
IJSRSET162114 | Received: 07 January 2016 | Accepted: 13 January 2016 | January-February 2016 [(2)1: 52-58]

© 2016 IJSRSET | Volume 2 | Issue 1 | Print ISSN : 2395-1990 | Online ISSN : 2394-4099
Themed Section: Engineering and Technology

52

Implementation of Fast Fourier Transform using Resource
Reuse Technique on FPGA
Praveen Kumar Jhariya, Nitesh Dodkey

Department of Electronics and Communication Engineering, Surbhi Group of Institute, Madhya Pradesh, India

ABSTRACT

The utility of discrete Fourier transform (DFT) plays important role in many of digital processing including

linear filtering, correlation analysis and spectrum analysis. In this work we have proposed two FFT designs,

design 1 and design 2. In design 1 we have only one butterfly unit and one multiplier and this butterfly unit along

with complex multiplier is used multiple times to compute the 8 point FFT. In design 2 four butterfly fly unit and

two multipliers which are used 3 times. The number system used in our design is single precision (32 bit) floating

point and 8 bit floating point.

Keywords : FFT, FPGA, Hardware Reuse, Butterfly

I. INTRODUCTION

The discrete Fourier transform or DFT is one of the most

important problems in applied computer science, with

applications in many areas of scientific computing and

engineering. The first fast Fourier transform or FFT was

invented by Carl Friedrich Gauss[2] in 1805 (even

predating Fourier’s work on harmonic analysis by two

years) and reinvented by James W. Cooley and John W.

Tukey in 1965[1]. The name FFT is used today to refer

to any “fast” method of computing the DFT, usually O

(NlogN). Sometimes the term is used more specifically

to refer to some version of the Cooley-Tukey algorithm,

typically for input sizes which are powers of 2.

The FFT arithmetic [3] is basically divided into two

types, which is the decimation-in-time (DIT) and the

decimation-infrequency (DIF). This radix-2-DIT FFT is

adopted in this work. An 'N' point discrete Fourier

transformation (DFT) of the input sequences x (n) is

written as,

 () ∑ (()

)……………………… (1)

Where k,n = 0,1,2……….N-1

WN = ()

x (n) could be further divided into odd part and even part

using radix-2 DIT in (l), taking advantage of periodicity

and symmetry we can obtain the following equations.

 () ∑ (()

)

 ∑ (()
()

)

 …(2)

Using () ((

)) in (2)

We get X(k) = {(DFT of even indexed N/2 sequences) +

W
k
(DFT of odd indexed N/2 sequences)}

X(k) = E(k) + WkF(k) ……………………. (3)

Now for the values of k ≥ N/2, the equation (2) for X(k)

can be simplified by replacing k  (k + N/2) we get

Since, WN/2 = () = -1 we have

X(k + N/2) = E(k) - WkF(k) ……………….. (4)

This is where (3) & (4) the reduction in complexity

comes about: one large computation is reduced to

several sequential smaller computations which lead to

the radix-2 butterfly as shown in figure 1.

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

53

Figure 1: Basic Butterfly element

To summarize these steps for computing the DFT via

decimation are

1. Shuffle input order in bit reversal form.

2. Compute N/2, two sample DFTs.

3. Compute N/ 4, four sample DFTs.

4. Continue until one, N-sample DFT is computed.

5.

Figure 2: DlT-FFT radix-2 operation diagram

Fig.2 shows the 8 inputs decimation in time DFT

operation diagram. WN used in all the equations are also

called as Twiddle Factors. Twiddle factor referred to the

root of unity complex multiplicative constants in the

butterfly operation. The realization of these twiddle

factors can be done by using Coordinate Rotation for

Digital Computers algorithm (CORDIC) or pre-

computed twiddle factor values can be used. In this work

pre-computed twiddle factor values are used.

