
IJSRSET162141 | Received: 15 January 2016 | Accepted: 22 January 2016 | January-February 2016 [(2)1: 134-139]

© 2016 IJSRSET | Volume 2 | Issue 1 | Print ISSN : 2395-1990 | Online ISSN : 2394-4099
Themed Section: Engineering and Technology

134

OLAP Query Optimizer: SELECTION Operation

Kothari Badal K.*, Harish Nagar, Dr. Ashok R. Patel

Department of Computer Science and Engineering,. Mewar University, Rajasthan, India

ABSTRACT

A query processor (query compilation and execution) is an essential component in any database management system

(DBMS). Specifically, query compilation transforms user queries into a sequence of database operations, while

query execution executes those given operations. Retrieve Information from the OLAP Storage is very important

task, but because of large amount of OLAP data it’s taking tremendous time for the execution of the query. In this

paper, we shall cover algorithm for the SELECTION operator (OLAP Algebraic Operator), which is used to access

the data of the OLAP storage.

Keywords: OLAP Algebra, OLAP Query Optimizer, OLAP Query, OLAP selection Operator

I. INTRODUCTION

In this paper, we look at the algorithms that are used to

access the data of the OLAP storage. Moreover, we shall

cover the algorithms applied in the execution of our

OLAP algebraic operator (SELECTION) against the

indexed cube (stored in the Berkeley DB) and associated

dimension tables. Berkeley databases are used in our

server to store the indexed cube in one physical file. We

assume that we have enough memory to hold the result

of any OLAP operator and any extra data structure. Note

that extensions to external memory are expected in the

future. Finally, for each physical operator in the OLAP

physical query plan, we determine the appropriate

algorithm(s) that can be used to answer them (e.g.,

algorithm x implements the physical operator

BerkeleyRtreeAccess()).

The result of query compilation is an OLAP physical

query plan explained in below figure, which defines an

efficient execution plan for the received OLAP query.

We order the execution of all nodes of the physical plan

tree in a bottom-up, left-to-right manner. In other words,

we order the nodes of the tree in such that a pre-order

traversal traverses the entire physical query tree. Our

OLAP query optimizer can generate a sequence of

function calls - one for each physical operation in the

physical plan - and pass them to the OLAP query engine

for execution.

In addition, the server must also select an algorithm for

each OLAP operator in the OLAP logical plan in order

to turn the preferred logical plan into a physical plan.

We note that the algorithm for each OLAP operator (e.g.,

SELECTION) depends on the functionality developed.

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

135

In this paper, we discuss the SELECTION of algorithms

for OLAP operators defined in our OLAP algebra.

II. METHODS AND MATERIAL

A. Hoosing A Selection Method

The selection is the driving operation behind most

analytical queries. Therefore, one of the important steps

in choosing a physical plan is to select an

implementation for each selection operator. As was

illustrated, SELECTION in the preferred logical OLAP

query plan is of the form: SELECTION(Dim.DimID = x

AND Dim1.Dim1ID = y OR Dim2.Dim2ID ...)C.

SELECTION is defined as a listing of dimensions related

via AND and OR, where each dimension is associated

with a condition. For simplicity, we consider the

SELECTION with only one dimension (i.e., Dim) like

SELECTION(Dim.DimID = x), such that x is a set of

DimIDs that satisfy the user’s query condition (UC)

associated with one dimension called Dim (Note that

DimID is the most detailed level of dimension Dim). The

user’s query condition associated with dimension Dim is

of the form “Dim (A OP c)”, where A can be a

hierarchical or non-hierarchical attribute of dimension

Dim, OP can be any comparison operator defined by our

OLAP query grammar (e.g., <, >, =, IN LIST), and c is a

constant or set of constants. UC is a compound condition

of one or more simple conditions against dimension Dim

(connected via logical operators AND and OR). We

would like to eliminate the inner/natural joins between

the cube and dimension tables that would ordinarily be

required to exclude cube rows that do not satisfy the

query restriction. The implementation of SELECTION is

divided into the following three steps.

