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ABSTRACT 
 

The  utility  of  discrete  Fourier  transform  (DFT)  plays  important  role  in many of  digital  processing  including  

linear  filtering, correlation analysis  and spectrum  analysis. In this work we have proposed two FFT designs, 

design 1 and design 2. In design 1 we have only one butterfly unit and one multiplier and this butterfly unit along 

with complex multiplier is used multiple times to compute the 8 point FFT. In design 2 four butterfly fly unit and 

two multipliers which are used 3 times. The number system used in our design is single precision (32 bit) floating 

point and 8 bit floating point. 
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I. INTRODUCTION 

The discrete Fourier transform or DFT is one of the most 

important problems in applied computer science, with 

applications in many areas of scientific computing and 

engineering. The first fast Fourier transform or FFT was 

invented by Carl Friedrich Gauss[2] in 1805 (even 

predating Fourier’s work on harmonic analysis by two 

years) and reinvented by James W. Cooley and John W. 

Tukey in 1965[1]. The name FFT is used today to refer 

to any “fast” method of computing the DFT, usually O 

(NlogN). Sometimes the term is used more specifically 

to refer to some version of the Cooley-Tukey algorithm, 

typically for input sizes which are powers of 2. 

 

The FFT arithmetic [3] is basically divided into two 

types, which is the decimation-in-time (DIT) and the 

decimation-infrequency (DIF). This radix-2-DIT FFT is 

adopted in this work. An 'N' point discrete Fourier 

transformation (DFT) of the input sequences x (n) is 

written as, 

 

 ( )   ∑ ( ( )  
     

   )……………………… (1) 

Where k,n = 0,1,2……….N-1 

WN =  (      ) 

x (n) could be further divided into odd part and even part 

using radix-2 DIT in (l), taking advantage of periodicity 

and symmetry we can obtain the following equations.  
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We get X(k) = {(DFT of even indexed N/2 sequences) + 

W
k
(DFT of odd indexed N/2 sequences)} 

X(k) = E(k) + WkF(k) ……………………. (3) 

 

Now for the values of k ≥ N/2, the equation (2) for X(k) 

can be simplified by replacing k  (k + N/2) we get 

Since, WN/2 = (       )    = -1 we have 

X(k + N/2) = E(k) - WkF(k) ……………….. (4) 

 

This is where (3) & (4) the reduction in complexity 

comes about: one large computation is reduced to 

several sequential smaller computations which lead to 

the radix-2 butterfly as shown in figure 1. 
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Figure 1: Basic Butterfly element 

 

To summarize these steps for computing the DFT via 

decimation are 

1. Shuffle input order in bit reversal form. 

2. Compute N/2, two sample DFTs. 

3. Compute N/ 4, four sample DFTs. 

4. Continue until one, N-sample DFT is computed. 

5.  

 
 

Figure 2: DlT-FFT radix-2 operation diagram 

 

Fig.2 shows the 8 inputs decimation in time DFT 

operation diagram. WN used in all the equations are also 

called as Twiddle Factors. Twiddle factor referred to the 

root of unity complex multiplicative constants in the 

butterfly operation. The realization of these twiddle 

factors can be done by using Coordinate Rotation for 

Digital Computers algorithm (CORDIC) or pre-

computed twiddle factor values can be used. In this work 

pre-computed twiddle factor values are used. 

 

II. METHODS AND MATERIAL 
 

A. Methodology Used  

The number system used in our design is 8 bit floating 

point. To implement the design in hardware we have 

divided the butterfly structure in 3 stages. Figure 3 

shows the stage 1 of butterfly structure. The inputs to the 

stage 1 is x[n] and the outputs of stage 1 is z[n]. x[4], 

x[6], x[5] and x[7] gets multiplied with the twiddle 

factor   
 , the value of    

  for N = 8 is 1. So no 

multiplication is required in stage 1. The outputs z[n] 

can be computed using simple addition and subtraction. 

