
IJSRSET162143 | Received: 15 January 2016 | Accepted: 22 January 2016 | January-February 2016 [(2)1: 143-147]

© 2016 IJSRSET | Volume 2 | Issue 1 | Print ISSN : 2395-1990 | Online ISSN : 2394-4099
Themed Section: Engineering and Technology

143

Secure Web Application: Preventing Application Injections

Chokhawala Kirit I., Dr. Vinit Kumar Chuabay, Dr. A. R. Patel

Department of Computer Science and Engineering,. Mewar University, Rajasthan, India

ABSTRACT

In the recent years, web applications are the number one source of vulnerabilities targeted by Hackers. Although

traditionally companies have used intrusion detection and prevention systems which monitor the network in general,

there is now a widespread use of Web Application Firewalls as a security solution that monitors and protects only

web applications. A web application is a software application that is accessed over the Internet using HyperText

Transfer Protocol (HTTP). In a typical web application a client, such as a browser, interacts with a web server by

exchanging a series of messages that are made up of HTTP requests and responses. An attacker often exploits

vulnerabilities that exist in a web application to launch attacks. The focus of this research paper is to study and

analyze the application level attacks for secure web application. Application level attacks covered Cross Site

Scripting attack, SQL injection attack, Command Injection Attack and Cookie Poisoning attack.

Keywords - Web application, Cross Site Scripting attack, SQL injection attack, Command Injection Attack and

Cookie Poisoning attack.

I. INTRODUCTION

Nowadays web applications have become ubiquitous. As

the number of web applications increases the amount of

traffic on the internet is also growing up. This results in

the increasing threat of web applications being attacked.

They continue to be a prime vector of attack for

criminals, and this trend shows no sign of abating;

attackers increasingly launch attacks like cross-site

scripting, SQL injection and many other techniques

aimed at the application layer. Web application

vulnerabilities can have many things including poor

input validation, insecure session management,

improperly configured system settings and flaws in

operating systems and web server software.

Certainly writing secure code is the most effective

method for minimizing web application vulnerabilities.

However, writing secure code is much easier said than

done and involves several key issues.

 Security has been the critically important part of

majority of web applications. The web applications

access the web server which in turn accesses the

database servers. Thus proper security has to be

implemented at every step during the access mechanism.

Analysis carried out by Common Vulnerabilities and

Exposures (CVE) [1] reports that majority of today‘s

security loop holes are found in web applications.

Application level attacks known attacks include Cross

Site Scripting attack, SQL injection attack, Command

Injection and Cookie Poisoning etc, whose main aim is

to tamper or deface web applications or impersonate as a

real legitimate user. Web applications provide users with

client server functionality by accessing a series of web

pages. These web pages often contain dynamic

interactive web content and script code which gets

executed in the user browser. Thus web applications are

continuously subjected to attacks [2][3][4] such as cross-

site scripting, cookie stealing, session hijacking, browser

hijacking, and the most recent being self-propagating

worms in Web-email and social networking sites. In fact

most of the research conducted shows that web

application attacks are the most common problems on

the internet today.[5]

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

144

II. SECURE WEB APPLICATION: PREVENTING

APPLICATION INJECTIONS

A. Cross Site Scripting Attack

Cross Site Scripting (XSS) vulnerabilities have been the

nightmare for Web applications for years now. Recent

studies have shown that XSS has become the most

common security problem. An analysis of the WASC [6]

reveals that 100,059 XSS vulnerabilities have been

detected by analyzing 31,373 Web sites. Cross Site

Scripting (XSS) vulnerabilities penetrate web

applications by injecting client side script into web

pages viewed by other users. Majority of the websites

including Face book, Twitter, McAfee, MySpace, eBay

and Google have been the targets of XSS exploits. XSS

occurs because of various limitations of security existing

in many Web applications .i.e. when user inputs are not

properly sanitized. The code to execute XSS is written in

popular languages like PHP, Java,.NET. Attackers inject

malicious code through these inputs, thereby causing

unintended script executions through clients‟ browsers.

Although a number of solutions have been proposed by

researchers over time ranging from static analysis to

complex runtime protection mechanisms, the data

collected by semantic as of 2007 reveal that 80.5% of all

security vulnerabilities are XSS.

Let‘s demonstrate XSS with a simple example. Assume

there's a public forum where people can ask Questions

regarding computer science. Each question is stored in a

database and rendered as a list, if someone requests the

relevant section of the forum. Such a list might look like

this (No XSS embedded here):

Sample forum listing:

<html>

<head>

<title>The Question and Answer example forum –

Computer Science section</title>

<link rel="stylesheet" type="text/css" href="style.css">

</head>

<body>

List of questions:

<p>Q: "Which is the best <i> OOP language </i> in

current times

</p>

<p>Q: "What are the attributes of RDMS?"</p>

</body>

</html>

When a hacker visits this page he will immediately

notice that the text OOP language is rendered italic in

his browser and conclude that the user that posted the

question added the corresponding tags himself. Now the

hacker might post a "question" in a different way like

this:

<Script>alert (‘you have been XSSed') ;< /script>

Forum listing with embedded XSS attack:

<html>

<head>

<title>The Question and Answer example forum –

Computer Science section</title>

<link rel="stylesheet" type="text/css" href="style.css">

</head>

<body>

List of questions:

<p>Q: "Which is the best <i> OOP language </i> in

current times

</p>

<p>Q: "What are the attributes of RDMS?"</p>

<p>Q: "<Script>alert (‗you have been XSSed') ;

< /script>"</p>

</body>

</html>

Now, every time a user requests this list, a pop-up will

be generated and appear in that user's browser that

displays the words "you have been XSSed". While only

some clever users will actually consider this an attack,

other will surely not pay any heed and consider it as a

normal pop up. By this way of injecting malicious

scripts into web pages, an attacker can gain high access-

privileges to sensitive page content, cookies, and a

variety of other information maintained by the browser

on behalf for user, making cross-site scripting attacks a

unique case of code injection [7].

Types of XSS Attacks:

XSS attacks are mainly categorized into three types:

1. Persistent or Stored XSS

2. Non Persistent or Reflected XSS

3. DOM based XSS

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

145

1. Persistent or Stored Attack:

Stored XSS works if an HTML page includes data

stored on the Web server (e.g. from a database) that

originally comes from user supplied data. All an attacker

has to do is to find a vulnerable server and post an attack.

From that moment on, the server will distribute the

exploit automatically to all users requesting the

vulnerable page. Persistent or stored XSS attack is called

persistent because it gets stored somewhere on the server

and the effect of the attack is not immediate.

An example of this type of attack is when someone

writes a HTML formatted review or comments on a

review board like social networking websites or forum

for other users to read. When some user reads the review

the code gets executed on the user‘s browser and does

some unwanted stuff like stealing cookies, redirect to

some other page including website defacement etc.

For example the code in the comment or review can be

like this

 Thank for your review <script>

window.location.href="http://www.abc.com"</script>

The above message will be stored in the database as it is

and when some future user visits the page, the comment

will be displayed but immediately the code in the script

tag will be executed and the victim will be redirected to

- abc.com.

2. Non-Persistent or Reflected XSS:

The second type (reflected XSS) works because some

part of an HTTP request (usually a URL Parameter,

cookie or the referrer location) is reflected by the Web

server into the HTML content that is returned to the

requesting browser. The word ―Reflected here means

that input is written back unaltered. In this case, a hacker

would have to craft a malicious URL and make someone

else follow/open that link:

http://www.example.com/mypage.asp?id=<script>doBa

dThings () ;< /script>

This can be done by sending someone a manipulated e-

mail (with the link) and use Phishing techniques to make

the receiver believe that clicking on the link is a good

thing. A second Approach would be to post such a link

somewhere on the Internet, e.g. in a blog, forum, and

wait for someone to follow it.

3. DOM based XSS:

The third type (DOM-based XSS) is very similar to the

reflected attack. The difference is that the attack code

isn't embedded into the HTML content back sent by the

server. Therefore all server-side XSS detection

techniques fail. Instead, it is embedded in the URL of

the requested page and executed in the user's browser by

faulty script code, contained in the HTML content

returned by the server. Faulty means that the script reads

a URL parameter and dynamically adds it to the

document object model without any validation:

document. Write (document.location.href); This way,

unwanted tags are added to the DOM locally at runtime

and are subsequently executed.

B. SQL Injection Attack

SQL Injection attack [8],[9] is one of the many web

attack mechanisms used by hackers to steal data from

organizations. It is perhaps one of the most common

application layer attack techniques used today. It is the

type of attack that takes advantage of improper coding

of your web applications that allows hacker to inject

SQL commands into say a login form to allow them to

gain access to the data held within your database.

SQL injection attacks pose a serious security threat to

Web applications: they allow attackers to obtain

unrestricted access to the databases underlying the

applications and to the potentially sensitive information

these databases contain. Although researchers and

practitioners have proposed various methods to address

the SQL injection problem, current approaches either

fail to address the full scope of the problem or have

limitations that prevent their use and adoption.

Many researchers and practitioners are familiar with

only a subset of the wide range of techniques available

to attackers who are trying to take advantage of SQL

injection vulnerabilities. As a consequence, many

solutions proposed in the literature address only some of

the issues related to SQL injection. To address this

problem, the different types of SQL injection attacks

known to date are listed below.

 Tautologies

 Piggybacked Queries

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

146

 Malformed Queries

 Inference

 Union Queries

 Alternate Encodings

 Leveraging Stored Procedures

Following are some example queries showing the

above variants of SQLIA

 SELECT acct FROM users WHERE login=

‗‘OR 1=1—‗ AND pin= 0 //tautology

 SELECT acct FROM users WHERE login= ‗‗

UNION SELECT cardNo from CreditCards

where acctNo = 7032 -- AND pin= 0 //UNION

 SELECT acct FROM users WHERE login=

‗abc‘ AND pin= 0;

 drop table users //piggybacked queries

 SELECT acct FROM users WHERE login=

‗abc‘ AND pin= convert(int, (select top 1 name

from sysobjects where xtype = ‗u‘))

//Malformed queries

 SELECT acct FROM users WHERE login=

‗legalUser‘ AND ASCII(SUBSTRING((select

top 1 name from sysobjects), 1, 1)) > X

WAITFOR 5 –‗ AND pin= //Inferences

 SELECT acct FROM users WHERE login=

‗‘ AND pion=0;

exec(char(0x73687574646f776e)) //Alternate

encodings

For strored procedures attackers can invoke these

procedures by manipulating the query. Following are

some defense mechanisms [8], [9] which will prevent

SQL Injection attack.

