A Brief Review on the Polymer thin Film Solar Cells

HO SM*
Centre for Green Chemistry and Applied Chemistry, Faculty of Science, Technology, Engineering and Mathematics, INTI International University, Putra Nilai, Negeri Sembilan, Malaysia.

ABSTRACT

There has been considerable interest over the past few years in polymer thin film solar cell due to many benefits such as low fabrication cost, flexible devices and lightweight. The main objective of this paper to describe the fabrication of polymer solar cells in different growth conditions as reported by many researchers. Comparison of power conversion efficiency by using different active materials in solar cells was discussed. Lastly, the improvement of the efficiency as mentioned in their experimental results was reported.

Keywords: Polymer Solar Cells, Thin Films, Power Conversion Efficiency.

I. INTRODUCTION

Polymer thin film solar cells made with polymers, and can generate electricity from sunlight by the photovoltaic effect. Recently, they are gaining much important because of some advantages including flexibility (Lei et al., 2015), lightweight, low material cost (Rachel et al., 2012; Yip and Jen, 2012; Yeh and Yeh, 2013) and independence on scarce resources. The results obtained by researchers indicate that the power conversion efficiency of these solar cells have been increased in the past few years. There are a lot of efforts have been done in order to improve the device performance, so that they can meet the requirement for commercial application and also compete with the conventional inorganic solar cells. Currently, these inorganic solar cells are blooming and their market shares are increasing. Up-to-date, researchers have successfully deposited metal sulfide (Table 1), metal telluride (Table 2) and metal selenide (Table 3) semiconductor thin films which could be used to produce absorber materials in inorganic solar cells.

Table 1: Metal sulfide thin films

<table>
<thead>
<tr>
<th>Thin films</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>NiS</td>
<td>Anuar et al (2011 a)</td>
</tr>
</tbody>
</table>

Table 2: Metal telluride thin films

<table>
<thead>
<tr>
<th>Thin films</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>CdZnTe</td>
<td>Vidhya et al (2015)</td>
</tr>
<tr>
<td>CuTe</td>
<td>Fulari et al (2010)</td>
</tr>
<tr>
<td>Cu$_2$Te</td>
<td>He et al (2015)</td>
</tr>
</tbody>
</table>
Table 3: Metal selenide thin films

<table>
<thead>
<tr>
<th>Thin films</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZnSe</td>
<td>Anuar et al (2011e)</td>
</tr>
<tr>
<td>NiSe</td>
<td>Nader and Tahere (2015)</td>
</tr>
<tr>
<td>PbSe</td>
<td>Anuar et al (2011f)</td>
</tr>
<tr>
<td>SnSe</td>
<td>Anuar et al (2012)</td>
</tr>
<tr>
<td>CuInSe₂</td>
<td>Pottier and Maurin (1989)</td>
</tr>
<tr>
<td>CdSe</td>
<td>Mahato and Kar (2015)</td>
</tr>
</tbody>
</table>

II. METHODS AND MATERIAL

In this work, polymer solar cells were fabricated using various methods as reported by many researchers from around the world. The power conversion efficiency was measured and reported. Also, the improvements of the solar cells were discussed and material requirements were investigated.

Literature Review

Chen et al. (2015) developed high speed rotating thermal decomposition technique to produce Ag₂S films on indium tin oxide substrate. In the scanning electron microscopy results, the surface of Ag₂S films are smooth, uniform and no agglomeration of nanoparticles is detected. The particle size is observed to be in the range of 15-70 nm. Furthermore, the film thickness and surface roughness were recorded about 287 nm and 10 nm, respectively. They claim that more Ag₂S particles are aggregated together with increasing cycles. Additionally, their experimental results show that the open circuit voltage and short circuit photocurrent of the ITO/Ag₂S/P₃HT:PCBM/MoO₃/Au solar cell increase with increasing cycle number from 10 (0.96%) cycles to 60 cycles (2.21%). They explain that the Ag₂S/P₃HT interfaces may provide more donor/acceptor area for exciton dissociation and charge transfer, eventually lead to the improvement of charge collection efficiency.

A series of experiments have been conducted by Lu et al. (2015) on the influence of solvent treatment on the performance of ITO/PEDOT:PSS/PTB7:PC₇₁BM /Ca/Al solar cells. They observe the solar cells that experience methanol (7.74%), ethanol (7.63%), n-propanol (7.19%) and isopropanol (7.3%) treatment present higher conversion efficiency than without treatment of alcohol. It is due to the fact that solvent treatment promotes the separation of the photo generated excitons. On the other hand, according to atomic force microscopy results, the surface of active layer does not deteriorate after treating by these alcohols. Additionally, they observe that the alcohol treatment make the roughness of the corresponding surface lower than that of the reference surface.

Fu et al. (2015) reported the zinc oxide nanoarrays were synthesized using hydrothermal process. They compare the polymer solar cell performance according to different electron transport layer of bare zinc oxide nanoarrays (ZnO NA) and with CdS organic molecules sensitizers. The power conversion efficiency of 3.1% could be obtained for ZnO NA. After incorporation of cadmium sulfide (3.5%) and organic molecules such as TP-OH (4%), Py-OH (4.2%) and BP-OH (3.8%) onto zinc oxide nanoarrays, the efficiency could be increased significantly.