In our design floating point addition and subtraction is 

required. 

Figure 4 shows the stage 2 of butterfly unit. The inputs 

to the stage 2 are z[n] and the outputs of stage 1 are a[n]. 

z[2] and z[3] gets multiplied with the twiddle factor   
 , 

the value of    
  for N = 8 is 1. So no multiplication is 

required. z[6] and z[7] gets multiplied by the twiddle 

factor value   
  which is –j for N = 8. The outputs a[n] 

can be computed using simple addition, subtraction and 

two –j multipliers. 

 
 

Figure 3 : Stage 1 of butterfly structure 

 

Figure 5 shows the last stage i.e. stage 3 of butterfly 

structure. The inputs to this unit are a[n] and the outputs 

from this unit is b[n] which is assigned to X[N] which is 

the final output FFT transformed output. Input a[1] is 

multiplied by   
  which is “1”, input a[5] si multiplied 

by   
 , which is “0.707 – j0.707”, input a[3] gets 

multiplied with   
 , which is –j and a[7] is multiplied 

by “-0.707 – j0.707”. so complex multiplier is required 

to perform the multiplication with “0.707 - j0.707” and -

0.707 - j0.707 along with floating point adder and 

subtractor. 

By dividing the complete butterfly structure in 3 stages 

we can now determine the hardware requirements to 

implement the design. All the inputs are complex 

floating point numbers.  
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Figure 4 : Stage 2 of butterfly structure 

In stage 1 only floating point adder and subtractor are 

required. Total 4 complex floating point adders and 4 

complex floating point subtractor are required. to 

implement a complex floating point adder, 2 floating 

point adders are required and similarly to implement a 

floating point subtractor 2 floating point subtractor are 

required. So in total 8 floating point adders and 8 

floating point subtractor are required. 

In stage 2 apart from 8 complex floating point 

adders/subtractor two –j multipliers are also required. So 

in total 8 floating point adders and 8 floating point 

subtractor are required along with two –j multipliers are 

required. 

In stage three 8 floating point adders and 8 floating point 

subtractor are required along with one –j multipliers and 

2 complex multipliers.  

Table shows the summary of hardware requirement in 

different stages of 8 point FFT. 

Table: Hardware Requirement for 8 Point Traditional 

FFT 

Hardware Resources Stage 

1 

Stage 

2 

Stage 

3 

Total 

Complex Floating 

Point Adders 

4 4 4 12 

Complex Floating 

Point Subtractor 

4 4 4 12 

-j multiplier 0 2 1 3 

Complex Multiplier 0 0 2 2 

In this work we have reduced the hardware resource 

usage of FPGA by reusing the hardware resources with 

small increase in delay.       

B. Hardware Implementation  

In this work we have proposed two designs, design 1 

and design 2. In design 1 we have only one butterfly unit 

and one multiplier and this butterfly unit along with 

complex multiplier is used multiple times to compute the 

8 point FFT. In design 2 four butterfly fly unit and two 

multipliers which are used 3 times. 

a) Design – 1 

In this design single butterfly unit and a single complex 

multiplier is used along with three –j multiplier units to 

compute the 8 point FFT. Figure 5 shows the high level 

block diagram of design 1.  

 

 

 

 

 

 

 

 

 

 

Figure 5 : High Level Block Diagram – Design 1 

1. Butterfly Unit 

Figure 4.2 shows the internal logic diagram of butterfly 

unit.   

x[i] = Re_x[i] + Imj_x[i] 

x[j] = Re_x[j] + Imj_x[j] 

z[i] = x[i] + x[j] = (Re_z[i] = Re_x[i] + Re_x[j], Imj_z[i] 

= Imj_x[i] + Imj_x[j]) 

z[j] = x[i] - x[j] = ( Re_z[i] = Re_x[i] - Re_x[j], Imj_z[i] 

= Imj_x[i] - Imj_x[j]) 
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Figure 6 : Butterfly Unit 

 

2. Complex Multiplier 

Since complex multiplication is an expensive operation, 

to reduce the multiplicative complexity of the twiddle 

factor inside the butterfly processor by calculating only 

three real multiplications and three add/subtract 

operations. 