 Parameterize all Queries

 Validating input

 Limiting Permissions

 Use Only Stored Procedures

 Concealing Error Messages

 Segregate data

 Use encryption/hash functions where

appropriate

 Limiting Damage

C. Command Injection attack

The purpose of the command injection attack [10] is to

inject and execute commands specified by the attacker in

the vulnerable application. In situation like this, the

application, which executes unwanted system commands,

is like a pseudo system shell, and the attacker may use it

as any authorized system user. However, commands are

executed with the same privileges and environment as

the application has. Command injection attacks are

possible in most cases because of lack of correct input

data validation, which can be manipulated by the

attacker (forms, cookies, HTTP headers etc.).

The variants of the command injection attack are

discussed below.

Attacker adds his own code: The attacker extends the

default functionality of the application without the

necessity of executing system commands.

OS Command Injection: An OS command injection

attack occurs when an attacker attempts to execute

system level commands through a vulnerable application.

D. Cookie Poisonning Attack

Cookie Poisoning [11] attacks involve the modification

of the contents of a cookie (personal information stored

in a Web user's computer) in order to bypass security

mechanisms. Using cookie poisoning attacks, attackers

can gain unauthorized information about another user

and steal their identity.

Many Web applications use cookies to save information

(user IDs, passwords, account numbers, time stamps,

etc.). The cookies stored on a user's hard drive maintain

information that allows the applications to authenticate

the user identity, speed up transactions, monitor

behavior, and personalize content presented to the user

based on identity and preferences. For example, when a

user logs into a Web site that requires authentication, a

login CGI validates his username and password and sets

a cookie with a numerical identifier in the user's browser.

When the user browses to another page, another CGI

(say, preferences.asp) retrieves the cookie and displays

personalized content according to the values contained

in the cookie.

The cookies are as shown below

GET /store/buy.asp?checkout=yes HTTP/1.0 Host:

www.onlineshop.com

Accept: */* Referrer:

http://www.onlineshop.com/showprods.asp

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

147

Cookie: SESSIONID=570321ASDD23SA2321;

BasketSize=3; Item1=2892;

Item2=3210; Item3=9942; TotalPrice=16044;

The request includes a cookie that contains the following

parameters: SESSIONID, which is a unique

identification string that associates the user with tthe

session of the user. This session id can be tampered to

poison the cookie.

III. CONCLUSION

This paper carried out analysis of various application

level attacks and classified those attacks. The

information contained in this paper could be very useful

for new application/web developers for developing

smarter and secure applications running over the web.

Although a complete secure application is not

guaranteed in the modern world, but still a considerable

amount of work and research has been done in this area.

Completely securing a web application seems to be a

daunting task for developers today.

IV. REFERENCES

[1] Sandeep Bhatkar, Abhishek Chaturvedi, and R.

Sekar.Dataflow anomaly detection. In IEEE

Symposium on Security and Privacy, May 2006

[2] E. Chien. Malicious Yahooligans.

http://www.symantec.com/avcenter/reference/malic

ious. yahooligans.pdf, 2006.

[3] Open Web Application Security Project. The ten

most critical Web application security

vulnerabilities http://umn.dl.sourceforge.net

/sourceforge/owasp/

OWASPTopTen2004.pdf,2004

[4] The Samy worm. http://namb.la/popular

[5] MITRE. Common vulnerabilities and exposures.

http://cve.mitre.org/cve/, 2007

[6] Xie and A. Aiken, ―Static Detection of Security

Vulner-abilities in ScriptingLanguages,Proc. 15th

Use nix Security Symp. (Use nix-SS 06), vol. 15,

Use nix, 2006, pp.179-192.

[7] https://www.isecpartners.com/media/11961/CSRF_

Pape r.pdf

[8] William G.J. Halfond, Alessandro Orso, Member,

IEEE Computer Society, and Panagiotis Manolios,

Member, IEEE Computer Society, ―WASP:

Protecting Web Applications Using Positive

Tainting and Syntax-Aware Evaluation‖,, IEEE

TRANSACTIONS ON SOFTWARE

ENGINEERING, VOL. 34, NO. 1,

JANUARY/FEBRUARY 2008

[9] Justin Claarke, SQL Injection Attack and Defenses.

U. S.: Syngress Publishing, Inc., 2009.

[10] Infodox, Insecurity Research, Online],

http://insecurety.net/?p=403

[11] Imperva Online], https://www.imperva.com/

resources /glossary?term=cookie_poisoning.

https://www.imperva.com/