First, we need to find all dimension members (DimIDs)

satisfying the query restriction called UC (defined by the

user). For simplicity, we consider the query condition

UC =Dim (A OP c).

1. If A is a hierarchical attribute level in dimension

Dim, then we retrieve all DimIDs (most detailed

integer values) that satisfy the comparison

UC(AOP C), using the enhanced hierarchy manager

(mapGraph).

2. If A is a non-hierarchical attribute level, then we

retrieve all DimIDs that satisfy UC, using the

FastBit compressed bitmap index created for each

non-hierarchical attribute level in the dimension.

If UC is the AND/OR of simple conditions, then we use

mapGraph and/or FastBit bitmap indexes to identify the

set of DimIDs that satisfy UC. Using the mapGraph and

the bitmap indexes ensure that the resulting DimIDs that

satisfy the query condition (UC) associated with

dimension Dim are sorted. This result is organized as an

ordered set of contiguous ranges that is stored in a main-

memory sorted array. Given a DimID value v, we can

directly apply a binary search within the sorted array to

verify the existence of that given value. We can use

similar techniques to find and store the dimension IDs for

other user’s dimension conditions mentioned in the

SELECTION operator. An example of this will be

provided shortly.

Second, the SELECTION at this step has the most

detailed dimension values that satisfy the user’s

conditions on those given dimensions (e.g.,

SELECTION(Dim.DimID = x AND Dim1.Dim1ID = y

OR ...) V, such that x and y are all DimIDs and Dim1IDs

that satisfy the user’s conditions on dimensions Dim and

Dim1 respectively). We access the Berkeley database

Hilbert R-tree index of view V, and use the Linear

Breadth First (LBF) Search algorithm to efficiently

answer the SELECTION operator. We stress that the

initial LBF pre-dates the work in this research and

answers very simple range queries. However we will

soon see how the initial Sidera LBF is enhanced to

answer complex range queries.

Finally, if no indexes are available for dimension tables

and views, then we can answer the SELECTION

operation by sequentially scanning dimension tables and

views to find those rows that match the condition.

B. Physical Operators For Selection

We explained how the SELECTION operation is

resolved. Specifically, we first use the hierarchy manager

and the bitmap index manager to convert the user’s

condition to a condition that is in turn answered by

accessing the appropriate R-tree index view/cuboid.

Consider SELECTION(D(Cond)) C. Cond is a user’s

condition of the form A OP c, where A is an attribute of

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

136

dimension D, OP is a comparison operator (IN LIST, >,

<, etc), and c is a constant or list of constants. C is the

index cuboid/view that returns cells satisfying the user’s

condition Cond. We simply replace

SELECTION(D(Cond)) C, by the following physical

operators:

 If (A is a non-hierarchical attribute of dimension D)

THEN F = bitMapAccess(D, A OP c) ELSE F =

mapGraph(D, A OP c)

BerkeleyRtreeAccess (C, F). Here F is a set of dimension

IDs satisfying the user’s condition on dimension D, C is

the Hilbert R-tree index cuboid needed to answer the

query.

C. In-Memory Hash Table Representation

As was discussed in the previous section, some of our

OLAP physical operators require an in-memory hash

table data structure for efficient searching and inserting.

In practice, the entry of a hash table is of the form (k,v),

where k represents the search key of the hash table and v

its associated value [56]. In our case, the value of the

search key k is the value(s) of the feature attributes that

will be in the result of a given OLAP operator, while v is

the value of the measure attributes. In general, a hash

table consists of an array of size N, and a hash function h

that maps values of a given type (string, array of integers,

etc.) to integers between [0, N-1].