II. METHODS AND MATERIAL

A. Methodology Used

The number system used in our design is 8 bit floating

point. To implement the design in hardware we have

divided the butterfly structure in 3 stages. Figure 3

shows the stage 1 of butterfly structure. The inputs to the

stage 1 is x[n] and the outputs of stage 1 is z[n]. x[4],

x[6], x[5] and x[7] gets multiplied with the twiddle

factor
 , the value of

 for N = 8 is 1. So no

multiplication is required in stage 1. The outputs z[n]

can be computed using simple addition and subtraction.

In our design floating point addition and subtraction is

required.

Figure 4 shows the stage 2 of butterfly unit. The inputs

to the stage 2 are z[n] and the outputs of stage 1 are a[n].

z[2] and z[3] gets multiplied with the twiddle factor
 ,

the value of
 for N = 8 is 1. So no multiplication is

required. z[6] and z[7] gets multiplied by the twiddle

factor value
 which is –j for N = 8. The outputs a[n]

can be computed using simple addition, subtraction and

two –j multipliers.

Figure 3 : Stage 1 of butterfly structure

Figure 5 shows the last stage i.e. stage 3 of butterfly

structure. The inputs to this unit are a[n] and the outputs

from this unit is b[n] which is assigned to X[N] which is

the final output FFT transformed output. Input a[1] is

multiplied by
 which is “1”, input a[5] si multiplied

by
 , which is “0.707 – j0.707”, input a[3] gets

multiplied with
 , which is –j and a[7] is multiplied

by “-0.707 – j0.707”. so complex multiplier is required

to perform the multiplication with “0.707 - j0.707” and -

0.707 - j0.707 along with floating point adder and

subtractor.

By dividing the complete butterfly structure in 3 stages

we can now determine the hardware requirements to

implement the design. All the inputs are complex

floating point numbers.

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

54

Figure 4 : Stage 2 of butterfly structure

In stage 1 only floating point adder and subtractor are

required. Total 4 complex floating point adders and 4

complex floating point subtractor are required. to

implement a complex floating point adder, 2 floating

point adders are required and similarly to implement a

floating point subtractor 2 floating point subtractor are

required. So in total 8 floating point adders and 8

floating point subtractor are required.

In stage 2 apart from 8 complex floating point

adders/subtractor two –j multipliers are also required. So

in total 8 floating point adders and 8 floating point

subtractor are required along with two –j multipliers are

required.

In stage three 8 floating point adders and 8 floating point

subtractor are required along with one –j multipliers and

2 complex multipliers.

Table shows the summary of hardware requirement in

different stages of 8 point FFT.

Table: Hardware Requirement for 8 Point Traditional

FFT

Hardware Resources Stage

1

Stage

2

Stage

3

Total

Complex Floating

Point Adders

4 4 4 12

Complex Floating

Point Subtractor

4 4 4 12

-j multiplier 0 2 1 3

Complex Multiplier 0 0 2 2

In this work we have reduced the hardware resource

usage of FPGA by reusing the hardware resources with

small increase in delay.

B. Hardware Implementation

In this work we have proposed two designs, design 1

and design 2. In design 1 we have only one butterfly unit

and one multiplier and this butterfly unit along with

complex multiplier is used multiple times to compute the

8 point FFT. In design 2 four butterfly fly unit and two

multipliers which are used 3 times.

a) Design – 1

In this design single butterfly unit and a single complex

multiplier is used along with three –j multiplier units to

compute the 8 point FFT. Figure 5 shows the high level

block diagram of design 1.

Figure 5 : High Level Block Diagram – Design 1

1. Butterfly Unit

Figure 4.2 shows the internal logic diagram of butterfly

unit.

x[i] = Re_x[i] + Imj_x[i]

x[j] = Re_x[j] + Imj_x[j]

z[i] = x[i] + x[j] = (Re_z[i] = Re_x[i] + Re_x[j], Imj_z[i]

= Imj_x[i] + Imj_x[j])

z[j] = x[i] - x[j] = (Re_z[i] = Re_x[i] - Re_x[j], Imj_z[i]

= Imj_x[i] - Imj_x[j])

Twiddle Factor

ROM

Butterfly Unit

Complex

Multiplier

- j Multiplier

C

O

N

T

R

O

L

L

E

R

&

R

O

U

T

E

R

x[n]

clk

X[n]

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

55

Figure 6 : Butterfly Unit

2. Complex Multiplier

Since complex multiplication is an expensive operation,

to reduce the multiplicative complexity of the twiddle

factor inside the butterfly processor by calculating only

three real multiplications and three add/subtract

operations.

