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ABSTRACT 

 

Legged locomotion is preferred over the wheeled locomotion as it can be used both for flat and rough terrains. 

Quadruped robots are preferred since they can offer better stability with considerable reliability. In recent 

years, passive dynamics has been used to obtain near zero-energy bounding gaits. Although theoretically such 

gaits consume no energy, in practice some additional energy is required to overcome losses. Existence and 

stability of such gaits have been thoroughly studied in literature for quadruped models with the assumption 

that the mass distribution and stiffness in the front and back legs are symmetric. Fixed points found using 

Poincare map indicate touchdown angle-liftoff angle symmetry between front and back legs. This property can 

be used to search for fixed points with ease. However, the range of initial conditions where the bounding gait is 

stable is highly limited. Control laws based on symmetry conditions observed are proposed in this paper to 

improve the stability region. One such control law based on body-fixed touchdown angles theoretically allows 

redesign of quadruped robot with physical cross coupling between legs to achieve inherent stability without leg 

actuation. 

Keywords : Dynamic bounding,  Robot,  Stability. 

 

I. INTRODUCTION 

 

Passive dynamics means dynamical behavior of 

actuators, robots, or when there is no active supply of 

energy to achieve the motion. In legged robots design 

and more relaxed control of passive dynamics has 

become a complementary (or even alternative) 

approach to joint-positioning control methods. In 

terms of IoannisPoulakakis, passive dynamics means 

the unforced response of a system under a set of 

initial conditions. In general, characterizing the 

properties and conditions of the passive behavior and 

identifying regions of the model parameters where 

the system can passively stabilize itself, can lead to 

designing controllers, which are not entirely based on 

continuous state-feedback like computed-torque 

controllers [1,2]. Simulations and analysis suggest that 

suitably designed legged machines will be able to run 

passively i.e. without actuation and control. However, 

due to practical limitations, there are no legged robots 

which operate completely passively, except McGeer's 

passive dynamic walker bipeds [3, 4].  

 

Smith and Berkemeier extended McGeer's work from 

bipedal to quadrupedal locomotion [5]. While 

running, the leg acts as a spring compressing during 

contact with ground phase and decompressing during 

the reactive phase. The Spring Loaded Inverted 

Pendulum (SLIP) system has been reported in [6, 7, 8, 

9, 10]. In the SLIP concept the authors explained, the 

kinetic and gravitational potential energies are stored 

as elastic energy in the spring at the contact phase and 
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recovered in the reactive phase. Higher speeds can be 

achieved because of the compression of the spring, so 

that the leg remains in contact with the ground. 

Raibert used the SLIP model to develop controllers to 

stabilize the legged robots. An analytical study of the 

SLIP model can be found in [11]. 

 

Passive dynamic bounding gaits are periodic gaits that 

begin at stable or unstable initial conditions called 

fixed points. Such a gait when started with some 

initial state at the beginning of a gait cycle will end at 

state which is identical to the initial state (except for 

the horizontal distance). These gaits over a flat and 

level surface do not consume any additional energy 

for locomotion if the gait is self-stabilizing [12, 13]. 

This means, the Cost of Transport is theoretically 

zero. 

 

Stable gaits do not require any control input and can 

tolerate disturbances (i.e., are self-stabilizing). 

Unstable gaits can be stabilized by the application of 

appropriate control inputs. Whether a periodic gait is 

stable or unstable is determined by the eigenvalues of 

Poincare map. While self-stabilizing gaits are quite 

attractive to implement, the region of initial 

conditions (fixed points) where they exist is limited. 

Controllers for stabilizing gaits starting from unstable 

fixed points is an active area of research [14]. 

 

Passive dynamic bounding gaits with either stable or 

unstable fixed points, show certain symmetry 

properties. In this paper, control laws for stabilizing 

the passive dynamic bounding gaits based on the 

symmetry of fixed points are introduced and studied. 

Implementation of control law in body fixed 

touchdown angles by means of physical cross-

coupling without using a controller is also discussed. 

With the addition of feedback of pitch angle in the 

control law, it is shown that the stability region is 

considerably increased. These control laws require 

that the gait does not have a double support phase. 

 

II. QUADRUPED ROBOT MODEL FOR PASSIVE 

DYNAMIC BOUNDING 

 

Since bounding gait is a planar gait, the model of 

quadruped robot considered is planar with body and 

two mass-less telescopic legs with identical springs on 

them. The mass less legs are connected to the robot at 

the hip through revolute joints. The distribution of 

mass in the robot body is assumed to be uniform so 

that the center of mass is the geometric center. Figure 

1 shows the schematic along with notation. 

 

Each gait cycle of bounding can consist of four phases: 

flight phase, back-leg support phase, double support 

phase, and front-leg support phase. In this work, we 

do consider gaits that do not have double support 

phase. Various phases of the bounding gait are shown 

in Figure 2. In the flight phase 1 prior to the back-leg 

support phase, the back leg is controlled such that at 

the time of touching the ground it makes a back-leg 

touch down angle with the vertical.  

