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play an important role for this nascent cloud economy to 

become fully established; where users will need ways to 

assess risk and gain trust in the cloud. 

Recently, the notion of public auditability has been proposed 

in the context of ensuring remotely stored data integrity under 

different system and security models [9], [13], [11], and [8]. 

Public auditability allows an external party, in addition to the 

user himself, to verify the correctness of remotely stored data. 

However, most of these schemes [9], [13], [8] do not consider 

the privacy protection of users’ data against external auditors. 

Indeed, they may potentially reveal user’s data to auditors, as 

will be discussed in Section 3.4. This severe drawback greatly 

affects the security of these protocols in cloud computing. 

From the perspective of protecting data privacy, the users, 

who own the data and rely on TPA just for the storage security 

of their data, do not want this auditing process introducing 

new vulnerabilities of unauthorized information leakage 

toward their data security [14], [15]. Moreover, there are legal 

regulations, such as the US HLAlth Insurance Portability and 

Accountability Act (HIPAA) [16], further demanding the 

outsourced data not to be leaked to external parties [10]. 

Simply exploiting data encryption before outsourcing [15], 

[11] could be one way to mitigate this privacy concern of data 

auditing, but it could also be an overkill when employed in the 

case of unencrypted/public cloud data (e.g., outsourced 

libraries and scientific data sets), due to the unnecessary 

processing burden for cloud users. Besides, encryption does 

not completely solve the problem of protecting data privacy 

against third-party auditing but just reduces it to the complex 

key management domain. Unauthorized data leakage still 

remains possible due to the potential exposure of decryption 

keys. 

 

Therefore, how to enable a privacy-preserving third party 

auditing protocol, independent to data encryption, is the 

problem we are going to tackle in this paper. Our work is 

among the first few ones to support privacy-preserving trusted 

public auditing in cloud computing, with a focus on data 

storage. Besides, with the prevalence of cloud computing, a 

predictable increase of auditing tasks from different users may 

be deputed to TPA. As the individual auditing of these 

growing tasks can be tedious and cumbersome, a natural 

demand is then how to enable the TPA to efficiently perform 

multiple auditing tasks in a batch manner, i.e., simultaneously. 

 

To address these problems, our work utilizes the technique of 

public key-based Homogenous elongate authenticator (or 

HLA for short) [9], [13], [8], which enables TPA to perform 

the auditing without demanding the local copy of data and 

thus drastically reduces the communication and computation 

overhead as compared to the straightforward data auditing 

approaches. By integrating the HLA with random masking, 

our protocol guarantees that the TPA could not learn any 

knowledge about the data content stored in the cloud server 

(CS) during the efficient auditing process. The collecting and 

algebraic properties of the authenticator further benefit our 

design for the batch auditing. Specifically, our contribution 

can be summarized as the following three aspects: 

 

1. We motivate the Trusted public auditing system of data 

storage security in cloud computing and provide a 

privacy-preserving auditing protocol. Our scheme 

enables an external auditor to audit user’s cloud data 

without learning the data content. 

2. To the best of our knowledge, our scheme is the first to 

support scalable and efficient privacy-preserving public 

storage auditing in cloud. Specifically, our scheme 

achieves batch auditing where multiple deputed 

auditing tasks from different users can be performed 

simultaneously by the TPA in a privacy-preserving 

manner. 

3. We prove the security and justify the performance of 

our proposed schemes through concrete experiments 

and comparisons with the state of the art. 

The rest of the paper is organized as follows: Section 2 

introduces the system and threat model, and our design goals. 

Then, we provide the detailed description of our scheme in 

Section 3. Section 4 gives the security analysis and 

performance evaluation. Section 5 presents further discussions 

on a zero-knowledge auditing protocol, followed by Section 6 

that overviews the related work. Finally, Section 7 gives the 

concluding remark of the whole paper. 