The twiddle factor multiplication:

R + jI = (X + jY).(C + jS)

However the complex multiplication can be simplified:

R = (C - S) .Y + Z

I = (C + S) .X - Z

With: Z = C. (X - Y)

C and S are pre-computed and stored in a memory table.

Therefore it is necessary to store the following three

coefficients C, C + S, and C - S.

Figure 7: Complex Multiplier

The implemented algorithm of complex multiplication

used in this work uses three multiplications, one addition

and two subtractions as shown in Fig. 7. This is done at

the cost of an additional third memory table for storing

twiddle factors. In the hardware description language

(VHDL) program, the twiddle factor multiplier was

implemented using component instantiations of

IP_CORE FPM.

3. –j Multiplier

This multiplier can be implemented using simple

exchange operation and a not gate to change sign. Figure

8 shows the exchange operation

Figure 8 : j Multiplier

As shown in figure –j multiplier can be implemented

using exchange operation using the following equations.

X = Re_X + jImj_X

Z = (-j)(X) = (-j)(Re_X + jImj_X) = -jRe_X + Imj_x

Z = Re_Z + imj_Z

Re_Z = imj_X

Imj_Z = - Re_X

This exchange operation requires only one NOT gate to

invert the sign of Re_X signal and no other resources are

used.

4. Controller & Router

Figure 9 shows the state machine diagram of controller

and routing network for design 1.

-

1

Re_X

Imj_X
Imj_

Z

Re_Z

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

56

Figure 9 : State Machine controller – Design 1

The process starts by loading the inputs vectors. In

design 1 serial data feed is used so it takes 8 cycles to

load data, then to compute the stage 1 of FFT four

butterfly cycles are used Butterfly11, Butterfly12,

Butterfly13 and Butterfly14. A single butterfly unit is

used four times to implement the stage 1. Then the

outputs z[6] and z[7] of stage 1 are multiplied by –j. two

exchange units are used to implement this process. Then

stage 2 is implemented by using the previously used

butterfly unit four times, the process state are called

butterfly21, butterfly22, butterfly23 and butterfly24. For

stage 3 implementation first the –j multiplication takes

place for the stage 2 output a[3], this state is named as –

j. next the multiplication of 2 twiddle factor takes place

for variables a[5] and a[7], this is implemented using a

single multiplier which is used twice. The states are

called multiply twiddle factor 1 and multiply twiddle

factor 2. Then four butterfly states butterfly31,

butterfly32, butterfly33 and butterfly34 states are used to

compute the final FFT which are stored in internal

register named b. then these are assigned serially to the

output ports p and q.

b) Design - 2

Figure 10 shows the high level diagram of design 2 of 8

point FFT. Here the difference between design 1 and

design 2 is that in design 1 only 1 butterfly unit was

used, This design 2 uses four butterfly unit. Design 1

uses single complex multiplier whereas design 2 uses

two complex multipliers. This will increase area

requirement but in turn decrease latency of the design.

Figure 11 shows the state machine controller for design

2 of FFT. Here parallel data load is used instead of serial

data load used in design 1. It takes only 1 cycle to load

the complete data. Then 4 butterfly units operate in

parallel to calculate the stage 1 of FFT. This will only

take 1 cycle then a –j multiplier is used this state is

called –j. then the previously used 4 butterfly units are

used in parallel to compute stage 2 of FFT. Then –j unit

is again used for stage 3. Here the two complex

multipliers are used in parallel in stage 3. After this 4

butterfly units are reused to compute stage 3 of FFT.

