

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

202

play an important role for this nascent cloud economy to

become fully established; where users will need ways to

assess risk and gain trust in the cloud.

Recently, the notion of public auditability has been proposed

in the context of ensuring remotely stored data integrity under

different system and security models [9], [13], [11], and [8].

Public auditability allows an external party, in addition to the

user himself, to verify the correctness of remotely stored data.

However, most of these schemes [9], [13], [8] do not consider

the privacy protection of users’ data against external auditors.

Indeed, they may potentially reveal user’s data to auditors, as

will be discussed in Section 3.4. This severe drawback greatly

affects the security of these protocols in cloud computing.

From the perspective of protecting data privacy, the users,

who own the data and rely on TPA just for the storage security

of their data, do not want this auditing process introducing

new vulnerabilities of unauthorized information leakage

toward their data security [14], [15]. Moreover, there are legal

regulations, such as the US HLAlth Insurance Portability and

Accountability Act (HIPAA) [16], further demanding the

outsourced data not to be leaked to external parties [10].

Simply exploiting data encryption before outsourcing [15],

[11] could be one way to mitigate this privacy concern of data

auditing, but it could also be an overkill when employed in the

case of unencrypted/public cloud data (e.g., outsourced

libraries and scientific data sets), due to the unnecessary

processing burden for cloud users. Besides, encryption does

not completely solve the problem of protecting data privacy

against third-party auditing but just reduces it to the complex

key management domain. Unauthorized data leakage still

remains possible due to the potential exposure of decryption

keys.

Therefore, how to enable a privacy-preserving third party

auditing protocol, independent to data encryption, is the

problem we are going to tackle in this paper. Our work is

among the first few ones to support privacy-preserving trusted

public auditing in cloud computing, with a focus on data

storage. Besides, with the prevalence of cloud computing, a

predictable increase of auditing tasks from different users may

be deputed to TPA. As the individual auditing of these

growing tasks can be tedious and cumbersome, a natural

demand is then how to enable the TPA to efficiently perform

multiple auditing tasks in a batch manner, i.e., simultaneously.

To address these problems, our work utilizes the technique of

public key-based Homogenous elongate authenticator (or

HLA for short) [9], [13], [8], which enables TPA to perform

the auditing without demanding the local copy of data and

thus drastically reduces the communication and computation

overhead as compared to the straightforward data auditing

approaches. By integrating the HLA with random masking,

our protocol guarantees that the TPA could not learn any

knowledge about the data content stored in the cloud server

(CS) during the efficient auditing process. The collecting and

algebraic properties of the authenticator further benefit our

design for the batch auditing. Specifically, our contribution

can be summarized as the following three aspects:

1. We motivate the Trusted public auditing system of data

storage security in cloud computing and provide a

privacy-preserving auditing protocol. Our scheme

enables an external auditor to audit user’s cloud data

without learning the data content.

2. To the best of our knowledge, our scheme is the first to

support scalable and efficient privacy-preserving public

storage auditing in cloud. Specifically, our scheme

achieves batch auditing where multiple deputed

auditing tasks from different users can be performed

simultaneously by the TPA in a privacy-preserving

manner.

3. We prove the security and justify the performance of

our proposed schemes through concrete experiments

and comparisons with the state of the art.

The rest of the paper is organized as follows: Section 2

introduces the system and threat model, and our design goals.

Then, we provide the detailed description of our scheme in

Section 3. Section 4 gives the security analysis and

performance evaluation. Section 5 presents further discussions

on a zero-knowledge auditing protocol, followed by Section 6

that overviews the related work. Finally, Section 7 gives the

concluding remark of the whole paper.

II. PROBLEM STATEMENT

2.1 The System and Threat Model

We consider a cloud data storage service involving three

different entities, as illustrated in Fig. 1: the cloud user, who

has large amount of data files to be stored in the cloud; the

cloud server, which is managed by the cloud service provider

to provide data storage service and has significant storage

space and computation resources (we will not differentiate CS

and CSP hereafter); the third-party auditor, who has expertise

and capabilities that cloud users do not have and is trusted to

assess the cloud storage service reliability on behalf of the

user upon request. Users rely on the CS for cloud data storage

and maintenance. They may also dynamically interact with the

CS to access and update their stored data for various

application purposes. As users no longer possess their data

locally, it is of critical importance for users to ensure that their

data are being correctly stored and maintained. To save the

computation resource as well as the online burden potentially

brought by the periodic storage correctness verification, cloud

users may resort to TPA for ensuring the storage integrity of

their outsourced data, while hoping to keep their data private

from TPA.

Figure 1: The architecture of cloud data storage service

We assume the data integrity threats toward users’ data can

come from both internal and external attacks at CS. These

may include: software bugs, hardware failures, bugs in the

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

203

network path, economically motivated hackers, malicious or

accidental management errors, etc. Besides, CS can be self-

interested. For their own benefits, such as to maintain

reputation, CS might even decide to hide these data corruption

incidents to users. Using third-party auditing service provides

a cost-effective method for users to gain trust in cloud. We

assume the TPA, who is in the business of auditing, is reliable

and independent. However, it may harm the user if the TPA

could learn the outsourced data after the audit.

Note that in our model, beyond users’ reluctance to leak data

to TPA; we also assume that cloud servers have no incentives

to reveal their hosted data to external parties. On the one hand,

there are regulations, e.g., HIPAA [16], requesting CS to

maintain users’ data privacy. On the other hand, as users’ data

belong to their business asset [10], there also exist financial

incentives for CS to protect it from any external parties.

Therefore, we assume that neither CS nor TPA has

motivations to collude with each other during the auditing

process. In other words, neither entity will deviate from the

prescribed protocol execution in the following presentation.