 

II. PROBLEM STATEMENT 

 

2.1 The System and Threat Model 

 

We consider a cloud data storage service involving three 

different entities, as illustrated in Fig. 1: the cloud user, who 

has large amount of data files to be stored in the cloud; the 

cloud server, which is managed by the cloud service provider 

to provide data storage service and has significant storage 

space and computation resources (we will not differentiate CS 

and CSP hereafter); the third-party auditor, who has expertise 

and capabilities that cloud users do not have and is trusted to 

assess the cloud storage service reliability on behalf of the 

user upon request. Users rely on the CS for cloud data storage 

and maintenance. They may also dynamically interact with the 

CS to access and update their stored data for various 

application purposes. As users no longer possess their data 

locally, it is of critical importance for users to ensure that their 

data are being correctly stored and maintained. To save the 

computation resource as well as the online burden potentially 

brought by the periodic storage correctness verification, cloud 

users may resort to TPA for ensuring the storage integrity of 

their outsourced data, while hoping to keep their data private 

from TPA. 

 

 
Figure 1: The architecture of cloud data storage service 

We assume the data integrity threats toward users’ data can 

come from both internal and external attacks at CS. These 

may include: software bugs, hardware failures, bugs in the 
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network path, economically motivated hackers, malicious or 

accidental management errors, etc. Besides, CS can be self-

interested. For their own benefits, such as to maintain 

reputation, CS might even decide to hide these data corruption 

incidents to users. Using third-party auditing service provides 

a cost-effective method for users to gain trust in cloud. We 

assume the TPA, who is in the business of auditing, is reliable 

and independent. However, it may harm the user if the TPA 

could learn the outsourced data after the audit. 

Note that in our model, beyond users’ reluctance to leak data 

to TPA; we also assume that cloud servers have no incentives 

to reveal their hosted data to external parties. On the one hand, 

there are regulations, e.g., HIPAA [16], requesting CS to 

maintain users’ data privacy. On the other hand, as users’ data 

belong to their business asset [10], there also exist financial 

incentives for CS to protect it from any external parties. 

Therefore, we assume that neither CS nor TPA has 

motivations to collude with each other during the auditing 

process. In other words, neither entity will deviate from the 

prescribed protocol execution in the following presentation. 

 

To authorize the CS to respond to the audit deputed to TPA’s, 

the user can issue a certificate on TPA’s public key, and all 

audits from the TPA are authenticated against such a 

certificate. These authentication handshakes are omitted in the 

following presentation. 

2.2 Design Goals 

To enable privacy-preserving trusted public auditing for cloud 

data storage under the aforenamed model, our protocol design 

should achieve the following security and performance 

guarantees: 

1. Public auditability: to allow TPA to verify the correctness 

of the cloud data on demand without retrieving a copy of 

the whole data or introducing additional online burden to 

the cloud users. 

2. Storage correctness: to ensure that there exists no 

cHLAting cloud server that can pass the TPA’s audit 

without indeed storing users’ data intact. 

3. Privacy preserving: to ensure that the TPA cannot derive 

users’ data content from the information collected during 

the auditing process. 

4. Batch auditing: to enable TPA with secure and efficient 

auditing capability to cope with multiple auditing 

deputations from possibly large number of different users 

simultaneously. 

5. Lightweight: to allow TPA to perform auditing with 

minimum communication and computation overhead. 

III. THE PROPOSED SCHEMES 
This section supports the trusted public auditing in cloud 

computing, with a focus on data storage. Besides, with the 

prevalence of cloud computing, a predictable increase of 

auditing tasks from different users may be deputed to TPA. 

Our work also utilizes the technique of public key-based 

homogenous linear authenticator or HLA which enables TPA 

to perform the auditing without demanding the local copy of 

data and thus drastically reduces the communication and 

computation overhead as compared to the straightforward data 

auditing approaches. By integrating the HLA with random 

masking, our protocol guarantees that the TPA could not learn 

any knowledge about the data content stored in the cloud 

server (CS) during the efficient auditing process. The 

collecting and algebraic properties of the authenticator further 

benefit our design for the batch auditing. Finally, we discuss 

how to generalize our trusted public auditing scheme and its 

support of data dynamics. 

3.1 Notation and Preludes 

 F—the data file to be outsourced, denoted as a 

sequence of n blocks m1;...;mi;...;mn2 ZZpfor some 

large prime p. 

 MACðÞðÞ—message authentication code (MAC) 

function, defined as: Kf0;1g!f0;1gl where K denotes 

the key space. 