Wang et al. (2015) designed two spirobifluorene based isomeric acceptors, namely SBF1 and SBF2 in their research. They point out that the mobility of SBF2 higher than that of SBF1. They show that high electron mobility can ensure effective charge carrier transport to the electrodes, and then reduce the photocurrent loss in solar cell. As a result, they obtain power conversion efficiency of 0.17-0.63 % and 0.31-0.97% for SBF1 and SBF2, respectively.

Lei et al. (2015) prepared n-type Ag₃CuS₂ films on ITO substrate at room temperature. They found that the band gap about 1.25 eV with direct semiconductor in optical properties studies. Then, various types of solar cell were fabricated. The obtain results reflect that the Ag₃CuS₂/P₃HT solar cells (0.79%) have higher power conversion efficiency if compared to Ag₃CuS₂/PTB7 devices (0.31%) under simulated illumination.

Jiangsheng et al. (2015) proposed a new strong electron deficient acceptor unit, namely TQxT in their experiments. Furthermore, three TQxT based new conjugated polymers have been successfully developed. They reveal that these polymers show absorption spectra beyond near infrared region. Photovoltaic behaviors of fabricated solar cells with different doping ratio of ultra-low band gap polymer were investigated. The results show that power conversion efficiency increases with increasing PBDTT-TQxP ratios from 3% (3.31%), 6% (3.5%) to 9% (3.58%), indicating that doping ratio could
play an important role in optimizing photovoltaic performance.

Yu et al. (2015) synthesized P3HT/MWNT nanocomposites with various concentrations of multiwalled carbon nanotube (MWNT). They fabricated solar cell and claimed that the power conversion efficiency increases with the ratio of carbon nanotubes. For example, the conversion efficiency obtained using P3HT/MWNT ratio of 1:1, 1:0.5 and 1:0.1 demonstrated conversion efficiency of 0.93%, 0.8% and 0.51%, respectively as shown in the solar cell prepared with no PEDOT:PSS layers. Meanwhile, the conversion efficiency was 1.01%, 1.18% and 2.16% for the solar cell using P3HT/MWNT ratio of 1:0.1, 1:0.5 and 1:1, respectively. In another case, they point out that the solar cell with PEDOT:PSS layers displayed superior conversion rates to those with no PEDOT:PSS layers.

Zhao et al. (2015) reported the solar cell fabricated without hole transfer layer produces lower conversion efficiency of 2.34%, 4.34% and 4.71% in P3HT:PC61BM, PCDTBT:PC71BM, PTB7:PC71 BM, respectively. This is due to the reasons such as large series resistance and leakage current. They concluded that best power conversion efficiency of these solar cells which prepared under the optimized conditions reach up to 3.62%, 7.03% and 7.56%. They explain that an increase of the photo absorption of the photoactive layer and the conductivity, leads to the great improvement for the high efficiency of solar cells.

III. RESULTS AND DISCUSSION

Ti doped indium oxide (TIO) films have been produced using polymer assisted solution process by Sujaya et al. (2015). They suggest that the best growth conditions were 3% of Ti doping concentration and annealing temperature of 700 °C in order to produce the films display a sheet resistance of 330 Ω/sq and had a thickness of 130 nm. The obtained TIO films were applied as electrodes for the fabrication of solar cell consisting of glass/PAS-coated TIO/ZnO/PTB-7:PC71BM/PEDOT:PSS/Ag. The lower conversion efficiency on this type of solar cell (4.6%) is due to the relatively high sheet resistance if compared to solar cell prepared on the commercial indium tin oxide (7.42%).

Polymer thin films solar cells have certain drawbacks such as low efficiency if compared to the crystalline silicon cells. In other words, they cannot replace for silicon cells in the energy conversion field. Also, this type of solar cell has short life time for large area devices as reported by Son et al. (2012). On the other hand, it has been reported by many researchers (Carsten and Vladimir, 2012; Blom et al., 2007) that the thickness of organic active layer is limited to a few hundred nanometers because of the intrinsically short exciton diffusion length of organic materials. As a result, this phenomenon leads to insufficient light harvesting of polymer solar cells.

IV. CONCLUSION

Polymer solar cells have drawn considerable interest by many researchers. They observe that the power conversion efficiency of these solar cells have been improved, and steadily increased in the past few years. Lastly, there is a very strong need for the development of polymer solar cells with low cost and high efficiency.

V. AcknowledgmentS

Author is thankful to INTI International University for providing financial support used in this work.

VI. REFERENCES

[7]. Anuar, K., Ho, S.M., Saravanan, N. 2011f. Preparation of lead selenide thin films by chemical bath deposition method in the presence of complexing agent (tartaric acid). Turkish Journal of Science and Technology. 6: 17-23.

[28]. Kumar, V.N., Suryakarthick, R., Karuppusamy, S., Gupta, M., Hayakawa, Y., Gopalakrishnan, R. 2015. Effect of precursor concentration on the properties and tuning of conductivity between p-type and n-type Cu$_x$Cd$_{1-x}$S$_2$ thin films deposited by a single step solution process as a novel material for photovoltaic applications. RSC Advances. 5: 23015-23021.