To authorize the CS to respond to the audit deputed to TPA’s,

the user can issue a certificate on TPA’s public key, and all

audits from the TPA are authenticated against such a

certificate. These authentication handshakes are omitted in the

following presentation.

2.2 Design Goals

To enable privacy-preserving trusted public auditing for cloud

data storage under the aforenamed model, our protocol design

should achieve the following security and performance

guarantees:

1. Public auditability: to allow TPA to verify the correctness

of the cloud data on demand without retrieving a copy of

the whole data or introducing additional online burden to

the cloud users.

2. Storage correctness: to ensure that there exists no

cHLAting cloud server that can pass the TPA’s audit

without indeed storing users’ data intact.

3. Privacy preserving: to ensure that the TPA cannot derive

users’ data content from the information collected during

the auditing process.

4. Batch auditing: to enable TPA with secure and efficient

auditing capability to cope with multiple auditing

deputations from possibly large number of different users

simultaneously.

5. Lightweight: to allow TPA to perform auditing with

minimum communication and computation overhead.

III. THE PROPOSED SCHEMES
This section supports the trusted public auditing in cloud

computing, with a focus on data storage. Besides, with the

prevalence of cloud computing, a predictable increase of

auditing tasks from different users may be deputed to TPA.

Our work also utilizes the technique of public key-based

homogenous linear authenticator or HLA which enables TPA

to perform the auditing without demanding the local copy of

data and thus drastically reduces the communication and

computation overhead as compared to the straightforward data

auditing approaches. By integrating the HLA with random

masking, our protocol guarantees that the TPA could not learn

any knowledge about the data content stored in the cloud

server (CS) during the efficient auditing process. The

collecting and algebraic properties of the authenticator further

benefit our design for the batch auditing. Finally, we discuss

how to generalize our trusted public auditing scheme and its

support of data dynamics.

3.1 Notation and Preludes

 F—the data file to be outsourced, denoted as a

sequence of n blocks m1;...;mi;...;mn2 ZZpfor some

large prime p.

 MACðÞðÞ—message authentication code (MAC)

function, defined as: Kf0;1g!f0;1gl where K denotes

the key space.

 HðÞ, hðÞ—cryptographic hash functions.

We now introduce some necessary cryptographic background

for our proposed scheme.

Bilinear Map.Let GG 1, GG2, and GGT be multiplicative cyclic

groups of prime order p. Let g 1 and g2 be generators of GG1

and GG2, respectively. A bilinear map is a map e : GG1

GG2 !GGT such that for all u 2 GG1, v 2 GG2 and a;b 2 ZZp,

eðu
a
;v

b
Þ¼ eðu;vÞ

ab
. This bilinearity implies that for any u1, u2

2 GG1, v 2 GG2, eðu1 u2;vÞ¼ eðu1;vÞ eðu2;vÞ. Of course,

there exists an efficiently computable algorithm for computing

e and the map should be nontrivial, i.e., e is nondegenerate:

eðg1;g2Þ6¼1.

3.2 Definitions and Framework

We follow a similar definition of previously proposed

schemes in the context of remote data integrity checking [9],

[11], [13] and adapt the framework for Trusted public auditing

system.

This Trusted public auditing scheme consists of four

algorithms (KeyGen, SigGen, GenProof, VerifyProof).

KeyGen is a key generation algorithm that is run by the user

to setup the scheme. SigGen is used by the user to generate

verification metadata, which may consist of digital signatures.

Gen Proof is run by the cloud server to generate a proof of

data storage correctness, while Verify Proof is run by the TPA

to audit the proof.

Running a Trusted public auditing system consists of two

phases, Setup and Audit:

Setup: The user initializes the public and secret parameters of

the system by executing KeyGen, and pre-processes the data

file F by using SigGen to generate the verification metadata.

The user then stores the data file F and the verification

metadata at the cloud server, and delete its local copy. As part

of pre-processing, the user may alter the data file F by

expanding it or including additional metadata to be stored at

server.

Audit: The TPA issues an audit message or challenge to the

cloud server to make sure that the cloud server has retained

the data file F properly at the time of the audit. The cloud

server will derive a response message by executing GenProof

using F and its verification metadata as inputs. The TPA then

verifies the response via Verify Proof.

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

204

Our framework assumes that the TPA is stateless, i.e., TPA

does not need to maintain and update state between audits,

which is a desirable property especially in the Trusted public

auditing system [13]. Note that it is easy to extend the

framework above to capture a stateful auditing system,

essentially by splitting the verification metadata into two parts

which are stored by the TPA and the cloud server, respectively.

Our design does not assume any additional property on the

data file. If the user wants to have more error resilience, he

can first redundantly encodes the data file and then uses our

system with the data that has error correcting codes

integrated.
1

3.3 The Basic Schemes

Before giving our main result, we study two classes of

schemes. The first one is a MAC-based solution which suffers

from undesirable systematic demerits— bounded usage and

stateful verification, which may pose additional online burden

to users, in a trusted public auditing setting. This also shows

that the auditing problem is still not easy to solve even if we

have introduced a TPA. The second one is a system based on

Homogenous elongate authenticators, which covers much

recent proof of storage systems. We will pinpoint the reason

why all existing HLA-based systems are not privacy

preserving. The analysis of these basic schemes leads to our

main result, which overcomes all these drawbacks. Our main

scheme to be presented is based on a specific HLA scheme.

MAC-based solution. There are two possible ways to make

use of MAC to authenticate the data. A trivial way is just

uploading the data blocks with their MACs to the server, and

sends the corresponding secret key skto the TPA. Later, the

TPA can randomly retrieve blocks with their MACs and check

the correctness via sk. Apart from the high (linear in the

sampled data size) communication and computation

complexities, the TPA requires the knowledge of the data

blocks for verification.

