

Facile Access to Polyfunctionalized Thiazolidinones and their Antimicrobial Evaluation

Nirali S. Mewada

Department of Chemistry, Government Science College, Gandhinagar, Gujarat, India

ABSTRACT

Novel 4 - (4-cyanophenylamino) – 2 - (4-methylpiperazin-1-yl) – 5 - (5-(arylidene)-4-oxo-2-phenylthiazolidin-3-yl) benzoic acids were synthesized. The chemical structures of all the synthesized 4-Thiazolidinones were elucidated using IR, Mass and ¹H NMR spectroscopy.

The compounds were screened for their *in vitro* anti-microbial activity.

Keywords: Polyfunctionalized, Thiazolidinones, Arylidene, Antimicrobial Activity

I. INTRODUCTION

Resistance to existing antibiotics and antimicrobial agents has given rise to public health crisis. Therefore, development of new compounds to fight the resistant microbes is currently the need of time.

Thiazolidinones have attracted number of researchers due to their wide spectrum of biological activities [1] namely antimicrobial [2], anticancer [3], antimalarial [4], antiviral [5], fungicidal [6], antitubercular [7] activities etc.

Keeping in view the above observations, and in continuation to our research in developing novel bioactive compounds [8], new series of polyfunctionalized Thiazolidinones were synthesized and screened for their antimicrobial activity.

II. METHODS AND MATERIALS

All reagents were of analytical grade and used directly. All the melting points were determined in open glass capillary and are uncorrected. Progress of reaction was monitored by thin layer chromatography (TLC) using silica gel-G coated aluminium plates (0.5 mm thickness, Merck) and spots were visualized under UV radiation. The synthesized compounds were purified by recrystalization and/or column chromatography. The IR spectra were recorded on BRUKER TENSOR Series using KBr pellets. ¹H NMR spectra were recorded on 300MHz BRUKER ULTRASHIELD using DMSO-d₆ as a solvent and TMS as an internal reference and chemical shift values were expressed in δ ppm.

Preparation of 5-amino-4-(4-cyano-phenylamino)-2-(-4-N-methyl-piperazin-1-yl)-benzoic acid (2)

4-(4-cyano-phenylamino)-2-(4-N-methyl-piperazin-1-yl)-5-nitro- benzoic acid **(1)** (8.0 g, 0.0209 mol) was suspended in water (10 ml) containing acetic acid (2.6 ml, 0.0418 mol) at 70 °C and Iron dust (2.3 g, 0.0418 mol) in ethanol (4.7 ml, 0.0836 mol) was added portion wise. The progress of reaction was monitored by TLC using toluene: methanol (6:4) as eluent. After the completion of reaction, the refluxed content was poured into crushed ice. The solid product obtained was filtered and dried. The crude product was purified by crystallization from ethanol to get the title compound. M.P: 110 -112 °C

3.5. Preparation of 5-(benzylidene-amino)-4-(4cyano-phenylamino)-2-(4-*N*-methyl-piperazin-1-yl)benzoic acid (3a)

To a well-stirred solution of Compound **2** (10.0 g, 0.0284 mol) in ethanol (20 ml), Benzaldehyde (6.2 ml, 0.0568 mol) and acetic acid (1.0 ml) were added. The reaction mixture was refluxed for 4 h at 70-80 °C. The progress of reaction was monitored by TLC using toluene: acetone (8:2) as eluent. After the completion of reaction, the refluxed content was dumped in to water. The pH was adjusted to neutral. The crude product was purified by crystallization from ethanol to get the title compound. M.P: 180-200 °C.

Preparation of 4-(4-cyano-phenylamino)-2-(4methyl-piperazin-1-yl)-5-(4-oxo-2-phenylthiazolidin-3-yl)-benzoic acid (4a)

Compounds **(3a)** (10 g, 0.0227 mol), thioglycolic acid (5.4 ml, 0.0454 mol) in DMF (20 ml) and anhydrous zinc chloride (6.0 g, 0.0454 mol) were refluxed for 6-8 h. The progress of reaction was monitored by TLC using hexane: ethyl acetate (8:2) as eluent. After the completion of reaction it was poured in to crushed ice. The product obtained was washed with NaHCO₃ to remove unreacted acid, filtered, dried and recrystallized from ethanol to get the title compounds. M.P.: 160-162 °C

Preparation of 4-(4-cyanophenylamino)-2-(4methylpiperazin-1-yl)-5-(5-(substituted

benzylidene)-4-oxo-2-phenylthiazolidin-3-yl)benzoic acid (5a-5j)

A mixture of Compound **(4a)** (10.0 g, 0.0194 mol) in glacial acetic acid (20.0 ml) buffered with sodium acetate and substituted benzaldehyde (4.5 ml, 0.0388 mol) was refluxed for 4-6 h. The progress of reaction was monitored by TLC using a toluene: acetone (6:2) as eluent. After the completion of reaction, it was poured into crushed ice. The resulting product was filtered and washed with water until neutrality. The crude product was crystallized from methanol to get the title compound.

