
IJSRSET151578 | Received: 18 October 2015 | Accepted: 23 October 2015 | September-October 2015 [(1)5: 324-329]

© 2015 IJSRSET | Volume 1 | Issue 5 | Print ISSN : 2395-1990 | Online ISSN : 2394-4099
Themed Section: Engineering and Technology

324

A Survey of Packrat Parser
Amit Vishwakarma1, Manish M. Goswami2, Priyanka Gonnade3

1,3
Department of CSE, Rajiv Gandhi College of Engineering and Research, Nagpur, India

2
 Department of IT, Rajiv Gandhi College of Engineering and Research, Nagpur, India

ABSTRACT

Two recent developments in the field of formal languages are Parsing Expression Grammar (PEG) and packrat

parsing. The PEG formalism is similar to BNF, but defines syntax in terms of recognizing strings, rather than

constructing them. It is, in fact, precise specification of a backtracking recursive-descent parser. Packrat parsing is

a general method to handle backtracking in recursive descent parsers. It ensures linear working time, at a huge

memory cost. This paper begins with discussion of PEG and packrat parsing introduced by Bryan Ford Followed

by various approaches over improvement of packrat parsing to reduce the memory requirement. This paper also

describes the approaches to handle the left-recursion problem for PEG. The described Approaches handle the

direct and indirect left-recursion problem for PEG. The paper concludes with the application of packrat parsing

and throws a light on future scope in packrat parsing.

Keywords: PEG; Recursive Descent Parser; Packrat Parser; TDPL

I. INTRODUCTION

Parsing is the act of discovering the structure of text

with respect to a particular grammar and parser is a

program to facilitate this parsing process. In order to

create a parser for a particular language, or even just to

reason formally about what kinds of strings are

meaningful or well-formed in that language, we must

have a way of expressing and understanding the

language's syntactic structure. For this purpose we

commonly use a grammar, which is a concise

representation of the structure of one language,

expressed in another (ideally very small and simple)

language. Being able to express the syntactic structure of

a language concisely with a grammar is especially

important for programming languages and other

languages expressly designed for precision and machine-

readability, because grammars can be used to reason

about the properties of a language mathematically or

with the help of mechanical tools.

The most common type of grammar in use today is the

context-free grammar (CFG), typically expressed in the

ubiquitous Backus-Naur Form (BNF). A context-free

grammar essentially specifies a set of mutually recursive

rules that describe how strings in the described language

may be written. Each rule or production in a CFG

specifies one way in which a syntactic variable or

nonterminal can be expanded into a string. Bottom up

parsing recognizes the smallest constructs first by

applying productions to group tokens, then grouping

those constructs into larger constructs and top down

does in reverse way. Parsing algorithms such as LR (k)

and LL (k) parsing were developed alongside the first

generation of high level programming languages to

parse subsets of the full class of CFGs. By limiting the

class of parseable languages, such algorithms are both

time and space efficient, considerations that were of

huge practical importance given the performance

limitations of hardware available at the time.

Another method of expressing syntax formally is

through a set of rules describing how the strings in a

language are to be read rather than written. This

approach is called recursive descent parsing. Recursive-

descent parsers have been around for a while. Already in

1961, Lucas [16] suggested the use of recursive

procedures that reflect the syntax of the language being

parsed. His design did not allow backtracking; an

explicit assumption about the syntax was identical to

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

325

what later became known as LL (1). The great advantage

of recursive-descent parsers is transparency: the code

closely reflects the grammar, which makes it easy to

maintain and modify. However, manipulating the

grammar to force it into the LL (1) mold can make the

grammar itself unreadable. The use of backtracking

removes the LL (1) restriction. Complete backtracking,

meaning an exhaustive search of all alternatives, may

require an exponential time. A reasonable compromise is

limited backtracking, also called "fast-back" in [17]. In

that approach, we discard further alternatives once a

sub-goal has been recognized. Limited backtracking was

adopted in at least two of the early top-down designs:

the Atlas Compiler of Brooker and Morris [18, 19], and

TMG (the TransMoGrifier) of McClure [20]. The syntax

specification used in TMG was later formalized and

analyzed by Birman and Ullman [21, 22]. It appears in

[23] as "Top-Down Parsing Language" (TDPL) and

"Generalized TDPL" (GTDPL). TDPL was developed at

around the same time most of the classic CFG parsing

algorithms were invented, but at that time it was used

only as a formal model for the study of certain top-down

parsing algorithms. The speed of modern computers

means that relatively inefficient approaches to parsing

are now often practical. For example, Earley's algorithm

[24] can parse the entire class of CFGs; while it is O

(n3), even a simple implementation can parse in the low

thousands of lines per second [25]. For many people,

parsing is a solved problem: there are a wide variety of

well understood algorithms, with a reasonable body

THOUGH THE PARSING PROBLEM IS SUPPOSED

TO BE SOLVED, COMPILER DESIGNERS STILL

FACE SOME LIMITATIONS WHILE DESIGNING

THE COMPILER USING EXISTING WIDELY

TECHNIQUES:-

1. From the Perspective of Language Extensibility

Using a parser generator to create a parser has an

important advantage over a handwritten parser: the

grammar provides a concise specification of the

corresponding language. As a result, we generally

expect it to be easier to modify the machine-generated

parser than the handwritten one. However, LALR (1)

grammars for the popular Yacc tool [26] and similar

parser generators are fairly brittle in the face of change.

A grammar writer can avoid the need for disambiguation

by factoring such prefixes by hand, but this requires

extra effort and obfuscates the language specification.

2. Many sensible syntactic constructs are inherently

ambiguous

When expressed in a CFG, commonly leading language

designers to abandon syntactic formality and rely on

informal metarules to solve these problems. The

ubiquitous “ dangling ELSE” problem is a classic

example, traditionally requiring either an informal meta-

rule or severe expansion and obfuscation of the CFG.

3. An additional problem common to both LR and

LL

Parser generators are the separation of lexing and

parsing:

This can make it unnecessarily hard to add new tokens

to a grammar.

4. Limited lookahead Capability

As mentioned above LR (k) and LL (k) algorithms uses

k symbols of lookahead in parsing an expression.

Typically k is 2 for most of these algorithms because

going further requires more resources and complicates

the grammar.

II. METHODS AND MATERIAL

A. Related work

Packrat parsing is a novel technique for implementing

parsers in a lazy functional programming language. A

packrat parser provides the power and flexibility of top-

down parsing with backtracking and unlimited

lookahead, but nevertheless guarantees linear parse time.

Any language defined by an LL(k) or LR(k) grammar

can be recognized by a packrat parser, in addition to

many languages that conventional linear-time algorithms

do not support. This additional power simplifies the

handling of common syntactic idioms.

Parsing Expression Grammar (PEG) is a new way to

specify syntax, by means of a top-down process with

limited backtracking. It can be directly transcribed into a

recursive-descent parser. The parser does not require a

separate lexer, and backtracking removes the usual LL(1)

constraint. This is convenient for many applications, but

there are two problems: PEG is not well understood as a

language specification tool, and backtracking may result

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

326

in exponential processing time. Excessive backtracking

does not matter in small interactive applications where

the input is short and performance not critical. But, the

author had a feeling that the usual programming

languages do not require much backtracking

a. Motivation

The idea to choose this topic is to address the following

problems arising while implementing packrat parsing.

1. Space Consumption

Probably the most striking characteristic of a packrat

parser is the fact that it literally squirrels away

everything it has ever computed about the input text,

including the entire input text itself. For this reason

packrat parsing always has storage requirements equal to

some possibly substantial constant multiple of the input

size. In contrast, LL (k), LR (k), and simple

backtracking parsers can be designed so that space

consumption grows only with the maximum nesting

depth of the syntactic constructs appearing in the input,

which in practice is an often order of magnitude smaller

than the total size of the text. Although LL (k) and LR (k)

parsers for any nonregular language still have linear

space requirements in the worst case, this “ average-

case” difference can be important in practice. Even with

such optimizations a packrat parser can consume many

times more working storage than the size of the original

input text

Tabling everything consumes main memory at a high

rate and so risks starting thrashing, thus dropping the

program from DRAM speed to disk speed. While

theoretician may say the performance is still linear, that

will not prevent complaints from users. The fact that

many languages nowadays(including Java and Mercury)

include a garbage collector(which must scan the tables at

least once in a while, but will not be able to recover

memory from them) just makes this even worse For this

reason there are some application areas in which packrat

parsing is probably not the best choice. For example, for

parsing XML streams, which have a fairly simple

structure but often encode large amounts of relatively

flat, machine-generated data, the power and flexibility of

packrat parsing is not needed and its storage cost would

not be justified.

b. Objective & Scope of Study

The main objective behind this research work is to

reduce the space consumption required for memoization

with guarantee of linear parse time. Another aim is to

avoiding the mutual recursive function calls. The scope

of study is limited to implementation of efficient parser

for parsing expression grammar. The efficiency of this

parser will be measured from two perspectives mainly

reduction in storage requirement for memorization and

avoiding the mutual recursive function calls of parser to

improve the efficiency directly, it helps to expand the

applicability of packrat parsing in broader areas.