The twiddle factor multiplication: 

R + jI = (X + jY ).(C + jS) 

However the complex multiplication can be simplified: 

R = (C - S) .Y + Z 

I = (C + S) .X - Z 

With: Z = C. (X - Y) 

C and S are pre-computed and stored in a memory table. 

Therefore it is necessary to store the following three 

coefficients C, C + S, and C - S. 

 

Figure 7: Complex Multiplier 

The implemented algorithm of complex multiplication 

used in this work uses three multiplications, one addition 

and two subtractions as shown in Fig. 7. This is done at 

the cost of an additional third memory table for storing 

twiddle factors. In the hardware description language 

(VHDL) program, the twiddle factor multiplier was 

implemented using component instantiations of 

IP_CORE FPM.  

3. –j Multiplier 

This multiplier can be implemented using simple 

exchange operation and a not gate to change sign. Figure 

8 shows the exchange operation 

 

 

 

 

 

 

Figure 8 : j Multiplier 

As shown in figure –j multiplier can be implemented 

using exchange operation using the following equations. 

X = Re_X + jImj_X 

Z = (-j)(X) = (-j)( Re_X + jImj_X) = -jRe_X + Imj_x 

Z = Re_Z + imj_Z 

Re_Z = imj_X 

Imj_Z = - Re_X 

This exchange operation requires only one NOT gate to 

invert the sign of Re_X signal and no other resources are 

used. 

4. Controller & Router 

Figure 9  shows the state machine diagram of controller 

and routing network for design 1. 
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Figure 9 : State Machine controller – Design 1 

The process starts by loading the inputs vectors. In 

design 1 serial data feed is used so it takes 8 cycles to 

load data, then to compute the stage 1 of FFT four 

butterfly cycles are used Butterfly11, Butterfly12, 

Butterfly13 and Butterfly14. A single butterfly unit is 

used four times to implement the stage 1. Then the 

outputs z[6] and z[7] of stage 1 are multiplied by –j. two 

exchange units are used to implement this process. Then 

stage 2 is implemented by using the previously used 

butterfly unit four times, the process state are called 

butterfly21, butterfly22, butterfly23 and butterfly24. For 

stage 3 implementation first the –j multiplication takes 

place for the stage 2 output a[3], this state is named as –

j. next the multiplication of 2 twiddle factor takes place 

for variables a[5] and a[7], this is implemented using a 

single multiplier which is used twice. The states are 

called multiply twiddle factor 1 and multiply twiddle 

factor 2. Then four butterfly states butterfly31, 

butterfly32, butterfly33 and butterfly34 states are used to 

compute the final FFT which are stored in internal 

register named b. then these are assigned serially to the 

output ports p and q. 

 

b) Design  - 2 

 

Figure 10 shows the high level diagram of design 2 of 8 

point FFT. Here the difference between design 1 and 

design 2 is that in design 1 only 1 butterfly unit was 

used, This design 2 uses four butterfly unit. Design 1 

uses single complex multiplier whereas design 2 uses 

two complex multipliers. This will increase area 

requirement but in turn decrease latency of the design.  

Figure 11 shows the state machine controller for design 

2 of FFT. Here parallel data load is used instead of serial 

data load used in design 1. It takes only 1 cycle to load 

the complete data. Then 4 butterfly units operate in 

parallel to calculate the stage 1 of FFT. This will only 

take 1 cycle then a –j multiplier is used this state is 

called –j. then the previously used 4 butterfly units are 

used in parallel to compute stage 2 of FFT. Then –j unit 

is again used for stage 3. Here the two complex 

multipliers are used in parallel in stage 3. After this 4 

butterfly units are reused to compute stage 3 of FFT. 