To circumvent the requirement of the data in TPA verification,

one may restrict the verification to just consist of equality

checking. Be audited is limited by the number of secret keys

that must be fixed a priori. Once all possible secret keys are

exhausted, the user then has to retrieve data in full to

recompute and republish new MACs to TPA; 2) The TPA also

has to maintain and update state between audits, i.e., keep

track on the revealed MAC keys. Considering the potentially

large number of audit deputations from multiple users,

maintaining such states for TPA can be difficult and error

prone; 3) it can only support static data, and cannot efficiently

deal with dynamic data at all. However, supporting data

dynamics is also of critical importance for cloud storage

systems. For the reason of brevity and clarity, our main

protocol will be presented based on static data. Section 3.6

will describe how to adapt our protocol for dynamic data.

HLA-based solution. To effectively support public auditability

without having to retrieve the data blocks themselves, the

HLA technique [9], [13], [8] can be used. HLAs, like MACs,

are also some unforgeable verification metadata that

authenticate the integrity of a data block. The difference is that

HLAs can be aggregated. It is possible to compute an

aggregated HLA which authenticates a linear combination of

the individual data blocks.

The idea is as follows: Before data outsourcing, the cloud user

chooses s random message authentication code keys fskg1s,

recomputes (deterministic) MACs, fMACskðFÞg1s for the

whole data file F, and publishes these verification metadata

(the keys and the MACs) to TPA. The TPA can reveal a secret

key skto the cloud server and ask for a fresh keyed MAC for

comparison in each audit. This is privacy preserving as long as

it is impossible to recover F in full given MACskðFÞand sk.

However, it suffers from the following severe drawbacks: 1)

the number of times a particular data file can

At a high level, an HLA-based proof of storage system works

as follow. The user still authenticates each element of F ¼fmig

by a set of HLAs . The TPA verifies the cloud storage by

sending a random set of challenge fig. The cloud server then

returns ¼ii mi and its aggregated authenticator computed

from .

Though allowing efficient data auditing and consuming only
constant bandwidth, the direct adoption of these HLA based
techniques is still not suitable for our purposes. This is
because the linear combination of blocks, ¼Pii mi, may
potentially reveal user data information to TPA, and violates
the privacy-preserving guarantee. Specifically, by challenging
the same set of c block m1;m2;...;mc using c different sets of
random coefficients fig, TPA can accumulate c different linear
combinations 1;...;c. With f_igand fig, TPA can derive the
user’s data m1, m2; . . .;mcby simply solving a system of
linear equations 1. We refer readers to [17], [18] for the details
on integration of error correcting codes and remote data
integrity checking.

TABLE 1: Trusted public auditing for secured cloud storage

3.4 Trusted public auditing Scheme

Overview. To achieve privacy-preserving Trusted public

auditing, we propose to uniquely integrate the Homogenous

elongate authenticator with random masking technique. In our

protocol, the linear combination of sampled blocks in the

server’s response is disguised with randomness generated by

the server. With random masking, the TPA no longer has all

the necessary information to build up a correct group of linear

equations and therefore cannot derive the user’s data content,

no matter how many linear combinations of the same set of

file blocks can be collected. On the other hand, the correctness

validation of the block-authenticator pairs can still be carried

out in a new way which will be shown shortly, even with the

presence of the randomness. Our design makes use of a public

key-based HLA, to equip the auditing protocol with public

auditability. Specifically, we use the HLA proposed in [13],

which is based on the short signature scheme proposed by

Boneh, Lynn, and Shacham (hereinafter referred as BLS

signature) [19].

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

205

Scheme details. Let GG1, GG2, and GGT be multiplicative

cyclic groups of prime order p, and e : GG1 GG2 ! GGT be a

bilinear map as introduced in preliminaries. Let g be a

generator of GG2. HðÞis a secure map-to-point hash function:

f0;1g! GG1, which maps strings uniformly to GG1. Another

hash function hðÞ: GGT ! ZZpmaps group element of GGT

uniformly to ZZp. Our scheme is as follows:

Setup Phase: The cloud user runs KeyGen to generate the

public and secret parameters. Specifically, the user chooses a

random signing key pair ðspk;sskÞ, a random x ZZp, a random

element u GG1, and computes v g
x
. The secret parameter is sk

¼ðx;sskÞand the public parameters are pk

¼ðspk;v;g;u;eðu;vÞÞ.

Given a data file F ¼fmig, the user runs SigGen to compute

authenticator iðHðWiÞu
mi

Þ
x
2 GG1 for each i. Here, Wi¼

namekiand name is chosen by the user uniformly at random

from ZZpas the identifier of file F.

Denote the set of authenticators by ¼fig1in.

The last part of SigGen is for ensuring the integrity of the

unique file identifier name. One simple way to do this is to

compute t ¼ namekSSigsskðnameÞas the file tag for F, where

SSigsskðnameÞis the signature on name under the private key

ssk. For simplicity, we assume the TPA knows the number of

blocks n. The user then sends F along with the verification

metadata ð;tÞto the server and deletes them from local storage.

Audit Phase: The TPA first retrieves the file tag t. With

respect to the mechanism we describe in the Setup phase, the

TPA verifies the signature SSigsskðnameÞvia spk, and quits by

emitting FALSE if the verification fails. Otherwise, the TPA

recovers name.

Now it comes to the “core” part of the auditing process. To

generate the challenge message for the audit “chal,” the

TPA picks a random c-element subset I ¼fs1;...;scgof set ½1;n.

For each element i 2 I, the TPA also chooses a random value

i(of bit length that can be shorter than jpj, as explained in [13]).

The message “chal” specifies the positions of the blocks

required to be checked. The TPA sends chal ¼fði;iÞgi2Ito the

server.