Although PEGs are a recent tool for describing

grammars introduced by Ford in [1] with

implementation of the packrat parser in Haskell

programming language called peppy, their theory has

solid foundations. Ford [2] showed how they can be

reduced to TDPLs from the 1970s. The semantic

predicates have also been successfully applied in the

ANTLR LL (k) parser.

In [3] Roman shows that primitive recursive-descent

parser with limited backtracking and integrated lexing is

a reasonable possibility for parsing Java 1.5 where

performance is not too critical. Also in [4] he shows that

PEG is not good as a language specification tool. The

most basic property of a specification is that one can

clearly see what it specifies. And this is, unfortunately,

not true for PEG. Further with slight modification in C

grammar it gives reasonable performance.

And also in [5] he shows that he classical properties like

FIRST and FOLLOW can be redefined for PEG and are

simple to obtain even for a large grammar. One

difference is that instead of letters are terminal

expressions, which may mean sets of letters, or strings

FIRST and FOLLOW are used to define conditions for

choice and iteration that are analogous to the classical

LL(1) conditions, although they have a different form

and meaning. Checking these conditions produces useful

information like the absence of reprocessing or language

hiding. This helps to locate places that need further

examination. Unfortunately, most results obtained here

have the form of implications that cannot, in general, be

reversed. The properties FIRST and FOLLOW are kind

of upper bounds, and conditions using them are

sufficient, but not necessary. This results in false

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

327

warnings. In particular, the lookahead operator "!" may

trigger a whole avalanche of them. This paper addresses

a need for proper handling of this operator as a future

work.

In [6] a new approach is proposed for implementing

PEGs, based on a virtual parsing machine, which is

more suitable for pattern matching. Each PEG has a

corresponding program that is executed by the parsing

machine, and new programs are dynamically created and

composed. The virtual machine is embedded in a

scripting language and used by a pattern matching tool.

In [7] Robert grimm parsing technique which has been

developed originally in the context of functional

programming languages, practical for object-oriented

languages. Furthermore, this parser generator supports

simpler grammar specifications and more convenient

error reporting, while also producing better performing

parsers through aggressive optimizations.

In [8] the addition of cut operators was proposed to

parsing expression grammars (PEGs), on which packrat

parsing is based, to overcome its disadvantage. The

concept of cut operators, which was borrowed from

Prolog [6], enables grammar writers to control

backtracking. By manually inserting cut operators into a

PEG grammar, an efficient packrat parser that can

dynamically reclaim unnecessary space for memoization

can be generated. To evaluate the effectiveness of cut

operators, a packrat parser generator called Yapp was

implemented that accepts cut operators in addition to

ordinary PEG notations. The experimental evaluations

showed that the packrat parsers generated using

grammars with cut operators inserted can parse Java

programs and subset XML files in mostly constant space,

unlike conventional packrat parsers. In [9] methods are

proposed that achieve the same effect in some practical

grammars without manually inserting cut operators. In

these methods, a parser generator statically analyzes a

PEG grammar to find the points at which the parser

generator can insert cut operators without changing the

meaning of the grammar and then inserts cut operators at

these points.

Paper [10] argues (a) packrat parsers can be trivially

implemented using a combination of definite clause

grammar rules and memoing, and that (b) packrat

parsing may actually be significantly less efficient than

plain recursive descent with backtracking, but (c)

memoing the recognizers of just one or two

nonterminals, selected in accordance with Amdahl’s law,

can sometimes yield speedups.

Warth [11] presents a modification to the memoization

mechanism used by packrat parser implementations that

makes it possible for them to support (even indirectly or

mutually) left-recursive rules. While it is possible for a

packrat parser with this modification to yield super-

linear parse times for some left-recursive grammars,

experiments were carried out to show that this is not the

case for typical uses of left recursion.

Finally, in [15] Coq formalization of the theory of PEGs

is described and, based on it, a formal development of

TRX: a formally verified parser interpreter for PEGs.