 

During back-leg support phase the back-leg spring 

compresses and decompresses. As soon as the length 

of the leg equals to the free length , back support 

phase ends and the robot lifts  

 

off the ground at lift-off angle  to flight phase. 

Similarly, during the flight phase 2 prior to the front-

leg support phase, the front leg is controlled such that 

at the time of touching the ground, it makes a front 

leg touchdown angle of  with the vertical. Again 

when it lifts off the ground, it does so at a liftoff angle 

. Since the legs are assumed to be massless, control 

action for touchdown does not influence the robot 

dynamics. 



International Journal of Scientific Research in Science, Engineering and Technology (www.ijsrset.com) 

P. Murali Krishna, R. Prasanth Kumar .  Int J Sci Res Sci Eng Technol. January-February-2019; 6 (1) : 451-457 

 

 453 

(8) 

 

(9) 

 

(10) 

 

 

   (11) 

 

 

 
 

Figure 1: Schematic of the quadruped robot 

 

 
Figure 2: Various phases in the passive dynamic 

bounding gait 

 

A. Equations of Motion 

During flight phase, the equations of motions are

; 

 
 

 

where  and  are the coordinates of the center of 

mass of the robot body, and  is the angle made by 

the longitudinal axis of the body with the horizontal. 

During back-leg or front-leg support phase, the 

equations of motion are 

 

 

 

where and are the forces exerted by the back-leg 

or front-leg on the robot body at the hip joint, and rx 

and ry are the coordinates of the back or front hip 

joint with respect to the body center of mass. The 

forces and are calculated from the compression of 

the spring. If is the length of the leg, then the spring 

force is given by l0 The direction of this force is 

along theleg where and are the components of 

this force along -axes respectively. For 

double support phase, forces and moments on the 

right hand side of the equations of motion are the 

sum of components of front and back leg spring forces 

and moments. 

 

While the stiffness and free length  are constants, 

the actual length  is calculated as follows: 

                 

where tip is point on the ground where the tip of the 

back or front leg is in contact. 

B. Touchdown and Liftoff Events 

The transition between phases occur at the 

touchdown and the liftoff events. There are two 

touchdown events (back leg touchdown and front leg 

touchdown) and two liftoff events (back leg liftoff 

and front leg liftoff). Conditions for event detection of 

back and front leg touchdown events respectively are 

given below: 

   
 

 

Similarly, the conditions for event detection of back 

and front leg liftoff events respectively are given 

below: 

 
 

 

(4) 

 

(5) 

 

 

(6) 

(1) 

 

(2) 

 

(3) 

 

(7) 
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(12) 

(13) 

(14) 

 

 

 

where  and are the back and front tip 

contact points during the back and front leg support 

phases. 

 

C. Finding Fixed Points and Stability 

 

Legged robots are hybrid systems with discrete 

transformations governing transitions from one phase 

to another phase of motion [13,15]. Hence, a Poincare 

return map is used to determine orbital stability of the 

trajectory. If apex height during flight phase, where  

= 0, is chosen as the initial condition, dimension 

reduction of Poincare section is possible. Further 

reduction is obtained by removing horizontal 

coordinate x of the center of mass since it increases 

monotonically and is not relevant to a periodic 

trajectory. We are left with four variables at apex 

height:  

 

If apex event during flight phase is taken as the initial 

condition for a gait cycle, the final state after one gait 

cycle at apex event should be identical (except for the 

horizontal displacement ) to the initial state if the 

gait cycle is periodic. A Poincare return map can be 

defined mapping initial and final states: 

 
Equation (12) can be rearranged to define a function 

whose roots satisfy the periodicity condition. 

 
Roots of (13) are called the fixed points. For the given 

back and front touchdown angles, Newton-Raphson 

method can be used to search for the roots of (13), 

provided searching starts at a good initial guess. There 

are two different ways of finding fixed points using 

Newton-Raphson method. For a detailed description 

of these ways, refer to [13]. 

 

Stability of fixed points so found can be determined 

from the eigen values of Jacobian matrix of return 

map . One of the eigen values is always unity, 

indicating the conservative nature of the system [13]. 

Stability of a fixed point depends on whether the 

remaining eigen v values are within unit circle (stable) 

or outside the unit circle (unstable). 

 

All the fixed points, stable or unstable, share two 

common properties: pitch angle at apex is zero, and 

touchdown liftoff angle symmetry. This latter 

condition of symmetry can be described as follows: 

 

 

 

D. Symmetry Condition Control Law with Absolute 

Touch-down Angles 

Corresponding to every fixed point 

there exists at least a pair of touchdown angles which 

allow the gait cycle to be periodic. When a bounding 

gait starts from a stable fixed point, maintaining the 

touchdown angles corresponding to the fixed point, 

every gait cycle allows the gait to continue 

indefinitely. The same is not true with unstable fixed 

points because any small error in the fixed point 

grows rapidly till the gait fails. It is possible to 

stabilize unstable fixed points by using control law 

based on known fixed point and the error in liftoff 

angle [16]. 