Upon receiving challenge chal ¼fði; iÞgi2I, the server runs

GenProof to generate a response proof of data storage
correctness. Specifically, the server chooses a random element
r ZZ p, and calculates R ¼ eðu;vÞ

r
2 GGT . Let

0
denote the

linear combination of sampled blocks specified in chal:
0 ¼

Pi2I

imi. To blind
0

with r, the server computes: ¼ r þ
0
mod p,

where ¼ hðRÞ2 ZZp. ¼Q i2I i
i
2 GG1. It then sends f;;Rgas the

response proof of storage Meanwhile, the server also
calculates an aggregated authenticator correctness to the TPA.

With the response, the TPA runs Verify Proof to validate it by
first computing ¼hðRÞand then checking the verification
equation

Properties of our protocol. It is easy to see that our protocol

achieves public auditability. There is no secret keying material

or states for the TPA to keep or maintain between audits, and

the auditing protocol does not pose any potential online

burden on users. This approach ensures the privacy of user

data content during the auditing process by employing a

random masking r to hide , a linear combination of the data

blocks. Note that the value R in our protocol, which enables

the privacy-preserving guarantee, will not affect the validity of

the equation, due to the circular relationship between R and in

¼ hðRÞand the verification equation. Storage correctness thus

follows from that of the underlying protocol [13]. The security

of this protocol will be formally proven in Section 4. Besides,

the HLA helps achieve the constant communication over HLA

for server’s response during the audit: the size of f;;Rgis

independent of the number of sampled blocks c.

Previous work [9], [8] showed that if the server is missing a

fraction of the data, then the number of blocks that needs to be

checked in order to detect server misbehavior with high

probability is in the order of Oð1Þ. In particular, if t fraction

of data is corrupted, then random sampling c blocks would

reach the detection probability P ¼ 1 ð1 tÞ
c
. Here, every block

is chosen uniformly at random. When t ¼ 1% of the data F,

the TPA only needs to audit for c ¼ 300 or 460 randomly

chosen blocks of F to detect this misbehavior with probability

larger than 95 and 99 percent, respectively. Given the huge

volume of data outsourced in the cloud, checking a portion of

the data file is more affordable and practical for both the TPA

and the cloud server than checking all the data, as long as the

sampling strategies provides high-probability assurance. In

Section 4, we will present the experiment result based on these

sampling strategies.

For some cloud storage providers, it is possible that certain

information dispersal algorithms (IDA) may be used to

fragment and geographically distribute the user’s outsourced

data for increased availability. We note that these cloud side

operations would not affect the behavior of our proposed

mechanism, as long as the IDA is systematic, i.e., it preserves

user’s data in its original form after encoding with redundancy.

This is because from user’s perspective, as long as there is a

complete yet unchanged copy of his outsourced data in cloud,

the precomputed verification metadata ð;tÞwill remain valid.

As a result, those metadata can still be utilized in our auditing

mechanism to guarantee the correctness of user’s outsourced

cloud data.

Storage and communication tradeoff. As described above,

each block is accompanied by an authenticator of equal size of

jpjbits. This gives about 2storage over HLA on server.

However, as noted in [13], we can introduce a parameter s in

the authenticator construction to adjust this storage over HLA,

in the cost of communication over HLA in the auditing

protocol between TPA and cloud server. In particular, we

assume each block mi consists of s sectors fmijgwith 1 j s,

TABLE 2 : The Batch Auditing Protocol

where mij2 ZZp. The public parameter pkis now

ðspk;v;g;fujg;feðuj;vÞgÞ, 1 j s, where u1;u2;...;us are

randomly

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

206

To respond to the auditing challenge chal ¼fði;iÞgi2I, for 1 j s,

the cloud server chooses a random elements rjZZp, and

calculates Rj¼ eðu;vÞ
rj
2 GGT . Then, the server blinds each

0
j

¼
Pi2I imijwith rj, and derives the blinded j¼ rjþ

0
j mod p, where

¼ hðR1kR2kkRsÞ2 ZZp. The aggregated authenticator is still

computed as before. It then sends f;fj;Rjg1jsg as the proof

response to TPA. With the proof, TPA first computes ¼

hðR1kR2kkRsÞ,

The correctness elaboration is similar to (1) and thus omitted.

The overall storage over HLA is reduced to ð1 þ 1=sÞ, but the

proof size now increases roughly s due to the additional s

element pairs fj;Rjg1jsthat the cloud server has to return. For

presentation simplicity, we continue to choose s ¼ 1 in our

following scheme description. We will present some

experiment results with larger choice of s in Section 4.

3.5 Support for Batch Auditing

With the establishment of privacy-preserving Trusted public

auditing, the TPA may concurrently handle multiple auditing

upon different users’ deputation. The individual auditing of

these tasks for the TPA can be tedious and very inefficient.

Given K auditing deputations on K distinct data files from K

different users, it is more advantageous for the TPA to batch

these multiple tasks together and audit at one time. Keeping

this natural demand in mind, we slightly modify the protocol

in a single user case, and achieves the collecting of K

verification equations (forK auditing tasks) into a single one,

as shown in (3). As a result, a secure batch auditing protocol

for simultaneous auditing of multiple tasks is obtained. The

details are described as follows:

Setup phase: Basically, the users just perform Setup

independently. Suppose there are K users in the system, and

each user k has a data file Fk¼ðmk;1;...;mk;nÞto be outsourced

to the cloud server, where k 2f1;...;Kg. For simplicity, we

assume each file Fkhas the same number of n blocks. For a

particular user k, denote his/her secret key as ðxk;sskkÞ, and

the corresponding public parameter as

ðspkk;vk;g;uk;eðuk;vkÞÞwhere vk¼ g
xk

. Similar to the single

user case, each user k has already randomly chosen a different

(with overwhelming probability) name namek2 ZZpfor his/her

file Fk, and has correctly generated the corresponding file tag

tk¼ namekkSSigsskkðnamekÞ. Then, each user k runs SigGen

and computes k;ifor block mk;i: k;iHðnamekkiÞumkk;ixk

¼HðWk;iÞu
m

k
k;ixk

2 GG1ði 2f1;...;ngÞ;

whereWk;i¼ namekki. Finally, each user k sends file Fk, set of

authenticators k, and tag tkto the server and deletes them from

local storage.