This allows writing a PEG, together with its semantic

actions, in Coq and then to extract from it a parser with

total correctness guarantees. That means that the parser

will terminate on all inputs and produce parsing results

correct with respect to the semantics of PEGs.

Considering the importance of parsing, this result

appears as a first step towards a general way to bring

added quality and security to all kinds of software.

B. Proposed Work

Packrat Parsing is a variant of recursive decent parsing

technique with memoization by saving intermediate

parsing result as they are computed so that result will not

be reevaluated. It is extremely useful as it allows the use

of unlimited look ahead without compromising on the

power and flexibility of backtracking. However, Packrat

parsers need storage which is in the order of constant

multiple of input size for memoization. This makes

packrat parsers not suitable for parsing input streams

which appears to be in simple format but have large

amount of data.

 In this project instead of translating productions into

procedure calls with memoization, an attempt is made to

eliminate the calls by using stack without using

memoization for implementation of ordered choice

operator in Parsing expression Grammar (PEG). The

experimental results show the possibility of using this

stack based algorithm to eliminate the need of storage

for memoization to improve the performance of packrat

parser in terms of storage space.

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

328

III. RESULTS AND DISCUSSION

It is expected that the proposed approach improve the

performance of packrat parser from two perspectives

mainly reduction in storage requirement for

memorization and avoiding the mutual recursive

function calls of parser.

IV. CONCLUSION

Packrat parsers need storage which is in the order of

constant multiple of input size for memoization. This

makes packrat parsers not suitable for parsing input

streams which appears to be in simple format but have

large amount of data. The future work will be

translating productions into procedure calls with

memoization, an attempt is made to eliminate the calls

by using stack without using memoization for

implementation of ordered choice operator in Parsing

expression Grammar (PEG). The experimental results

show the possibility of using this stack based algorithm

to eliminate the need of storage for memoization to

improve the performance of packrat parser in terms of

storage space.

V. REFERENCES

[1] B. Ford. Packrat parsing: Simple, powerful, lazy, linear

time.In Proceedings of the 2002 International

Conference on Functional Programming, October 2002.

[2] B. Ford. Parsing expression grammars: A recognition-

based syntactic foundation. In Symposium on Principles

of Programming Languages, January 2004.

[3] Redziejowski, R.R.: Parsing Expression Grammar as a

primitive recursive-descent parser with

backtracking.Fundamenta Informaticae 79,3-4, (2007)

pages 513-524.

[4] R. Redziejowski. Some aspects of parsing expression

grammar. In Fundamenta Informaticae 85, 1-4, pages

441– 454, 2008.

[5] R. Redziejowski. Applying classical concepts to parsing

expression grammar. In Fundamenta Informaticae 93, 1-

3, pages 325– 336, 2009.

[6] S. Medeiros and R. Lerusalimschy : A Parsing Machine

for PEGs. In Proc. PEPM, ACM (January 2009) 105-

110.

[7] R. Grimm. Better extensibility through modular syntax.

In Proceedings of the ACM SIGPLAN 2006 Conference

on Programming Language Design and Implementation,

pages 19– 28, 2006.

[8] K. Mizushima, A. Maeda, and Y. Yamaguchi.

Improvement technique of memory efficiency of packrat

parsing. In IPSJ Transaction on Programming Vol.49

No. SIG 1(PRO 35) (in Japanese), pages 117– 126,

2008.

[9] Mizushima, K., Maeda, A., Yamaguchi, Y.: Packrat

parsers can handle practical grammars in mostly

constant space. In PASTE'10: Proceedings of the 9th

ACM SIGPLAN-SIGSOFT workshop on program

analysis for software tools and engineering, Toronto,

Ontario, ACM (2010) 29-36.

[10] R. Becket and Z. Somogyi. Dcgs + memoing = packrat

parsing but is it worth it? In Practical Aspects of

Declarative Languages, January 2008.

[11] Warth, A., Douglass, J., Millstein, T.: Packrat parsers

can support left recursion. In: Proc. PEPM, ACM

(January 2008) 103-110.

[12] Warth, A., Piumarta, I.: OMeta: an object-oriented

language for pattern matching. In: Proc. Dynamic

Languages Symposium, ACM (2007) 11-19.

[13] R. Redziejowski. Mouse: from parsing expressions to a

practical parser. In Concurrency Specification and

Programming Workshop,September 2009.