After this all the eight outputs are loaded to the output

port in one cycle.

Figure 10 : High Level Block Diagram of design 2

Twiddle Factor

ROM

 Butterfly Unit 1

Complex

Multiplier 1

-j Multiplier 3

C

O

N

T

R

O

L

L

E

R

&

R

O

U

T

E

R

clk

-j Multiplier 2

-j Multiplier 1

Complex

Multiplier 2

Butterfly Unit 2

Butterfly Unit 3

Butterfly Unit 4

X[0]

X[1]

X[2]

X[3]

X[4]

X[5]

X[6]

X[7]

X[0]

X[1]

X[2]

X[3]

X[4]

X[5]

X[6]

X[7]

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

57

Figure 11 : High Level Block Diagram of design 2

III. RESULTS AND DISCUSSION

A. Results

This chapter shows about the synthesis results of

proposed 8 point FFT designs and its behavioral

simulation. In this work we have used Xilinx 14.1i for

the design and implementation. Xilinx Xpower Analyzer

is used for power analysis; Xilinx XST is used for the

synthesis of the design and Xilinx ISIM for the

behavioral simulation of the design. We have used

Virtex 6 FPGA for the implementation for the design.

Table 1 and 2 behavioral simulations were presented and

it can be concluded that our two designs namely design

1 and design 2 are working correctly. Table depicts the

synthesis report of design 1.

Table 1: Synthesis Report – Design 1

Device Utilization Summary [-]

Logic Utilization Used Available Utilization

Number of Slice Registers 632 595200 0%

Number of Slice LUTs 1146 297600 0%

Number of fully used

LUT-FF pairs
98 1680 5%

Number of bonded IOBs 34 840 4%

Number of

BUFG/BUFGCTRLs
1 32 3%

Number of DSP48E1s 6 2016 0%

Table 2 shows the device utilization summary of design

2. Design 2 takes more area than design 1 as it uses 4

butterfly units and two complex multipliers compared to

1 butterfly unit and 1 complex multiplier of design 1.

Table 2 : Synthesis Report - Design 2

Device Utilization Summary [-]

Logic Utilization Used Available Utilization

Number of Slice Registers 596 595200 0%

Number of Slice LUTs 2643 297600 0%

Number of fully used

LUT-FF pairs
187 3052 6%

Number of bonded IOBs 258 840 30%

Number of

BUFG/BUFGCTRLs
1 32 3%

Number of DSP48E1s 12 2016 0%

B. Comparison

This section compares the two proposed designs namely

design1 and design 2 with other designs available in

literature. Table shows the comparison summary.

Parameters Design 1 Design 2 Base

Number of

complex multiplier

1 2 NA

Number of

Multipliers

3 6 8

Number of

Adders/Subtractor

7 22 25

Number of Stages 1 3 3

Number of

Butterfly Cycles

12 3 3

Number of DSP

Blocks

6 12 16

Number system Floating

Point

Floating

Point

Fixed

Point

file:///E:/Work_TH/Praveen_30_dec/%3f&ExpandedTable=DeviceUtilizationSummary(estimatedvalues)
file:///E:/Work_TH/Praveen_30_dec/%3f&ExpandedTable=DeviceUtilizationSummary(estimatedvalues)

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

58

IV. CONCLUSION

From the behavioral simulation we can conclude that our

Fast Fourier t*ransform is working properly without

generating any errors. The synthesis report and the

comparison table suggest that the hardware resource

usage is reduced by many folds compared to the other

designs available in literature. Design 1 uses only 1

complex multiplier which internally uses 3 normal

multipliers, number of adder used in design 1 is only,

because we have used only one butterfly unit and one

complex multiplier. But the latency of this design is high

it takes 12 butterfly cycles to compute FFT. Design 2 is

comparatively high performance but it also takes large

area. It uses 2 complex multipliers which employs 6

normal bit multipliers and a total of 22

adders/subtractor. Here the overall FFT is computed in

three butterfly cycles because four butterfly units and

two complex multipliers are used. When we compare

these two designs with other designs in literature these

two proposed designs uses less area. Design 2 is similar

to the reference design found in literature but it uses less

number of multiplier and adder/subtractor blocks.