Audit phase: TPA first retrieves and verifies file tag tkfor each

user k for later auditing. If the verification fails, TPA quits by

emitting FALSE. Otherwise, TPA recovers namekand sends

the audit challenge chal ¼fði;iÞgi2Ito the server for auditing

data files of all K users.

Upon receiving chal, for each user k 2f1;...;Kg, the server

randomly picks rk2 ZZpand computes Rk¼ eðuk;vkÞ
rk

. Denote

R¼ R1 R2RK, and L¼ vk1kvk2k kvkK, our protocol further

requires the server to compute k ¼ hðRkvkkLÞ. Then, the

randomly disguised responses can be generated.

Efficiency improvement. As shown in (3), batch auditing not

only allows TPA to perform the multiple auditing tasks

simultaneously, but also greatly reduces the computation cost

on the TPA side. This is because aggregating K verification

equations into one helps reduce the number of relatively

expensive pairing operations from 2K, as required in the

individual auditing, to K þ 1, which saves a considerable

amount of auditing time.

Identification of invalid responses. The verification equation

(3) only holds when all the responses are valid, and fails with

high probability when there is even one single invalid

response in the batch auditing, as we will show in Section 4.

In many situations, a response collecting may contain invalid

responses, especially fkg1kK, caused by accidental data

corruption, or possibly malicious activity by a cloud server.

The ratio of invalid responses to the valid could be quite small,

and yet a standard batch auditor will reject the entire

collecting. To further sort out these invalid responses in the

batch auditing, we can utilize a recursive divide-and-conquer

approach (binary search), as suggested by Ferrara et al. [20].

Specifically, if the batch auditing fails, we can simply divide

the collecting of responses into two halves, and repeat the

auditing on halves via (3). TPA may now require the server to

send back all the fRkg1kK, as in individual auditing. In Section

4.2.2, we show through carefully designed experiment that

using this recursive binary search approach, even if up to 20

percent of responses are invalid, batch auditing still performs

faster than individual verification.

3.6 Support for Data Dynamics

In cloud computing, outsourced data might not only be

accessed but also updated frequently by users for various

application purposes [21], [8], [22], [23]. Hence, supporting

data dynamics for privacy-preserving Trusted public auditing

is also of paramount importance. Now, we show how to build

upon the existing work [8] and adapt our main scheme to

support data dynamics, including block level operations of

modification, deletion, and insertion.

In [8], data dynamics support is achieved by replacing the
index information iwith mi in the computation of block
authenticators and using the classic data structure— Merkle
hash tree (MHT) [24] for the underlying block sequence
enforcement. As a result, the authenticator for each block is
changed to σi= (H(mi).umi)x. We can adopt this technique in
our design to achieve privacy-preserving Trusted public
auditing with support of data dynamics. Specifically, in the
Setup phase, the user has to generate and send the tree root
TRMHT to TPA as additional metadata, where the leaf nodes of
MHT are values of H(mi). In the Audit phase, besides {μ,σ,R},
the server’s response should also include {H(mi)}i€Iand their
corresponding auxiliary authentication information aux in the
MHT. Upon receiving the response, TPA should first use
TRMHT and aux to authenticate {H(mi)}i€Icomputed by the
server. Once fHðmiÞgi2I are authenticated, TPA can then
perform theQs1auditingconif; ;R;fHðmiÞgi2QIg1 viacH(1)ðm,
iÞwherei. All is πs1<i<scH(Wi)viis now replaced by

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

207

πsi<i<scH(mi)vi these changes does not interfere with the
proposed random masking technique, so data privacy is still
preserved. To support data dynamics, each data update would
require the user to generate a new tree root TRMHT , which is
later sent to TPA as the new metadata for storage auditing task.
The details of handling dynamic operations are similar to [8]
and thus omitted.

Application to version control system. The above scheme

allows TPA to always keep the new tree root for auditing the

updated data file. But it is worth noting that our mechanism

can be easily extended to work with version control system,

where both current and previous versions of the data file F and

the corresponding authenticators are stored and need to be

audited on demand. One possible way is to require TPA to

keep tracks of both the current and previous tree roots

generated by the user, denoted as fTR
1

MHT ;TR
2

MHT;...;TR
V

MHT

g. Here, V is the number of file versions and TR
V

MHT is the

root related to the most current version of the data file F. Then,

whenever a designated version v (1 vV) of data file is to be

audited, the TPA just uses the corresponding TR
v
MHTto

perform the auditing. The cloud server should also keep track

of all the versions of data file F and their authenticators, in

order to correctly answer the auditing request from TPA. Note

that cloud server does not need to replicate every block of data

file in every version, as many of them are the same after

updates. However, how to efficiently manage such block

storage in cloud is not within the scope of our paper.

3.7 Generalization

As mentioned before, our protocol is based on the HLA in

[13]. It has been shown in [25] that HLA can be constructed

by Homogenous identification protocols. One may apply the

random masking technique we used to construct the

corresponding zero knowledge proof for different

Homogenous identification protocols. Therefore, our

privacypreserving Trusted public auditing system for secure

cloud storage can be generalized based on other complexity

assumptions, such as factoring [25].

IV. EVALUATION

Security Analysis We evaluate the security of the proposed

scheme by analyzing its fulfillment of the security guarantee

described in Section 2.2, namely, the storage correctness and

privacypreserving property. We start from the single user case,

where our main result is originated. Then, we show the

security guarantee of batch auditing for the TPA in multiuser

setting.