In our case, for each physical operator that needs an

internal hash table to be executed, we create a hash table

(hT) of size N, where N is equivalent to the cardinality

product of the result of the OLAP operator, and a hash

function h that maps the values for one or more feature

attributes to a specific integer between 0 and N-1.

Algorithm-1 shows an implementation of our hash

function. The input of the algorithm consists of a list of

feature attributes fA, an array of cardinality products

(aCP) and an array (aV) that possesses the values of the

feature attributes to be mapped to an integer between [0,

N-1]. Let the list of feature attributes be of the form fA =

{f1 , f2 , . . ., fi , . . ., fn }, where n is the number of

feature attributes in the result of a given OLAP physical

operator. We can thus say that aCP can be written as {CP

f1, CP f2 , . . ., CP fn }, where the value of CP fi

represents the cardinality product of all subsequent

feature attributes {fi+1 , fi+2 , . . ., fn }. Note that CP fn

equals 1. aV has n values {aV1 , aV2 , . . . , aVn }, one

value for each feature attribute fi in fA. It is crucial for

one to maintain the exact sequential order of the

numerical values in aV as they each represent a specific

feature attribute. Algorithm returns the hash key for the

values of the feature attributes (aV). Our hash function

ensures O(1) processor running time for searching,

inserting and deleting entries from the hash table.

Moreover, the example below will illustrate how our

hash function ensures that the entries of the hash table

are sorted according to the list of attributes in fA.

Algorithm-1: Hash Function Algorithm

Input: List of Feature attributes fA{d1.d1ID,

d2.d2ID, . . .,dn.dnID} where n is the number

of feature attributes of the result, a list of

cardinality products aCP{CP1(d2.d2ID,

d3.d3ID, . . ., dn.dnID), CP2(d3.d3ID,

d4.d4ID, . . ., dn.dnID), . . ., CPn(1)}, and the

values of the feature attributes is v(d1ID,

d2ID, . . ., dnID)

Output: An integer x between 0 and N-1, where N is

the cardinality product for attributes in fA.

1 Initialize x to 0

2 for each feature attribute in array fA stored at

index i do

3 x = x + (v[i]-1) * CP[i]

4 end for

5 return x

Let us assume that we need to find the hash value of the

following set of feature attributes (CustomerID, StoreID,

ProductID) (3, 10, 5). The input of Algorithm is:

 fA = {Customer.CustomerID, Store.StoreID,

Product.ProductID}

 Array aCP of cardinality products. aCP = {600, 50,

1}, 600 is the cardinality product of (StoreID,

ProductID), while 50 is the cardinality product of

ProductID.

 Array aV is the values of the feature attributes in fA,

aV= {3, 10, 5}. In this case, 3 is the value of

CustomerID, 10 is the value of StoreID and finally 5

is the value of ProductID.

Using the hash function outlined in Algorithm, the hash

value of key (3,10,5) is: (3-1) * 600 + (10-1) *50 + 5-1 =

1200 + 450 + 4 = 1654 < 3000. This means that

key(3,10,5) is stored in the array hA at the index of 1654.

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

137

D. Index Based Selection Algorithm

Algorithm-2 is an algorithm applied to answer the

SELECTION operator efficiently. Before we access the

indexed cuboid/group-by to return the cube cells that

satisfy the query restriction, we transform the user’s

query constraints that are specified on the attributes of

the dimensions into the most detail-oriented level.

Algorithm utilizes a function called

transformSELECTION() to convert the user’s query

restriction into a most detail-oriented value that can be

utilized by our OLAP query engine. After this process,

we open the Berkeley DB database object that represents

the appropriate Hilbert R-tree index for the group-by

(e.g., called V) to answer the selection operator. Finally,

a processSelection() is applied which uses the Hilbert R-

tree index for view V to answer the transformed user’s

condition and return the result.

Algorithm-2: SELECTION Algorithm

Input: A user-defined OLAP selection condition dC,

a hierarchy manager (mapGraph) containing

the hierarchical attributes data, a cube C, an

appropriate view V to answer the

SELECTION operator, and a bitmap index

manger biM that contains the bitmap indexes

for the needed non-hierarchical attributes.