 HðÞ, hðÞ—cryptographic hash functions. 

We now introduce some necessary cryptographic background 

for our proposed scheme. 

Bilinear Map.Let GG 1, GG2, and GGT be multiplicative cyclic 

groups of prime order p. Let g 1 and g2 be generators of GG1 

and GG2, respectively. A bilinear map is a map e : GG1  

GG2 !GGT such that for all u 2 GG1, v 2 GG2 and a;b 2 ZZp, 

eðu
a
;v

b
Þ¼ eðu;vÞ

ab
. This bilinearity implies that for any u1, u2 

2 GG1, v 2 GG2, eðu1  u2;vÞ¼ eðu1;vÞ eðu2;vÞ. Of course, 

there exists an efficiently computable algorithm for computing 

e and the map should be nontrivial, i.e., e is nondegenerate: 

eðg1;g2Þ6¼1. 

3.2 Definitions and Framework 

We follow a similar definition of previously proposed 

schemes in the context of remote data integrity checking [9], 

[11], [13] and adapt the framework for Trusted public auditing 

system. 

This Trusted public auditing scheme consists of four 

algorithms (KeyGen, SigGen, GenProof, VerifyProof). 

KeyGen is a key generation algorithm that is run by the user 

to setup the scheme. SigGen is used by the user to generate 

verification metadata, which may consist of digital signatures. 

Gen Proof is run by the cloud server to generate a proof of 

data storage correctness, while Verify Proof is run by the TPA 

to audit the proof. 

Running a Trusted public auditing system consists of two 

phases, Setup and Audit: 

Setup: The user initializes the public and secret parameters of 

the system by executing KeyGen, and pre-processes the data 

file F by using SigGen to generate the verification metadata. 

The user then stores the data file F and the verification 

metadata at the cloud server, and delete its local copy. As part 

of pre-processing, the user may alter the data file F by 

expanding it or including additional metadata to be stored at 

server. 

 

Audit: The TPA issues an audit message or challenge to the 

cloud server to make sure that the cloud server has retained 

the data file F properly at the time of the audit. The cloud 

server will derive a response message by executing GenProof 

using F and its verification metadata as inputs. The TPA then 

verifies the response via Verify Proof. 
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Our framework assumes that the TPA is stateless, i.e., TPA 

does not need to maintain and update state between audits, 

which is a desirable property especially in the Trusted public 

auditing system [13]. Note that it is easy to extend the 

framework above to capture a stateful auditing system, 

essentially by splitting the verification metadata into two parts 

which are stored by the TPA and the cloud server, respectively. 

Our design does not assume any additional property on the 

data file. If the user wants to have more error resilience, he 

can first redundantly encodes the data file and then uses our 

system with the data that has error correcting codes 

integrated.
1
 

3.3 The Basic Schemes 

Before giving our main result, we study two classes of 

schemes. The first one is a MAC-based solution which suffers 

from undesirable systematic demerits— bounded usage and 

stateful verification, which may pose additional online burden 

to users, in a trusted public auditing setting. This also shows 

that the auditing problem is still not easy to solve even if we 

have introduced a TPA. The second one is a system based on 

Homogenous elongate authenticators, which covers much 

recent proof of storage systems. We will pinpoint the reason 

why all existing HLA-based systems are not privacy 

preserving. The analysis of these basic schemes leads to our 

main result, which overcomes all these drawbacks. Our main 

scheme to be presented is based on a specific HLA scheme. 

MAC-based solution. There are two possible ways to make 

use of MAC to authenticate the data. A trivial way is just 

uploading the data blocks with their MACs to the server, and 

sends the corresponding secret key skto the TPA. Later, the 

TPA can randomly retrieve blocks with their MACs and check 

the correctness via sk. Apart from the high (linear in the 

sampled data size) communication and computation 

complexities, the TPA requires the knowledge of the data 

blocks for verification. 