After this all the eight outputs are loaded to the output 

port in one cycle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 : High Level Block Diagram of design 2  
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Figure 11 : High Level Block Diagram of design 2 

 
 

III. RESULTS AND DISCUSSION 
 

A. Results  

 

This chapter shows about the synthesis results of 

proposed 8 point FFT designs and its behavioral 

simulation. In this work we have used Xilinx 14.1i for 

the design and implementation. Xilinx Xpower Analyzer 

is used for power analysis; Xilinx XST is used for the 

synthesis of the design and Xilinx ISIM for the 

behavioral simulation of the design. We have used 

Virtex 6 FPGA for the implementation for the design. 

Table 1 and 2 behavioral simulations were presented and 

it can be concluded that our two designs namely design 

1 and design 2 are working correctly. Table depicts the 

synthesis report of design 1.  

 

Table 1: Synthesis Report – Design 1 

 

Device Utilization Summary [-] 

Logic Utilization Used Available Utilization 

Number of Slice Registers 632 595200 0% 

Number of Slice LUTs 1146 297600 0% 

Number of fully used 

LUT-FF pairs 
98 1680 5% 

Number of bonded IOBs 34 840 4% 

Number of 

BUFG/BUFGCTRLs 
1 32 3% 

Number of DSP48E1s 6 2016 0% 

 

Table 2 shows the device utilization summary of design 

2. Design 2 takes more area than design 1 as it uses 4 

butterfly units and two complex multipliers compared to 

1 butterfly unit and 1 complex multiplier of design 1. 

 

Table 2 : Synthesis Report - Design 2 

 

Device Utilization Summary [-] 

Logic Utilization Used Available Utilization 

Number of Slice Registers 596 595200 0% 

Number of Slice LUTs 2643 297600 0% 

Number of fully used 

LUT-FF pairs 
187 3052 6% 

Number of bonded IOBs 258 840 30% 

Number of 

BUFG/BUFGCTRLs 
1 32 3% 

Number of DSP48E1s 12 2016 0% 

 

B. Comparison 

 

This section compares the two proposed designs namely 

design1 and design 2 with other designs available in 

literature. Table shows the comparison summary. 

 

Parameters Design 1 Design 2 Base 

Number of 

complex multiplier 

1 2 NA 

Number of 

Multipliers 

3 6 8 

Number of 

Adders/Subtractor 

7 22 25 

Number of Stages 1 3 3 

Number of 

Butterfly Cycles 

12 3 3 

Number of DSP 

Blocks 

6 12 16 

Number system Floating 

Point 

Floating 

Point 

Fixed 

Point 

 

file:///E:/Work_TH/Praveen_30_dec/%3f&ExpandedTable=DeviceUtilizationSummary(estimatedvalues)
file:///E:/Work_TH/Praveen_30_dec/%3f&ExpandedTable=DeviceUtilizationSummary(estimatedvalues)
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IV. CONCLUSION 

 
From the behavioral simulation we can conclude that our 

Fast Fourier t*ransform is working properly without 

generating any errors. The synthesis report and the 

comparison table suggest that the hardware resource 

usage is reduced by many folds compared to the other 

designs available in literature. Design 1 uses only 1 

complex multiplier which internally uses 3 normal 

multipliers, number of adder used in design 1 is only, 

because we have used only one butterfly unit and one 

complex multiplier. But the latency of this design is high 

it takes 12 butterfly cycles to compute FFT. Design 2 is 

comparatively high performance but it also takes large 

area. It uses 2 complex multipliers which employs 6 

normal bit multipliers and a total of 22 

adders/subtractor. Here the overall FFT is computed in 

three butterfly cycles because four butterfly units and 

two complex multipliers are used. When we compare 

these two designs with other designs in literature these 

two proposed designs uses less area. Design 2 is similar 

to the reference design found in literature but it uses less 

number of multiplier and adder/subtractor blocks.  
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