Figure 2. Comparison on auditing time between batch and individual auditing,
when -fraction of 256 responses are invalid: Per task auditing time denotes

the total auditing time divided by the number of tasks.

Zero Knowledge

Though our scheme prevents the TPA from directly deriving 0

from , it does not rule out the possibility of offline guessing

threat by TPA using valid from the response. Specifically, the

TPA can always guess whether 0 ¼? ~0, by checking eð;gÞ¼?

eððQsi¼c s1 HðWiÞiÞ u~0 ;vÞ, where ~0 is constructed from

random coefficients chosen by the TPA in the challenge and

the guessed message fm~igs1isc . However, we must note that

~0 is chosen from ZZpand jpjis usually larger than 160 bits in

practical security settings (see Section 4.2). Given no

background information, the success of this all-or-nothing

guess on 0 launched by TPA over such a large space ZZpcan

be very difficult. Besides, because TPA must at least make c

successful guesses on the same set of blocks to derive

fmigs1isc from the system of c linear equations, we can

specify c to be large enough in the protocol (e.g., as discussed

in Section 3.4, a strict choice of c should be at least larger than

460), which can significantly decrease the TPA’s successful

guessing probability. In addition, we can also restrict the

number of re-auditing on exactly the same set of blocks (e.g.,

to limit the repeated auditing times on exactly the same set of

blocks to be always less than c). In this way, TPA can be kept

from accumulating successful guesses on 0 for the same set of

blocks, which further diminishes the chance for TPA to solve

for fmigs1isc . In short, by appropriate choices of parameter c

and group size ZZp, we can effectively defeat such potential

offline guessing threat.

Nevertheless, we present a Trusted public auditing scheme

with provably zero knowledge leakage. This scheme can

completely eliminate the possibilities of above offline

guessing attack, but at the cost of a little higher

communication and computation over HLA d. The setup

phase is similar to our main scheme presented in Section 3.4.

The secret parameters are sk ¼ðx;sskÞ and the public

parameters are pk ¼ðspk;v;g;u;eðu;vÞ;g1Þ, where g1 2 GG1

is an additional public group element. In the audit phase, upon

receiving challenge chal ¼fði;iÞgi2I, the server chooses three

random elements rm;r; ZZp, and calculates R ¼

eðg1;gÞreðu;vÞrm2 GGT and ¼ hðRÞ2 ZZp. Let 0 denote

the linear combination denote the aggregated of sampled

authenticator blocks 0¼¼PQ i2i2II imiii2, GGand1. To ensure

the auditing leaks zero knowledge, the server has to blind both

0 and . Specifically, the server computes: ¼ rmþ 0 mod p, and

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

208

¼ g1. It then sends f&;;;Rgas the response proof of storage

correctness to the TPA, where & ¼ rþ mod p.

With the response from the server, the TPA

runs Verify Proof to validate the response by first

computing γ= h(R)and then checking the verification equation

Theorem 4.The above auditing protocol achieves zero-

knowledge information leakage to the TPA, and it also

ensures the storage correctness guarantee. Proof. Zero-

knowledge is easy to see. Randomly pick ;;& Q from ZZ p and

from GG1, set R eðði
s
¼

c
s1 HðWiÞ

i
Þ u ;vÞ eðg1;gÞ

&
=eð;gÞand

backpatch ¼ hðRÞ. For proof of storage correctness, we can

extract similar to the extraction of
0

as in the proof of

Theorem 1. Likewise, can be recovered from . To conclude, a

valid pair of and
0
can be extracted.

V. RELATED WORK
Ateniese et al. [9] are the first to consider public auditability

in their “provable data possession” (PDP) model for ensuring

possession of data files on untrusted storages. They utilize the

RSA-based homogenous linear authenticators for auditing

outsourced data and suggest randomly sampling a few blocks

of the file. However, among their two proposed schemes, the

one with public auditability exposes the linear combination of

sampled blocks to external auditor. When used directly, their

protocol is not provably privacy preserving, and thus may leak

user data information to the external auditor. Juels et al. [11]

describe a “proof of retrievability” (PoR) model, where spot-

checking and error-correcting codes are used to ensure both

“possession” and “retrievability” of data files on remote

archive service systems. However, the number of audit

challenges a user can perform is fixed a priori, and public

auditability is not supported in their main scheme. Although

they describe a straightforward Merkle-tree construction for

public PoRs, this approach only works with encrypted data.

Later, Bowers et al. [18] proposed an improved framework for

POR protocols that generalizes Juels’ work. Dodis et al. [29]

also give a study on different variants of PoR with private

auditability. Shacham and Waters [13] design an improved

PoR scheme built from BLS signatures [19] with proofs of

security in the security model defined in [11]. Similar to the

construction in [9], they use publicly verifiable homogenous

linear authenticators that are built from provably secure BLS

signatures. Based on 372 IEEE TRANSACTIONS ON

COMPUTERS, VOL. 62, NO. 2, FEBRUARY 2013 Fig. 2.

Comparison on auditing time between batch and individual

auditing, when _-fraction of 256 responses are invalid: Per

task auditing time denotes the total auditing time divided by

the number of tasks. The elegant BLS construction, a compact

and public verifiable scheme is obtained. Again, their

approach is not privacy preserving due to the same reason as

[9]. Shah et al. [15], [10] propose introducing a TPA to keep

online storage honest by first encrypting the data then sending

a number of pre-computed symmetric-keyed hashes over the

encrypted data to the auditor. The auditor verifies the integrity

of the data file and the server’s possession of a previously

committed decryption key. This scheme only works for

encrypted files, requires the auditor to maintain state, and

suffers from bounded usage, which potentially brings in online

burden to users when the keyed hashes are used up.