V. REFERENCES

[1] James W. Cooley and John W. Tukey. An Algorithm

for the Machine Calculation of Complex Fourier

Series. Mathematics of Computation, 19(90):297–

301, 1965.

[2] M. Heideman, D.H. Johnson, and C.S. Burrus. Gauss

and the history of the fast fourier transform. ASSP

Magazine, IEEE, 1(4):14–21, 1984.

[3] Zahra Haddad Derafshi, Javad Frounchi, Hamed

Taghipour "FPGA Implementation of a 1024-Point

Complex FFT Processor" Proceeding 2010 IEEE

Second International Conference on Computer and

Network Technology pp312-315.

[4] J.E.Volder, "The CORDIC trigonometric compo

technique" IRE Trans. Elec. Compo (1959), vol. EC-

8-3, pp. 330-334.

[5] F.Angarita, A Perez-Pascual, T.Sansaloni, J.Valls,

"Efficient Fpga Implementation of Cordic Algorithm

for Circular and Linear Coordinates", Proceedings

2005 International Conference on Field

Programmable Logic and Applications, pp535-538.

[6] IEEE 754-2008, IEEE Standard for Floating-Point

Arithmetic, 2008.

[7] D. Goldberg – What Every Computer Scientist

Should Know About Floating Point Arithmetic –

ACM Computing Surveys, Vol 32, No 1, 1991.

[8] ANSI/IEEE 754-1985 Standard for Binary Floating

Point Arithmetic.

[9] More, Tushar V., and Ashish R. Panat. "FPGA

implementation of FFT processor using vedic

algorithm." Computational Intelligence and

Computing Research (ICCIC), 2013 IEEE

International Conference on. IEEE, 2013.

[10] Ayhan, Tuba, Wim Dehaene, and Marian Verhelst.

"A 128∶ 2048/1536 point FFT hardware

implementation with output pruning." Signal

Processing Conference (EUSIPCO), 2014

Proceedings of the 22nd European. IEEE, 2014.

[11] Chen, Ren, and Viktor K. Prasanna. "Energy

optimizations for FPGA-based 2-D FFT architecture."

High Performance Extreme Computing Conference

(HPEC), 2014 IEEE. IEEE, 2014.

[12] Kumar, M., A. Selvakumar, and P. M. Sobha. "Area

and frequency optimized 1024 point Radix-2 FFT

processor on FPGA." VLSI Systems, Architecture,

Technology and Applications (VLSI-SATA), 2015

International Conference on. IEEE, 2015.

[13] Arioua, Mounir, et al. "VHDL implementation of an

optimized 8-point FFT/IFFT processor in pipeline

architecture for OFDM systems." Multimedia

Computing and Systems (ICMCS), 2011 International

Conference on. IEEE, 2011.

[14] Akshata.A, Gopika.D.K, Hameem Shanavas.I “FPGA

Implementation of Decimation In Time FFT or

Discrete Fourier Transform” JEST-M, Vol.1, Issue 2,

2012.

[15] Mukherjee, Atin, Amitabha Sinha, and Debesh

Choudhury. "A Novel Architecture of Area Efficient

FFT Algorithm for FPGA Implementation."arXiv

preprint arXiv:1502.07055 (2015).

[16] Das, Ansuman Diptisankar, et al. "Efficient VLSI

Architectures of Split-Radix FFT using New

Distributed Arithmetic." International Journal of Soft

Computing and Engineerimg (IJSCE) ISSN: 2231-

2307.

[17] Wang, Zhen, et al. "A Combined SDC-SDF

Architecture for Normal I/O Pipelined Radix-2 FFT."

(2013).