(5-(5-benzylidene-4-oxo-2-phenylthiazolidin-3-yl)-4-(4-cyanophenylamino)-2-(4-methylpiperazin-1yl)benzoic acid (5a)

¹H NMR: 2.75 (s, 3H), 2.85 (t, 4H), 3.03 (t, 4H), 4.60 (s, 1H), 5.43 (s, 1H), 6.91-7.65 (m, 17H), 9.52 (s, 1H). IR (KBr cm⁻¹): 3433 (-OH), 3223 (-NH), 3053 (-CH), 2985-2873 (-CH), 1730, 1666 (-2CO), 1642 (-C=C-), 724 (-C-S). MS (m/z): 602.42 (M⁺). Anal. Calcd. For C₃₅H₃₁N₅O₃S: C, 69.80; H, 5.31; N, 11.63, Found: C, 69.76; H, 5.28; N, 11.60, m.p. 162 °C, Yield: 73 %.

5-(5-(2-chlorobenzylidene)-4-oxo-2phenylthiazolidin-3-yl)-4-(4-cyanophenylamino)-2-(4-methylpiperazin-1-yl)benzoic acid (5b)

¹H NMR: 2.71 (s, 3H), 2.83 (t, 4H), 3.07 (t, 4H), 4.56 (s, 1H), 5.40 (s, 1H), 6.90-7.69 (m, 16H), 9.59 (s, 1H). **IR** (KBr cm⁻¹): 3431 (-OH), 3223 (-NH), 3052 (-CH), 2980-2872 (-CH), 1734, 1660 (-2CO), 1640 (-C=C-), 825 (C-Cl), 722 (-C-S). **MS (m/z):** 637.22 (M⁺). **Anal.** Calcd. For C₃₅H₃₀ClN₅O₃S: C, 66.02; H, 4.71; N, 11.00, Found: C, 66.05; H, 4.70; N, 11.04, m.p. 150 °C, Yield: 58 %.

5-(5-(3-chlorobenzylidene)-4-oxo-2phenylthiazolidin-3-yl)-4-(4-cyanophenylamino)-2-(4-methylpiperazin-1-yl)benzoic acid (5c)

¹H NMR: 2.73 (s, 3H), 2.84 (t, 4H), 3.05 (t, 4H), 4.52 (s, 1H), 5.45 (s, 1H), 6.96-7.67 (m, 16H), 9.57 (s, 1H). IR (KBr cm⁻¹): 3438 (-OH), 3229 (-NH), 3048 (-CH), 2985-2870 (-CH), 1739, 1654 (-2CO), 1641 (-C=C-), 824 (C-Cl), 722 (-C-S). MS (m/z): 637.31 (M⁺). Anal. Calcd. For C₃₅H₃₀ClN₅O₃S: C, 66.02; H, 4.73; N, 11.00, Found: C, 66.07; H, 4.75; N, 11.01, m.p. 147 °C, Yield: 63 %.

5-(5-(4-chlorobenzylidene)-4-oxo-2phenylthiazolidin-3-yl)-4-(4-cyanophenylamino)-2-(4-methylpiperazin-1-yl)benzoic acid (5d)

¹H NMR: 2.76 (s, 3H), 2.81 (t, 4H), 3.07 (t, 4H), 4.55 (s, 1H), 5.42 (s, 1H), 6.89-7.72 (m, 16H), 9.58 (s, 1H). IR (KBr cm⁻¹): 3430 (-OH), 3225 (-NH), 3054 (-CH),

2986-2871 (-CH), 1739, 1662 (-2CO), 1647 (-C=C-), 823 (C-Cl), 725 (-C-S). **MS (m/z):** 637.28 (M⁺). **Anal. Calcd. For** C₃₅H₃₀ClN₅O₃S: C, 66.02; H, 4.71; N, 11.00, **Found:** C, 66.01; H, 4.66; N, 11.03, **m.p.** 142 °C, **Yield:** 65 %.