Dynamic data have also attracted attentions in the recent

literature on efficiently providing the integrity guarantee of

remotely stored data. Ateniese et al. [21] is the first to propose

a partially dynamic version of the prior PDP scheme, using

only symmetric key cryptography but with a bounded number

of audits. In [22], Wang et al. consider a similar support for

partially dynamic data storage in a distributed scenario with

additional feature of data error localization. In a subsequent

work, Wang et al. [8] propose to combine BLS-based HLA

with MHT to support fully data dynamics. Concurently,

Erway et al. [23] develop a skip listbased scheme to also

enable provable data possession with full dynamics support.

However, the verification in both protocols requires the linear

combination of sampled blocks as an input, like the designs in

[9], [13], and thus does not support privacy-preserving

auditing.

In other related work, Sebe et al. [30] thoroughly study a set

of requirements which ought to be satisfied for a remote data

possession checking protocol to be of practical use. Their

proposed protocol supports unlimited times of file integrity

verifications and allows preset tradeoff between the protocol

running time and the local storage burden at the user. Schwarz

and Miller [31] propose the first study of checking the

integrity of the remotely stored data across multiple

distributed servers. Their approach is based on erasure-

correcting code and efficient algebraic signatures, which also

have the similar collecting property as the homogenous linear

authenticator utilized in our approach. Curtmola et al. [32] aim

to ensure data possession of multiple replicas across the

distributed storage system. They extend the PDP scheme in [9]

to cover multiple replicas without encoding each replica

separately, providing guarantee that multiple copies of data

are actually maintained. In [33], Bowers et al. utilize a two-

layer erasure-correcting code structure on the remotely

archived data and extend their POR model [18] to distributed

scenario with high-data availability assurance. While all the

above schemes provide methods for efficient auditing and

provable assurance on the correctness of remotely stored data,

almost none of them necessarily meet all the requirements for

privacy-preserving Trusted public auditing of storage.

Moreover, none of these schemes consider batch auditing,

while our scheme can greatly reduce the computation cost on

the TPA when coping with a large number of audit

deputations.

Portions of the work presented in this paper have previously

appeared as an extended abstract in [1]. We have revised the

paper a lot and improved many technical details as compared

to [1]. The primary improvements are as follows: First, we

provide a new privacy-preserving Trusted public auditing

protocol with enhanced security strength in Section 3.4. For

completeness, we also include an additional (but slightly less

efficient) protocol design for provably secure zero-knowledge

leakage Trusted public auditing scheme in Section 5.Second,

based on the enhanced main auditing scheme, we provide a

new provably secure batch auditing protocol. All the

experiments in our performance evaluation for the newly

designed protocol are completely redone. Third, we extend

our main scheme to support data dynamics in Section 3.6, and

provide discussions on how to generalize our privacy-

preserving Trusted public auditing scheme in Section 3.7,

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

209

which are lacking in [1]. Finally, we provide formal analysis

of privacy-preserving guarantee and storage correctness, while

only heuristic arguments are sketched in [1].

VI. CONCLUSION
In this paper, we propose a trusted public auditing process for

secure cloud storage.To ensure that the TPA does not learn

anything about the user data which is stored on the cloud

server during the process of auditing, we use Homogenous

elongate authenticator algorithm and random masking

technique. Because it reduces the burden of cloud user, from

auditing process and also provides relief from leakage of

data.The experiment conducted on EC2 instance shows the

fast performance of our design. Reports also shows that this

method is very efficient and highly secure. We can further

improve the trusted public auditing process as a multiuser

secure cloud storage by making TPA to handle multiple

auditing task in batch manner. This is implemented as a future

extension.

VII. ACKNOWLEDGMENTS
This work was supported in part by the US National Science

Foundation (NSF) under grants CNS-1054317, CNS1116939,

CNS-1156318, and CNS-1117111, and by Amazon web

service research grant. A preliminary version [1] of this paper

was presented at the 29th IEEE Conference on Computer

Communications (INFOCOM ’10).

VIII. REFERENCES
[1] C. Wang, Q. Wang, K. Ren, and W. Lou, “Privacy-Preserving Trusted

public auditing for Storage Security in Cloud Computing,” Proc. IEEE
INFOCOM ’10, Mar. 2010.

[2] P. Mell and T. Grance, “Draft NIST Working Definition of Cloud
Computing,”
http://csrc.nist.gov/groups/SNS/cloudcomputing/index.html, June 2009.

[3] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R.H. Katz, A.
Konwinski, G. Lee, D.A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia,
“Above the Clouds: A Berkeley View of Cloud Computing,” Technical
Report UCB-EECS-2009-28, Univ. of California, Berkeley, Feb. 2009.

[4] Cloud Security Alliance, “Top Threats to Cloud Computing,”
http://www.cloudsecurityalliance.org, 2010.

[5] M. Arrington, “Gmail Disaster: Reports of Mass Email Deletions,”
http://www.techcrunch.com/2006/12/28/gmail-disasterreportsof-mass-
email-deletions/, 2006.

[6] J. Kincaid, “MediaMax/TheLinkup Closes Its Doors,” http://
www.techcrunch.com/2008/07/10/mediamaxthelinkup-closesits-doors/,
July 2008.

[7] Amazon.com, “Amazon s3 Availability Event: July 20, 2008,”
http://status.aws.amazon.com/s3-20080720.html, July 2008.

[8] Q. Wang, C. Wang, K. Ren, W. Lou, and J. Li, “Enabling Public
Auditability and Data Dynamics for Storage Security in Cloud
Computing,” IEEE Trans. Parallel and Distributed Systems, vol. 22, no. 5,
pp. 847-859, May 2011.

[9] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson,
and D. Song, “Provable Data Possession at Untrusted Stores,” Proc. 14th
ACM Conf. Computer and Comm. Security (CCS ’07), pp. 598-609, 2007.