To circumvent the requirement of the data in TPA verification, 

one may restrict the verification to just consist of equality 

checking. Be audited is limited by the number of secret keys 

that must be fixed a priori. Once all possible secret keys are 

exhausted, the user then has to retrieve data in full to 

recompute and republish new MACs to TPA; 2) The TPA also 

has to maintain and update state between audits, i.e., keep 

track on the revealed MAC keys. Considering the potentially 

large number of audit deputations from multiple users, 

maintaining such states for TPA can be difficult and error 

prone; 3) it can only support static data, and cannot efficiently 

deal with dynamic data at all. However, supporting data 

dynamics is also of critical importance for cloud storage 

systems. For the reason of brevity and clarity, our main 

protocol will be presented based on static data. Section 3.6 

will describe how to adapt our protocol for dynamic data. 

 

HLA-based solution. To effectively support public auditability 

without having to retrieve the data blocks themselves, the 

HLA technique [9], [13], [8] can be used. HLAs, like MACs, 

are also some unforgeable verification metadata that 

authenticate the integrity of a data block. The difference is that 

HLAs can be aggregated. It is possible to compute an 

aggregated HLA which authenticates a linear combination of 

the individual data blocks. 

 

The idea is as follows: Before data outsourcing, the cloud user 

chooses s random message authentication code keys fskg1s, 

recomputes (deterministic) MACs, fMACskðFÞg1s for the 

whole data file F, and publishes these verification metadata 

(the keys and the MACs) to TPA. The TPA can reveal a secret 

key skto the cloud server and ask for a fresh keyed MAC for 

comparison in each audit. This is privacy preserving as long as 

it is impossible to recover F in full given MACskðFÞand sk. 

However, it suffers from the following severe drawbacks: 1) 

the number of times a particular data file can  

At a high level, an HLA-based proof of storage system works 

as follow. The user still authenticates each element of F ¼fmig 

by a set of HLAs . The TPA verifies the cloud storage by 

sending a random set of challenge fig. The cloud server then 

returns  ¼ii mi and its aggregated authenticator computed 

from . 

 
Though allowing efficient data auditing and consuming only 
constant bandwidth, the direct adoption of these HLA based 
techniques is still not suitable for our purposes. This is 
because the linear combination of blocks,  ¼Pii mi, may 
potentially reveal user data information to TPA, and violates 
the privacy-preserving guarantee. Specifically, by challenging 
the same set of c block m1;m2;...;mc using c different sets of 
random coefficients fig, TPA can accumulate c different linear 
combinations 1;...;c. With f_igand fig, TPA can derive the 
user’s data m1, m2; . . .;mcby simply solving a system of 
linear equations 1. We refer readers to [17], [18] for the details 
on integration of error correcting codes and remote data 
integrity checking. 

 
TABLE 1: Trusted public auditing for secured cloud storage 
 

 

3.4 Trusted public auditing Scheme 

Overview. To achieve privacy-preserving Trusted public 

auditing, we propose to uniquely integrate the Homogenous 

elongate authenticator with random masking technique. In our 

protocol, the linear combination of sampled blocks in the 

server’s response is disguised with randomness generated by 

the server. With random masking, the TPA no longer has all 

the necessary information to build up a correct group of linear 

equations and therefore cannot derive the user’s data content, 

no matter how many linear combinations of the same set of 

file blocks can be collected. On the other hand, the correctness 

validation of the block-authenticator pairs can still be carried 

out in a new way which will be shown shortly, even with the 

presence of the randomness. Our design makes use of a public 

key-based HLA, to equip the auditing protocol with public 

auditability. Specifically, we use the HLA proposed in [13], 

which is based on the short signature scheme proposed by 

Boneh, Lynn, and Shacham (hereinafter referred as BLS 

signature) [19]. 
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Scheme details. Let GG1, GG2, and GGT be multiplicative 

cyclic groups of prime order p, and e : GG1 GG2 ! GGT be a 

bilinear map as introduced in preliminaries. Let g be a 

generator of GG2. HðÞis a secure map-to-point hash function: 

f0;1g! GG1, which maps strings uniformly to GG1. Another 

hash function hðÞ: GGT ! ZZpmaps group element of GGT 

uniformly to ZZp. Our scheme is as follows: 

Setup Phase: The cloud user runs KeyGen to generate the 

public and secret parameters. Specifically, the user chooses a 

random signing key pair ðspk;sskÞ, a random x ZZp, a random 

element u GG1, and computes v g
x
. The secret parameter is sk 

¼ðx;sskÞand the public parameters are pk 

¼ðspk;v;g;u;eðu;vÞÞ. 