4-(4-cyanophenylamino)-5-(5-(2methylbenzylidene)-4-oxo-2-phenylthiazolidin-3yl)-2-(4-methylpiperazin-1-yl)benzoic acid (5e)

¹H NMR: 2.20 (s, 3H), 2.73 (s, 3H), 2.87 (t, 4H), 3.07 (t, 4H), 4.66 (s, 1H), 5.45 (s, 1H), 6.92-7.66 (m, 16H), 9.52 (s, 1H). **IR (KBr cm⁻¹):** 3437 (-OH), 3225 (-NH), 3058 (-CH), 2987-2877 (-CH), 1735, 1668 (-2CO), 1648 (-C=C-), 728 (-C-S). **MS (m/z):** 616.90 (M⁺). **Anal. Calcd. For** C₃₆H₃₃N₅O₃S: C, 70.15; H, 5.35; N, 11.36, **Found:** C, 70.12; H, 5.32; N, 11.31, **m.p.** 148 °C, **Yield:** 78 %.

4-(4-cyanophenylamino)-5-(5-(3methylbenzylidene)-4-oxo-2-phenylthiazolidin-3yl)-2-(4-methylpiperazin-1-yl)benzoic acid (5f)

¹H NMR: 2.25 (s, 3H), 2.73 (s, 3H), 2.86 (t, 4H), 3.02 (t, 4H), 4.68 (s, 1H), 5.43 (s, 1H), 6.87-7.62 (m, 16H), 9.58 (s, 1H). IR (KBr cm⁻¹): 3434 (-OH), 3227 (-NH), 3051 (-CH), 2987-2874 (-CH), 1736, 1668 (-2CO), 1647 (-C=C-), 723 (-C-S). MS (m/z): 616.84 (M⁺). Anal. Calcd. For C₃₆H₃₃N₅O₃S: C, 70.15; H, 5.35; N, 11.36, Found: C, 70.12; H, 5.30; N, 11.32, m.p. 144 °C, Yield: 72 %.

4-(4-cyanophenylamino)-5-(5-(4methylbenzylidene)-4-oxo-2-phenylthiazolidin-3yl)-2-(4-methylpiperazin-1-yl)benzoic acid (5g)

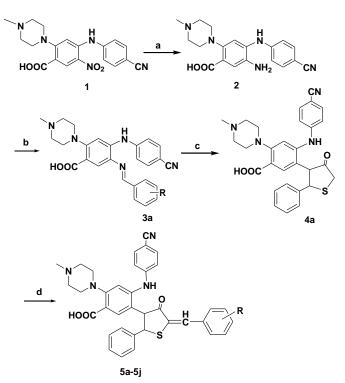
¹H NMR: 2.23 (s, 3H), 2.71 (s, 3H), 2.84 (t, 4H), 3.07 (t, 4H), 4.64 (s, 1H), 5.48 (s, 1H), 6.97-7.63 (m, 16H), 9.57 (s, 1H). **IR (KBr cm⁻¹):** 3433 (-OH), 3227 (-NH), 3057 (-CH), 2984-2878 (-CH), 1732, 1667 (-2CO), 1644 (-C=C-), 721 (-C-S). **MS (m/z):** 616.89 (M⁺). **Anal. Calcd. For** C₃₆H₃₃N₅O₃S: C, 70.15; H, 5.35; N, 11.36, **Found:** C, 70.10; H, 5.31; N, 11.39, **m.p.** 145 °C, **Yield:** 70 %.

4-(4-cyanophenylamino)-2-(4-methylpiperazin-1-yl)-5-(5-(2-nitrobenzylidene)-4-oxo-2-phenylthiazolidin-3-yl)benzoic acid (5h)

¹H NMR: 2.71 (s, 3H), 2.84 (t, 4H), 3.03 (t, 4H), 4.63 (s, 1H), 5.46 (s, 1H), 6.89-8.13 (m, 16H), 9.50 (s, 1H). IR (KBr cm⁻¹): 3435 (-OH), 3223 (-NH), 3058 (-CH), 2984-2876 (-CH), 1733, 1666 (-2CO), 1642 (-C=C-), 1548, 1370 (N-O), 724 (-C-S). MS (m/z): 647.92 (M⁺). Anal. Calcd. For C₃₅H₃₀N₆O₅S: C, 64.94; H, 4.63; N, 12.98, Found: C, 64.90; H, 4.61; N, 12.95, m.p. 160 °C, Yield: 69 %.