Output: Fully resolved SELECTION (I with all

detailed level values satisfying dC).

1 create a new array OP of size n, where n is the

number of logical operators (AND and OR)

that are used to form compound conditions,

each associated with a dimension.

2 Use dC to get those logical operators and

store them in OP.

3 Invoke transformSELECTION(dC,mapGraph,

biM)

4 Open the Berkeley database object called db

that contains the Hilbert R-tree index for

group-by V .

db.open(NULL, C, V , DB-RTREE, DB

RDONLY, 644);

5 get result I from disk, I =

processSelection(dC, db, OP)

The primary focus of Algorithm is to replace the user’s

query restrictions that are specified within the

SELECTION operator into other restrictions (dC) that

can be solved against the indexed data stored in the

physical cube. As was illustrated, a SELECTION(Dim.A

OP c) View is translated into a

SELECTION(Dim.DimID = x)View where x is a set of

DimIDs satisfying the condition (Dim.A op c).

Algorithm-3: SELECTION Transformation Algorithm

Input: A user-defined OLAP selection condition dC,

a hierarchy manager mapGraph, OP array of

logical operator, and a bitmap index manager

biM.

Output: The user’s condition in the most detail-

oriented form (primary key form).

1 for each dimension condition Ci in dC do

2 for each expression ej in Ci do

3 if attribute (A) involved in ej is a hierarchical

attribute level then

4 arrayj = mapGraph.getBaseID(A, ej)

5 Else

6 arrayj = biM.getBaseID(A, ej)

7 end if

8 if Logical operator between ej and ej−1

equals AND then

9 arrayj = setIntersection(arrayj , arrayj−1)

10 Else

11 arrayj = setUnion(arrayj , arrayj−1)

12 end if

13 end for

14 create a new range array newR of size |arrayj

|

15 store integer values in arrayj as a sorted set of

contiguous ranges

16 Remove the current SELECTION condition

Ci and replace it with Di.DiID =newR such

that newR has all IDs that satisfy condition Ci

associated with Di.

17 end for

III. RESULTS AND DISCUSSION

Cost of the Selection Operation

We must be able to estimate the cost of each OLAP

physical operator that we use in the physical OLAP

query plan. It is well-understood that it is slower to

retrieve data from a disk than do anything with the data

once it is in the main memory. Therefore, we use the

number of disk I/O to estimate the cost of an OLAP

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

138

operation. However, we shall also mention the processor

running time when the amount of process time is

proportional to a specific variable (i.e., n2).

The input argument for the SELECTION operator is a

Hilbert packed R-tree indexed group-by stored as a

Berkeley DB database object on disk. Also, the

SELECTION requires the data of non-hierarchical and

hierarchical attributes in order to convert the user’s query

restriction to the most detail-oriented level form

restriction. At run-time, the enhanced mapGraph

hierarchy manager is used to represent the data of

hierarchical attributes. In addition, we create another in-

memory index manager called the Bitmap Index

Manager to represent the data of each required non-

hierarchical attribute in the SELECTION operator. We

also assume that we have enough memory to store those

two managers (mapGraph and indexManager).

The result of the SELECTION is left in memory unless it

is required to be returned to the disk. It is important to

mention that the sorted arrays that are used to store the

set of contiguous ranges are left in memory as well, until

the SELECTION operation terminates. Recall that the

sorted arrays represent the query restriction in the most

detailed level form.

Theorem-1: The cost of the SELECTION operator is

bounded as the cost of sequentially scanning B(V) and

D(V), where V is the appropriate packed R-tree index to

answer the SELECTION, B(V) is the number of index

blocks, and D(V) is the number of disk blocks. Cost =

B(V) + D(V) I/O.