[10] M.A. Shah, R. Swaminathan, and M. Baker, “Privacy-Preserving Audit
and Extraction of Digital Contents,” Cryptology ePrint Archive, Report
2008/186, 2008.

[11] A. Juels and J. Burton, S. Kaliski, “PORs: Proofs of Retrievability for
Large Files,” Proc. ACM Conf. Computer and Comm. Security (CCS ’07),
pp. 584-597, Oct. 2007.

[12] Cloud Security Alliance, “Security Guidance for Critical Areas of Focus
in Cloud Computing,” http://www.cloudsecurityalliance. org, 2009.

[13] H. Shacham and B. Waters, “Compact Proofs of Retrievability,” Proc.
Int’l Conf. Theory and Application of Cryptology and Information
Security: Advances in Cryptology (Asiacrypt), vol. 5350, pp. 90-107 ,
Dec. 2008.

[14] C. Wang, K. Ren, W. Lou, and J. Li, “Towards Publicly Auditable
Secure Cloud Data Storage Services,” IEEE Network Magazine, vol. 24,
no. 4, pp. 19-24, July/Aug. 2010.

[15] M.A. Shah, M. Baker, J.C. Mogul, and R. Swaminathan, “Auditing to
Keep Online Storage Services Honest,” Proc. 11th USENIX Workshop
Hot Topics in Operating Systems (HotOS ’07), pp. 1-6, 2007.

[16] 104th United States Congress, “HLAlth Insurance Portability and
Accountability Act of 1996 (HIPPA),” http://aspe.hhs.gov/
admnsimp/pl104191.htm, 1996.

[17] R. Curtmola, O. Khan, and R. Burns, “Robust Remote Data Checking,”

Proc. Fourth ACM Int’l Workshop Storage Security and Survivability
(StorageSS ’08), pp. 63-68, 2008.

[18] K.D. Bowers, A. Juels, and A. Oprea, “Proofs of Retrievability: Theory
and Implementation,” Proc. ACM Workshop Cloud Computing Security
(CCSW ’09), pp. 43-54, 2009.

[19] D. Boneh, B. Lynn, and H. Shacham, “Short Signatures from the Weil
Pairing,” J. Cryptology, vol. 17, no. 4, pp. 297-319, 2004.

[20] A.L. Ferrara, M. Green, S. Hohenberger, and M. Pedersen, “Practical
Short Signature Batch Verification,” Proc. Cryptographers’ Track at the
RSA Conf. 2009 on Topics in Cryptology (CT-RSA), pp. 309-324, 2009.

[21] G. Ateniese, R.D. Pietro, L.V. Mancini, and G. Tsudik, “Scalable and
Efficient Provable Data Possession,” Proc. Int’l Conf. Security and
Privacy in Comm. Networks (SecureComm ’08), pp. 1-10, 2008.

[22] C. Wang, Q. Wang, K. Ren, and W. Lou, “Towards Secure and
Dependable Storage Services in Cloud Computing,” IEEE Trans. Service
Computing, vol. 5, no. 2, 220-232, Apr.-June 2012.

[23] C. Erway, A. Kupcu, C. Papamanthou, and R. Tamassia, “Dynamic
Provable Data Possession,” Proc. ACM Conf. Computer and Comm.
Security (CCS ’09), pp. 213-222, 2009.

[24] R.C. Merkle, “Protocols for Public Key Cryptosystems,” Proc. IEEE
Symp. Security and Privacy, 1980.

[25] G. Ateniese, S. Kamara, and J. Katz, “Proofs of Storage from

Homogenous Identification Protocols,” Proc. 15th Int’l Conf. Theory and
Application of Cryptology and Information Security: Advances in
Cryptology (ASIACRYPT), pp. 319-333, 2009.

[26] M. Bellare and G. Neven, “Multi-Signatures in the Plain PublicKey
Model and a General Forking Lemma,” Proc. ACM Conf. Computer and
Comm. Security (CCS), pp. 390-399, 2006.

[27] Amazon.com, “Amazon Elastic Compute Cloud,” http://aws.
amazon.com/ec2/, 2009.

[28] Y. Zhu, H. Wang, Z. Hu, G.-J. Ahn, H. Hu, and S. Yau, “Efficient
Provable Data Possession for Hybrid Clouds,” Cryptology ePrint
Archive, Report 2010/234, 2010.

[29] Y. Dodis, S.P. Vadhan, and D. Wichs, “Proofs of Retrievability via
Hardness Amplification,” Proc. Theory of Cryptography Conf. Theory of
Cryptography (TCC), pp. 109-127, 2009.

[30] F. Sebe, J. Domingo-Ferrer, A. Martı´nez-Balleste, Y. Deswarte, and J.-J.
Quisquater, “Efficient Remote Data Possession Checking in Critical
Information Infrastructures,” IEEE Trans. Knowledge and Data Eng., vol.
20, no. 8, pp. 1034-1038, Aug. 2008.

[31] T. Schwarz and E.L. Miller, “Store, Forget, and Check: Using Algebraic
Signatures to Check Remotely Administered Storage,” Proc. IEEE Int’l
Conf. Distributed Computing Systems (ICDCS ’06), 2006.

[32] R. Curtmola, O. Khan, R. Burns, and G. Ateniese, “MR-PDP: Multiple-
Replica Provable Data Possession,” Proc. IEEE Int’l Conf. Distributed
Computing Systems (ICDCS ’08), pp. 411-420, 2008.

[33] K.D. Bowers, A. Juels, and A. Oprea, “HAIL: A High-Availability and
Integrity Layer for Cloud Storage,” Proc. ACM Conf. Computer and
Comm. Security (CCS ’09), pp. 187-198, 2009.