4-(4-cyanophenylamino)-2-(4-methylpiperazin-1-yl)-5-(5-(3-nitrobenzylidene)-4-oxo-2-phenylthiazolidin-3-yl)benzoic acid (5i)

¹H NMR: 2.75 (s, 3H), 2.82 (t, 4H), 3.01 (t, 4H), 4.69 (s, 1H), 5.41 (s, 1H), 6.85-8.10 (m, 16H), 9.54 (s, 1H). **IR** (KBr cm⁻¹): 3432 (-OH), 3226 (-NH), 3055 (-CH), 2987-2873 (-CH), 1732, 1669 (-2CO), 1641 (-C=C-), 1546, 1373 (N-O), 723 (-C-S). **MS (m/z):** 647.89 (M⁺). **Anal. Calcd. For** C₃₅H₃₀N₆O₅S: C, 64.94; H, 4.63; N, 12.98, **Found:** C, 64.92; H, 4.62; N, 12.92, **m.p.** 166 °C, **Yield:** 65 %.


4-(4-cyanophenylamino)-2-(4-methylpiperazin-1-yl)-5-(5-(4-nitrobenzylidene)-4-oxo-2-phenylthiazolidin-3-yl)benzoic acid (5j)

¹H NMR: 2.76 (s, 3H), 2.84 (t, 4H), 3.02 (t, 4H), 4.66 (s, 1H), 5.42 (s, 1H), 6.89-8.13 (m, 16H), 9.51 (s, 1H). IR (KBr cm⁻¹): 3432 (-OH), 3221 (-NH), 3056 (-CH), 2982-2878 (-CH), 1732, 1664 (-2CO), 1640 (-C=C-), 1542, 1377 (N-O), 723 (-C-S). MS (m/z): 647.92 (M⁺). Anal. Calcd. For C₃₅H₃₀N₆O₅S: C, 64.94; H, 4.63; N, 12.98, Found: C, 64.90; H, 4.60; N, 12.94, m.p. 159 °C, Yield: 68 %.

III. RESULTS AND DISCUSSION

Chemistry

Reaction of compound 4-(4-cyano-phenylamino)-2-(4-N-methyl-piperazin-1-yl)-5-nitro- benzoic acid **(1)** with Fe in acetic acid in ethanol yielded 5-amino-4-(4-cyano-phenylamino)-2-(-4-N-methyl-piperazin-1yl)-benzoic acid (2). Compound (2) reacted with benzaldehyde in presence of acetic acid to form 5-(benzylidene-amino)-4-(4-cyano-phenylamino)-2-(4-N-methyl-piperazin-1-yl)-benzoic acid (3a), which on reaction with thioglycolic acid in presence of zinc chloride in DMF yielded 4-(4-cyano-phenylamino)-2-(4-methyl-piperazin-1-yl)-5-(4-oxo-2-substituted phenyl-thiazolidin-3-yl)-benzoic acid (4a). Compound (4a) was refluxed with substituted benzaldehydes in glacial acetic acid in presence of sodium acetate to yield the title compounds 4-(4cyanophenylamino)-2-(4-methylpiperazin-1-yl)-5-(5-(substituted benzylidene)-4-oxo-2-phenylthiazolidin-3-yl)benzoic acid (5a-5j) (Scheme 1).

Scheme 1. (a) Fe/CH₃COOH, Ethanol, 80 ℃ (b) Benzaldehyde, Ethanol, 70 ℃ (c) Thioglycolic acid, Anhydrous ZnCl₂, DMF (d) Substituted aryl benzaldehydes, Glacial acetic acid, CH₃COONa, Reflux.

Structures of thiazolidinones **(5a-5j)** were elucidated by IR, ¹H NMR, mass spectroscopy and elemental analysis. The spectra were in full agreement with the proposed structure.

Biological Evaluation Antibacterial Activity

The minimum inhibitory concentration (MIC) of the synthesized compound were tested against two representative Gram-positive (*Staphylococcus aureus* MTCC 443 and *Staphylococcus pyogenus* MTCC 443) and two Gram-negative (*Escherichia coli* MTCC 442 and *Pseudomonas aeruginosa* MTCC 443) and assayed *in vitro* using broth micro dilution method by standard gradual dilution starting from (250, 200, 125, 100, 50, 25, 12.5, 6.25, 3.125) µg/mL.

Ciprofloxacin and Chloramphenicol were used as reference antibacterial agents. Solution of the test compounds and reference drugs were dissolved in DMSO. The *in vitro* results of the antibacterial activity of the newly synthesized compounds are presented in **Table 1**.

The antibacterial potency of the synthesized compounds was compared with broad spectrum antibiotics, Ciprofloxacin & Chloroamphenicol. From the table, it is observed that some of the compounds displayed moderate to good antibacterial activity in the range of 62.5-125 μ g/ml.