 

Given a data file F ¼fmig, the user runs SigGen to compute 

authenticator iðHðWiÞu
mi

Þ
x
2 GG1 for each i. Here, Wi¼ 

namekiand name is chosen by the user uniformly at random 

from ZZpas the identifier of file F. 

Denote the set of authenticators by ¼fig1in. 

 

The last part of SigGen is for ensuring the integrity of the 

unique file identifier name. One simple way to do this is to 

compute t ¼ namekSSigsskðnameÞas the file tag for F, where 

SSigsskðnameÞis the signature on name under the private key 

ssk. For simplicity, we assume the TPA knows the number of 

blocks n. The user then sends F along with the verification 

metadata ð;tÞto the server and deletes them from local storage. 

Audit Phase: The TPA first retrieves the file tag t. With 

respect to the mechanism we describe in the Setup phase, the 

TPA verifies the signature SSigsskðnameÞvia spk, and quits by 

emitting FALSE if the verification fails. Otherwise, the TPA 

recovers name. 

 

Now it comes to the “core” part of the auditing process. To 

generate the challenge message for the audit “chal,” the 

TPA picks a random c-element subset I ¼fs1;...;scgof set ½1;n. 

For each element i 2 I, the TPA also chooses a random value 

i(of bit length that can be shorter than jpj, as explained in [13]). 

The message “chal” specifies the positions of the blocks 

required to be checked. The TPA sends chal ¼fði;iÞgi2Ito the 

server. 

 
Upon receiving challenge chal ¼fði; iÞgi2I, the server runs 

GenProof to generate a response proof of data storage 
correctness. Specifically, the server chooses a random element 
r ZZ p, and calculates R ¼ eðu;vÞ

r
2 GGT . Let 

0
denote the 

linear combination of sampled blocks specified in chal: 
0 ¼

Pi2I 

imi. To blind 
0 

with r, the server computes:  ¼ r þ  
0
mod p, 

where  ¼ hðRÞ2 ZZp. ¼Q i2I i
i
2 GG1. It then sends f;;Rgas the 

response proof of storage Meanwhile, the server also 
calculates an aggregated authenticator correctness to the TPA. 

With the response, the TPA runs Verify Proof to validate it by 
first computing  ¼hðRÞand then checking the verification 
equation    
 

Properties of our protocol. It is easy to see that our protocol 

achieves public auditability. There is no secret keying material 

or states for the TPA to keep or maintain between audits, and 

the auditing protocol does not pose any potential online 

burden on users. This approach ensures the privacy of user 

data content during the auditing process by employing a 

random masking r to hide , a linear combination of the data 

blocks. Note that the value R in our protocol, which enables 

the privacy-preserving guarantee, will not affect the validity of 

the equation, due to the circular relationship between R and in 

¼ hðRÞand the verification equation. Storage correctness thus 

follows from that of the underlying protocol [13]. The security 

of this protocol will be formally proven in Section 4. Besides, 

the HLA helps achieve the constant communication over HLA 

for server’s response during the audit: the size of f;;Rgis 

independent of the number of sampled blocks c. 

 

Previous work [9], [8] showed that if the server is missing a 

fraction of the data, then the number of blocks that needs to be 

checked in order to detect server misbehavior with high 

probability is in the order of Oð1Þ. In particular, if t fraction 

of data is corrupted, then random sampling c blocks would 

reach the detection probability P ¼ 1 ð1 tÞ
c
. Here, every block 

is chosen uniformly at random. When t ¼ 1% of the data F, 

the TPA only needs to audit for c ¼ 300 or 460 randomly 

chosen blocks of F to detect this misbehavior with probability 

larger than 95 and 99 percent, respectively. Given the huge 

volume of data outsourced in the cloud, checking a portion of 

the data file is more affordable and practical for both the TPA 

and the cloud server than checking all the data, as long as the 

sampling strategies provides high-probability assurance. In 

Section 4, we will present the experiment result based on these 

sampling strategies. 