 

Another way of stabilizing a fixed point is reported in 

[17], where the control law is based on touchdown 

angle liftoff angle symmetry condition in (14). The 

advantage of this method is that it does not require 

the use of known fixed point in the control law. 

Algorithm for the control law is as follows: 

 

1. Start with apex initial conditions for 

 

• Should be zero as this is the property of fixed 

points. 

• Is positive so that back leg touchdown 

happens first. 
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Using (15) in (14), 

2. End the flight phase with some back leg 

touchdown angle if this is the first gait cycle or 

with the negative of front leg liftoff angle of the 

previous iteration if this is not the first gait 

cycle. 

3. Measure and store the back leg liftoff angle after 

the back leg stance phase. 

4. End the flight phase after the back leg stance 

phase with front leg touchdown angle taken as 

the negative of back leg liftoff angle measured 

in 3. 

5. Measure and store the front leg liftoff angle 

after the front leg stance phase. 

6. Go to 2. 

 

 

 
Figure 3: Stability region with back leg absolute 

touchdown angle vs pitch angular velocity at apex for 

apex height of 0.35 m 

The passive dynamic bounding is considered failed if 

the liftoff does not happen within a reasonable time 

or double support occurs. Figure 3 shows the stability 

region for back leg touchdown angles at various pitch 

angular velocities and forward speeds when the apex 

height is 0.35 m. An initial condition is considered 

stable if the bounding does not fail for 200 gait cycles. 

 

E. Symmetry Condition Control Law with Body-Fixed 

Touchdown Angles 

An additional property that has been observed is that 

the touchdown liftoff angles at fixed points show 

symmetry not only in terms of absolute angles 

measured with respect to the vertical, but also with 

local or relative angles measured with respect to the 

robot body. 

 
 

 

 

 

 
 

 
 

From (18), it is clear that symmetry condition exists 

even for the body pitch angle. 

Instead of using touchdown angles measured with 

respect to absolute vertical, touchdown angles 

measured with respect to body can also be used for 

control. Body-fixed touchdown angles have several 

advantages compared to absolute touchdown angles as 

follows [18]: 

 

1. No need to measure body pitch angle in order to 

maintain touchdown angle. 

2. No active control is required during the flight 

phase in order to obtain the desired leg angle at 

touchdown. 

(15) 

 

 

 

 

(16)  

 

 

(17) 

 

 

(18)  
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Figure 4 shows the stability region with back leg 

relative touchdown angle versus pitch angular 

velocity at apex for various forward speeds. No 

stability region could be found at higher forward 

speeds of 3 and 4 m/s. Comparing Figure 3 and Figure 

4; it is clear that use of absolute touchdown angles 

with symmetry condition control law gives larger 

stability region. However, the advantage of easy 

implementation of body fixed touchdown angles is 

attractive when we consider controller-less system 

discussed in the next section. 

 

F. Inherent Stability with Physical Cross Coupling 

The idea of control using symmetry condition directly 

as proposed in [17] is more useful if body-fixed 

touchdown angles are used instead of absolute 

touchdown angles. In addition to the advantages of 

body-fixed touchdown angles, there is an additional 

advantage of physical cross coupling (shown in Figure 

5) in implementing the symmetry control law. 

Touchdown angle once set need not be changed for a 

stable gait. If the back leg touchdown happens first, 

the front leg will be set to proper front leg touchdown 

angle when the back leg lifts off. During the flight 

phase, the legs should be locked from changing the 

angle by using a brake.  

 
Figure 4: Stability region with back leg relative 

touchdown angle vs pitch angular velocity at apex for 

apex height of 0.35 m 

 
Figure 5: Quadruped robot with front and back leg 

coupled 

 

The brake is released when the front leg touchdown 

happens. Similarly, when the front leg lifts off, the 

back leg will be in correct back leg touchdown angle. 

There is a limitation introduced by the cross coupling 

of the legs. When both the legs are in contact with 

the ground, the robot body and the two legs form a 

four bar mechanism with the ground as a fixed link. 

The motion of the robot requires both the legs to 

rotate in the same direction about their respective 

contact points. This does not satisfy the symmetry 

condition. Hence, double support phase is not allowed 

when legs are physically cross coupled. 

 

III. CONCLUSION 

 

Although a conclusion may review the main points of 

the paper, do not replicate the abstract as the 

conclusion. A conclusion might elaborate on the 

importance of the work or suggest applications and 

extensions. Authors are strongly encouraged not to 

call out multiple figures or tables in the conclusion—

these should be referenced in the body of the paper. 
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