Table 1. Antibacterial activity of title compounds.

	ANTIBACTERIAL ACTIVITY TABLE						
Comp d.	MINIMUM INHIBITORY CONCENTRATION						
	-R	<i>E.c</i> µg/ml	<i>P.a</i> µg/ml	<i>S.a</i> µ g/ml	<i>S.p</i> µg/ml		
5a	-H	200	500	100	125		
5b	2-Cl	500	250	125	200		
5c	3-Cl	200	250	125	500		
5d	4-Cl	100	125	250	62.5		
5e	2-CH3	250	200	500	500		
5f	3-CH3	200	250	250	250		
5g	4-CH3	200	250	200	125		
5h	2-NO2	500	200	500	500		
5i	3-NO2	250	500	100	250		

5j	4-NO2	200	62.5	200	200
Ciprofloxacin		25	25	50	50
Chloramphenicol		50	50	50	50

Antifungal Activity

The minimum inhibitory concentration (MIC) of the synthesized compound was tested against fungi (*Candida albicans* MTCC 227, *Aspergillus niger* MTCC 282 and *Aspergillus clavatus* MTCC 1323) and assayed *in vitro* using broth micro dilution method standards with gradual dilution starting from (250, 200, 125,100, 50, 25, 12.5, 6.25, 3.125) μ g/mL. Nystatin and Greseofulvin were used as reference antibacterial agents. Solution of the test compounds and reference drugs were dissolved in DMSO. The *in vitro* results of the antifungal activity of the newly synthesized compounds are presented in **Table 2**.

 Table 2. Antifungal activity of title compounds

	ANTIFUNGAL ACTIVITY TABLE						
	MINIMUM INHIBITORY						
Compd.	CONCENTRATION						
Compu.	-R	<i>С.а.</i> µg/ml	<i>А.п.</i> µg/ml	<i>А.с.</i> µg/ml			
5a	-H	200	500	1000			
5b	2-Cl	500	1000	500			
5c	3-Cl	1000	1000	250			
5d	4-Cl	1000	500	250			
5e	2-CH3	500	1000	200			
5f	3-CH ₃	250	500	250			
5g	4-CH ₃	250	500	500			
5h	2-NO ₂	500	1000	1000			
5i	3-NO2	250	1000	500			
5j	4-NO ₂	200	250	500			
Nysta	atin	100	100	100			
Griseofulvin		500	100	100			

IV. CONCLUSION

A facile method for the synthesis of diversely functionalized thiazolidinones was developed. The newly synthesized thiazolidinones exhibited good to moderate antibacterial and antifungal activity. Further structural modifications of the compounds may prove as lead structures for the development of agents with higher antimicrobial activity.

V. REFERENCES

- A. K. Jain, A. V. Veerasamy, S. Kumar, R. A. Agrawal, Bioorg Med Chem. 11 (2012) 3378-3395.
- [2] K.H. Chikhalia, M. J. Patel, J. Enzym Inhib. Med. Chem. 24 (2009) 960–966.
- [3] A. Baliani, G. J. Bueno, M. l. Stewart, V. Yardley,
 R. Brun, M.P. Barrett, J. Med. Chem. 48 (2005) 5570–5579.
- [4] M. Sergio, P. Davide, C. Paolo, B. Nicoletta, M. Diego, Chem. Med. Chem. 3 (2008) 873-876.
- [5] D. H. Mahajan, C. Pannecouque, D. C. Erik, K.H. Chikhalia, Arch. Pharm. 342 (2009) 281–290.
- [6] S. K. Srivastava, S. D. Srivastava, Ind. J. Chem. 38B (1999) 183-187.
- [7] (a) A. K. Jain, A. V. Veerasamy, S. Kumar, R. A. Agrawal, Bioorg Med Chem. 11 (2012) 3378-3395.
- [8] H. Oza, D. Joshi, H Parikh, Ind. J. Chem. 37B (1998) 822-825.
- [9] G. Aridoss, G. Amirthaganesan, M.S. Kim, J.T. Kim, Y.T. Jeong, Eur. J. Med. Chem. 10 (2009) 4199-4210.
- [10] S. Jaju, M. Palkar, V. Maddi, P.K. Ronad, S. Desai, D. Satyanarayana, M. Ghatole, Arch. Pharm. Chem. Life Sci. 324 (2009) 723-731.
- [11] N. S. Mewada, D. R. Shah, H. P. Lakum, K. H. Chikhalia Journal of the Association of Arab Universities for Basic and Applied Sciences, 20 (2016) 8-18.