 

For some cloud storage providers, it is possible that certain 

information dispersal algorithms (IDA) may be used to 

fragment and geographically distribute the user’s outsourced 

data for increased availability. We note that these cloud side 

operations would not affect the behavior of our proposed 

mechanism, as long as the IDA is systematic, i.e., it preserves 

user’s data in its original form after encoding with redundancy. 

This is because from user’s perspective, as long as there is a 

complete yet unchanged copy of his outsourced data in cloud, 

the precomputed verification metadata ð;tÞwill remain valid. 

As a result, those metadata can still be utilized in our auditing 

mechanism to guarantee the correctness of user’s outsourced 

cloud data. 

 

Storage and communication tradeoff. As described above, 

each block is accompanied by an authenticator of equal size of 

jpjbits. This gives about 2storage over HLA on server. 

However, as noted in [13], we can introduce a parameter s in 

the authenticator construction to adjust this storage over HLA, 

in the cost of communication over HLA  in the auditing 

protocol between TPA and cloud server. In particular, we 

assume each block mi consists of s sectors fmijgwith 1  j  s, 

 
TABLE 2  : The Batch Auditing Protocol 

 
where mij2 ZZp. The public parameter pkis now 

ðspk;v;g;fujg;feðuj;vÞgÞ, 1  j  s, where u1;u2;...;us are 

randomly 
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To respond to the auditing challenge chal ¼fði;iÞgi2I, for 1  j  s, 

the cloud server chooses a random elements rjZZp, and 

calculates Rj¼ eðu;vÞ
rj
2 GGT . Then, the server blinds each 

0
j 

¼
Pi2I imijwith rj, and derives the blinded j¼ rjþ 

0
j mod p, where  

¼ hðR1kR2kkRsÞ2 ZZp. The aggregated authenticator is still 

computed as before. It then sends f;fj;Rjg1jsg as the proof 

response to TPA. With the proof, TPA first computes ¼ 

hðR1kR2kkRsÞ, 
 

The correctness elaboration is similar to (1) and thus omitted. 

The overall storage over HLA is reduced to ð1 þ 1=sÞ, but the 

proof size now increases roughly s due to the additional s 

element pairs fj;Rjg1jsthat the cloud server has to return. For 

presentation simplicity, we continue to choose s ¼ 1 in our 

following scheme description. We will present some 

experiment results with larger choice of s in Section 4. 

3.5 Support for Batch Auditing 

With the establishment of privacy-preserving Trusted public 

auditing, the TPA may concurrently handle multiple auditing 

upon different users’ deputation. The individual auditing of 

these tasks for the TPA can be tedious and very inefficient. 

Given K auditing deputations on K distinct data files from K 

different users, it is more advantageous for the TPA to batch 

these multiple tasks together and audit at one time. Keeping 

this natural demand in mind, we slightly modify the protocol 

in a single user case, and achieves the collecting of K 

verification equations ( forK auditing tasks) into a single one, 

as shown in (3). As a result, a secure batch auditing protocol 

for simultaneous auditing of multiple tasks is obtained. The 

details are described as follows: 

 

Setup phase: Basically, the users just perform Setup 

independently. Suppose there are K users in the system, and 

each user k has a data file Fk¼ðmk;1;...;mk;nÞto be outsourced 

to the cloud server, where k 2f1;...;Kg. For simplicity, we 

assume each file Fkhas the same number of n blocks. For a 

particular user k, denote his/her secret key as ðxk;sskkÞ, and 

the corresponding public parameter as 

ðspkk;vk;g;uk;eðuk;vkÞÞwhere vk¼ g
xk

. Similar to the single 

user case, each user k has already randomly chosen a different 

(with overwhelming probability) name namek2 ZZpfor his/her 

file Fk, and has correctly generated the corresponding file tag 

tk¼ namekkSSigsskkðnamekÞ. Then, each user k runs SigGen 

and computes k;ifor block  mk;i: k;iHðnamekkiÞumkk;ixk 

 

¼HðWk;iÞu
m

k
k;ixk

2 GG1ði 2f1;...;ngÞ; 

whereWk;i¼ namekki. Finally, each user k sends file Fk, set of 

authenticators k, and tag tkto the server and deletes them from 

local storage. 