[14] R. Redziejowski. Parsing Expression Grammar for Java

1.5. http://www.romanredz.se/papers/PEG.Java.1.5.txt.

[15] Adam Koprowski and Henri Binsztok. TRX: A formally

veri_ed parser interpreter. In Proceedings of the 19th

European Symposium on Programming (ESOP '10),

volume 6012 of Lecture Notes in Computer Science,

pages 345-365, 2010.

[16] Lucas, P. The structure of formula-translators. ALGOL

Bulletin Supplement 16 (September 1961), 1-27.

[17] Hopgood, F. R. A. Compiling Techniques. MacDonalds,

1969.

[18] Brooker, P., and Morris, D. Some proposals for the

realization of a certain assembly program. The

Computer Journal 3, 4 (1961), 220-231.

[19] Rosen, S. A compiler-building system developed by

Brooker and Morris. Commun. ACM 7, 7 (July 1964),

403-414.

[20] McClure, R. M. Tmg - a syntax directed compiler. In

Proceedings of the 20th ACM National Conference

(24{26 August 1965), L. Winner, Ed., ACM, pp. 262-

274.

[21] Birman, A. The TMG Recognition Schema. PhD thesis,

Princeton University, February 1970.

[22] Birman, A., and Ullman, J. D. Parsing algorithms with

backtrack. Information and Control 23(1973), 1-34.

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

329

[23] Aho, A. V., and Ullman, J. D. The Theory of Parsing,

Translation and Compiling, Vol. I, Parsing. Prentice

Hall, 1972.

[24] Earley, J.: An e_cient context-free parsing algorithm.

Communications of the ACM 13(2) (February 1970).

[25] Tratt, L.: Domain specific language implementation via

compile-time metaprogramming. TOPLAS 30(6) (2008)

1-40.

[26] J. R. Levine. lex & yacc. O’ Reilly, Oct. 1992.

[27] C. Braband, M. I. Schwartzbach, and M. Vanggaard.

The METAFRONT system: Extensible parsing and

transformation. Technical Report BRICS RS-03-7,

BRICS, Aarhus, Denmark, Feb. 2003.

[28] O. Enseling. Build your own languages with

JavaCC.JavaWorld, Dec. 2000. Available at

http://www.javaworld.com/javaworld/jw-12-2000/ jw-

1229-cooltools.html.

[29] T. J. Parr and R. W. Quong. ANTLR: A predicated-

LL(k) parser generator. Software—Practice and

Experience, 25(7):789– 810, July 1995.

[30] Alexander Birman. PhD thesis, 1970.

[31] Alexander Birman and Jeffrey D. Ullman. Parsing

algorithms with backtrack.Information and Control, 23,

1973.

[32] Daniel J. Salomon and Gordon V. Cormack. Scannerless

NSLR(1) parsing of programming languages. In

Proceedings of the ACM SIGPLAN’ 89 Conference on

Programming Language Design and Implementation

(PLDI), pages 170– 178, Jul 1989.

[33] Terence John Parr. Obtaining practical variants of LL(k)

and LR(k) for k > 1 by splitting the atomic k-tuple. PhD

thesis, Purdue University, Apr 1993.

[34] Terence J. Parr and RussellW. Quong. ANTLR: A

predicated-LL(k) parser generator. Software Practice

and Experience, 25(7):789– 810, 1995.

[35] Bjarne Stroustrup. The C++ Programming Language.

Addison-Wesley, 3rd edition, June 1997.

[36] Simon Peyton Jones and John Hughes (editors). Haskell

98 Report, 1998. http://www.haskell.org.

[37] Laurence Tratt. Direct Left-Recursive Parsing

Expression Grammars: Technical report EIS-10-01

Middlesex University, The Burroughs, London, NW4

4BT, United Kingdom (2010).

[38] R. Grimm. Practical packrat parsing. New York

University Technical Report, Dept. of Computer

Science, TR2004-854, 2004.

VI. BIOGRAPHY

Manish M. Goswami is a Research Assistant in the IT

Department, Rajiv Gandhi College of Engineering and

Research, Nagpur, India. He is pursuing PhD. His

research interests are compiler, Programming language,

Theory of Computation.

Priyanka Gonnade Assistant Professor in the CSE

Department, Rajiv Gandhi College of Engineering and

Research, Nagpur, India. She has received Master of

Technology (M.Tech.) degree. She’s research interests

are Image Processing and Soft Computing.

