock waves moving from the body bold 

region to the main forehead shock wave. Vortexes, 

appearing near the body bold and moving 

downstream along the cylinder, are seen in this fig. 
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Fig. 5. The density distribution, M  =1.7. 

 

Fig. 6 shows the pressure history for the flow number 

9 (see table) at the interface point of spherical and 

cylindrical parts of the body. Nearly periodical 

dynamic with the period τ=1.33 is shown at this fig. 

 

 
Fig. 6. The pressure history, M =1.7. 

 

IV. CONCLUSION 

Interactions of supersonic streams with blunted 

bodies, giving off supersonic jets, are studied. 

Previous investigations [14]-[16] allowed to find 

unsteady regimes of these interactions at free stream 

Mach numbers 1≤M ≤1.3.  Self-oscillatory flows at 

Mach numbers 1.3≤M ≤1.7 are observed in recent 

investigation.   

Unsteady flows, considered here, are defined by five  

control parameters:  M  , M , ρ , P , б . 

Only little part of 5D space of control parameters is 

studied in [15-16] and here. Both CFD modelling and 

experimental study are necessary to get more 

understanding of unsteady flows physics near blunted 

bodies, giving off opposite jets. 

V. REFERENCES 
 

1. J Hartmann, On a new method for the generation 

of sound waves, Phys. Rev., 20(6), 1922, 719-726. 

2. S. Murugappan, E. Gutmark, Parametric Study the 

Hartmann-Sprenger tube, Experiments in Fluids, 

38(6), 2005, 813-823. 

3. J. Kastner, M. Samimy, Development and 

characteri-zation of Hartmann tube fluid 

actuators for high-speed control, American 

Institute of Aeronautics and Astronautics J., 

40(10), 2002, 1926-1934. 

4. G Raman, E. Envia, T. J. Bencic, Jet cavity interac 

tion tones, American Institute of Aeronautics and 

Astronautics J., 40 (8), 2002, 1503-1511. 

5. W Wu, U. Piomelli, Large-eddy simulation of 

impinging jets with embedded azimuthal vortices. 

J. of Turbulence, 16(10), 2014, 44-66. 

6. C-Y. Kuo, A. P. Dowling, Oscillations of a 

moderately underexpanded choked jet impinging 

upon a flat plate. J. Fluid Mech., 315, 1996, 267-

291. 

7. Y Sakakibara, J. Iwamoto, Numerical study of 

oscillation mechanism in underexpanded jet 

impinging on plate, J. Fluids Eng., 120, 1998, 477. 

8. B Henderson, J. Bridges, M. Wernet. An 

Experimental study of the oscillatory flow 

structure of tone-producing supersonic impinging 

jets, J. Fluid Mech., Vol. 542, 2005, 115-137. 

9. J Berland, C. Bogey, C. Bailly. Numerical study of 

screech generation in a planar supersonic jet, 

Phys. Fluids, 19, 2007, 75-105. 

10. D. J. Bodony, S. K. Lele. On using large-eddy 

simulation for the prediction of noise from cold 

and heated turbulent jets, Phys. Fluids , 17, 2005. 

11. C. Bogey, C. Bailly, Computation of a high 

Reynolds number jet and its radiated noise using 

large eddy simulation based on explicit filtering, 

Comput. Fluids, 35, 2006, 1344-1358. 

12. T. Cheng, K. Lee. Numerical simulations of 

underexpanded supersonic jet and free shear layer 

using WENO schemes, Int. J. Heat Fluid Flow, 

26(5), 2005, 755-770. 









 jet jet jet jet



International Journal of Scientific Research in Science, Engineering and Technology (www.ijsrset.com) 

V. I. Pinchukov  et al. Int. J. S. Res. Sci. Engg. Technol. September-October-2018; 4(10) : 355-359 

 

 359 

13. V. I. Pinchukov, Numerical modeling of unsteady 

flows with transient regimes, Comput. Mathem. 

and Mathem.Physics, 49 (10), 2009, 1844-1852. 

14. V. I. Pinchukov, Modeling of self-oscillations and 

a search for new self-oscillatory flows, 

Mathematical Models and Computer Simulations, 

4(2), 2012, 170-178. 

15. V. I. Pinchukov Numerical simulations of self-

oscillatory flows near blunted bodies, giving off 

opposite jets, Intern. J. of Mechanical Engineering 

and Applications 2(1), 2014, 5-10. 

16. V. I. Pinchukov, Self-oscillatory flows near 

blunted bodies, giving off opposite jets: CFD 

study, Intern. J. of Engineering and Innovative 

Technology, 6(5), 2016, 41-46. 

17. V. I. Pinchukov, Numerical Solution of the 

Equations of Viscous Gas by an Implicit Third 

Order Runge-Kutta Scheme, Comput. Mathem. 

and Mathem. Physics, 42(6), 2002, 898-907. 

18. J. Smagorinsky, General circulation experiments 

with the primitive equations. I. The basic 

experiment, Monthly Weather Review, 91, 1963, 

99-164.  

 