 

Audit phase: TPA first retrieves and verifies file tag tkfor each 

user k for later auditing. If the verification fails, TPA quits by 

emitting FALSE. Otherwise, TPA recovers namekand sends 

the audit challenge chal ¼fði;iÞgi2Ito the server for auditing 

data files of all K users. 

Upon receiving chal, for each user k 2f1;...;Kg, the server 

randomly picks rk2 ZZpand computes Rk¼ eðuk;vkÞ
rk

. Denote 

R¼ R1  R2RK, and L¼ vk1kvk2k kvkK, our protocol further 

requires the server to compute k ¼ hðRkvkkLÞ. Then, the 

randomly disguised responses can be generated. 

Efficiency improvement. As shown in (3), batch auditing not 

only allows TPA to perform the multiple auditing tasks 

simultaneously, but also greatly reduces the computation cost 

on the TPA side. This is because aggregating K verification 

equations into one helps reduce the number of relatively 

expensive pairing operations from 2K, as required in the 

individual auditing, to K þ 1, which saves a considerable 

amount of auditing time. 

 

Identification of invalid responses. The verification equation 

(3) only holds when all the responses are valid, and fails with 

high probability when there is even one single invalid 

response in the batch auditing, as we will show in Section 4. 

In many situations, a response collecting may contain invalid 

responses, especially fkg1kK, caused by accidental data 

corruption, or possibly malicious activity by a cloud server. 

The ratio of invalid responses to the valid could be quite small, 

and yet a standard batch auditor will reject the entire 

collecting. To further sort out these invalid responses in the 

batch auditing, we can utilize a recursive divide-and-conquer 

approach (binary search), as suggested by Ferrara et al. [20]. 

Specifically, if the batch auditing fails, we can simply divide 

the collecting of responses into two halves, and repeat the 

auditing on halves via (3). TPA may now require the server to 

send back all the fRkg1kK, as in individual auditing. In Section 

4.2.2, we show through carefully designed experiment that 

using this recursive binary search approach, even if up to 20 

percent of responses are invalid, batch auditing still performs 

faster than individual verification. 

3.6 Support for Data Dynamics 

In cloud computing, outsourced data might not only be 

accessed but also updated frequently by users for various 

application purposes [21], [8], [22], [23]. Hence, supporting 

data dynamics for privacy-preserving Trusted public auditing 

is also of paramount importance. Now, we show how to build 

upon the existing work [8] and adapt our main scheme to 

support data dynamics, including block level operations of 

modification, deletion, and insertion. 
 

In [8], data dynamics support is achieved by replacing the 
index information iwith mi in the computation of block 
authenticators and using the classic data structure— Merkle 
hash tree (MHT) [24] for the underlying block sequence 
enforcement. As a result, the authenticator for each block is 
changed to σi= (H(mi).umi)x. We can adopt this technique in 
our design to achieve privacy-preserving Trusted public 
auditing with support of data dynamics. Specifically, in the 
Setup phase, the user has to generate and send the tree root 
TRMHT to TPA as additional metadata, where the leaf nodes of 
MHT are values of H(mi). In the Audit phase, besides {μ,σ,R}, 
the server’s response should also include {H(mi )}i€Iand their 
corresponding auxiliary authentication information aux in the 
MHT. Upon receiving the response, TPA should first use 
TRMHT and aux to authenticate {H(mi )}i€Icomputed by the 
server. Once fHðmiÞgi2I are authenticated, TPA can then 
perform theQs1auditingconif; ;R;fHðmiÞgi2QIg1 viacH(1)ðm, 
iÞwherei. All is πs1<i<scH(Wi)viis now replaced by 
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πsi<i<scH(mi)vi these changes does not interfere with the 
proposed random masking technique, so data privacy is still 
preserved. To support data dynamics, each data update would 
require the user to generate a new tree root TRMHT , which is 
later sent to TPA as the new metadata for storage auditing task. 
The details of handling dynamic operations are similar to [8] 
and thus omitted. 