Proof: SELECTION uses the Linear BFS strategy to

retrieve records that satisfy its condition. LBFS uses a

top-to-bottom/left-to-right search pattern for the packed

R-tree indexed cube. The indexed cube is stored

physically on disk per consecutive disk IDs, using the

same top-to-bottom/left-to-right fashion. Also, the data

blocks follow this ordering. The worst case is to scan

sequentially all index blocks and data blocks. Number of

Disk I/O is B(V) + D(V) blocks.

We note, however, there is also a large amount of

processor time that may aff ect our assumption that only

the disk I/O time is significant. If the condition of the

SELECTION has k distinct feature attributes, then k

sorted arrays are used to store IDs that satisfy the user’s

condition, where the larger sorted array has n IDs. We

also assume that D(V) has m records (cells).

Theorem-2: The worst case processor running time of

the SELECTION operator has a bound of O(m * log(n)).

Proof: In the worst case, we scan sequentially all index

blocks and data blocks of view V. For each index block b,

we perform a binary search to check if it intersects the

selection condition that is stored as a set of sorted arrays.

The worst case processor running time for the index scan

is k * log(n) * B(V). Also, in the worst case, for each

record (cell) of V we have to perform a binary search to

check if it intersects the selection condition. The worst

case running time for the data scan is k * log(n) * m.

Finally, the worst case processor running time is k *

log(n) * B(V) + k * log(n) * m which can be written as k

* log(n) * (B(v) + m). This result can be re-written as k *

log(n) * (O(m)) because m, number of records,

dominates the number of index blocks. Finally, since k

represents a small number of feature attributes, the worst

case running time can be bounded as O(m * log(n)) in

practice.

The cost of the SELECTION algorithm can be

determined by the sums of (a) the disk I/O and (b) the

processor running time, as follows:

1. The worst case number of disk I/O is B(V) + D(V)

disk I/O.

2. The worst case processor running time is O(m *

log(n)).

In practice, we observe that for most queries the number

of disk I/O dominates the processor running time. The

processor time still has some effect on the total execution

time.

IV. CONCLUSION

In this paper, we have presented number of algorithms

for execution of the operations of our OLAP algebra.

These algorithms build upon the efficient OLAP Sidera

data storage and data structures. Moreover, the query

engine uses an in-memory hash table structure that

allows efficient implementation of these algorithms. In

the next chapter, we will discuss various experimental

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

139

results that support the design decisions that we have

made.

In summary, our OLAP query processor complements

the efficient OLAP storage engine and the OLAP query

grammar and algebra by providing the final piece that

the Sidera DBMS requires in order to support high

performance OLAP DBMS within the ROLAP

environment.

V. REFERENCES

[1] Oracle essbase. http://www.oracle.com/us/solutions

/ent-performancebi/business intelligence/ essbase/

index.html.

[2] T. Eavis and R. Sayeed. High performance analytics

with the r3-cache. Data Warehousing and

Knowledge Discovery (DaWak), 2009.

[3] D. Kossmann J.-P. Dittrich and A. Kreutz. Bridging

the gap between olap and sql. In International

conference on Very Large Data Bases (VLDB),

pages 1031–1042, 2005.

[4] Thomas P. Nadeau and Toby J. Teorey. Olap query

optimization in the presence of materialized views.

HICCS, 2003.

[5] O. Romero and A. Abello. On the need of a

reference algebra for olap. In International

conference on Data warehousing and Knowledge

Discovery (DaWak), pages 99–110, 2007.

[6] T. Sellis, N. Roussopoulos, and C. Faloutsos. The

r+-tree - a dynamic index for multidimensional

objects. VLDB, pages 507–518, 1987.

[7] Sas olap server.

http://www.sas.com/technologies/dw/storage/mddb/i

ndex.html.

[8] Olap4j. http://www.olap4j.org

[9] Olapdml. http://oracle.com

http://www.oracle.com/us/solutions