 

Application to version control system. The above scheme 

allows TPA to always keep the new tree root for auditing the 

updated data file. But it is worth noting that our mechanism 

can be easily extended to work with version control system, 

where both current and previous versions of the data file F and 

the corresponding authenticators are stored and need to be 

audited on demand. One possible way is to require TPA to 

keep tracks of both the current and previous tree roots 

generated by the user, denoted as fTR
1

MHT ;TR
2

MHT;...;TR
V

MHT 

g. Here, V is the number of file versions and TR
V

MHT is the 

root related to the most current version of the data file F. Then, 

whenever a designated version v (1  vV) of data file is to be 

audited, the TPA just uses the corresponding TR
v
MHTto 

perform the auditing. The cloud server should also keep track 

of all the versions of data file F and their authenticators, in 

order to correctly answer the auditing request from TPA. Note 

that cloud server does not need to replicate every block of data 

file in every version, as many of them are the same after 

updates. However, how to efficiently manage such block 

storage in cloud is not within the scope of our paper. 

3.7 Generalization 

As mentioned before, our protocol is based on the HLA in 

[13]. It has been shown in [25] that HLA can be constructed 

by Homogenous identification protocols. One may apply the 

random masking technique we used to construct the 

corresponding zero knowledge proof for different 

Homogenous identification protocols. Therefore, our 

privacypreserving Trusted public auditing system for secure 

cloud storage can be generalized based on other complexity 

assumptions, such as factoring [25]. 

IV. EVALUATION 
 

Security Analysis We evaluate the security of the proposed 

scheme by analyzing its fulfillment of the security guarantee 

described in Section 2.2, namely, the storage correctness and 

privacypreserving property. We start from the single user case, 

where our main result is originated. Then, we show the 

security guarantee of batch auditing for the TPA in multiuser 

setting. 

 

 

 

Figure 2. Comparison on auditing time between batch and individual auditing, 
when -fraction of 256 responses are invalid: Per task auditing time denotes 

the total auditing time divided by the number of tasks. 

Zero Knowledge  

 

Though our scheme prevents the TPA from directly deriving 0 

from , it does not rule out the possibility of offline guessing 

threat by TPA using valid from the response. Specifically, the 

TPA can always guess whether 0 ¼? ~0, by checking eð;gÞ¼? 

eððQsi¼c s1 HðWiÞiÞ u~0 ;vÞ, where ~0 is constructed from 

random coefficients chosen by the TPA in the challenge and 

the guessed message fm~igs1isc . However, we must note that 

~0 is chosen from ZZpand jpjis usually larger than 160 bits in 

practical security settings (see Section 4.2). Given no 

background information, the success of this all-or-nothing 

guess on 0 launched by TPA over such a large space ZZpcan 

be very difficult. Besides, because TPA must at least make c 

successful guesses on the same set of blocks to derive 

fmigs1isc from the system of c linear equations, we can 

specify c to be large enough in the protocol (e.g., as discussed 

in Section 3.4, a strict choice of c should be at least larger than 

460), which can significantly decrease the TPA’s successful 

guessing probability. In addition, we can also restrict the 

number of re-auditing on exactly the same set of blocks (e.g., 

to limit the repeated auditing times on exactly the same set of 

blocks to be always less than c). In this way, TPA can be kept 

from accumulating successful guesses on 0 for the same set of 

blocks, which further diminishes the chance for TPA to solve 

for fmigs1isc . In short, by appropriate choices of parameter c 

and group size ZZp, we can effectively defeat such potential 

offline guessing threat. 

 

Nevertheless, we present a Trusted public auditing scheme 

with provably zero knowledge leakage. This scheme can 

completely eliminate the possibilities of above offline 

guessing attack, but at the cost of a little higher 

communication and computation over HLA d. The setup 

phase is similar to our main scheme presented in Section 3.4. 

The secret parameters are sk ¼ðx;sskÞ and the public 

parameters are pk ¼ðspk;v;g;u;eðu;vÞ;g1Þ, where g1 2 GG1 

is an additional public group element. In the audit phase, upon 

receiving challenge chal ¼fði;iÞgi2I, the server chooses three 

random elements rm;r; ZZp, and calculates R ¼ 

eðg1;gÞreðu;vÞrm2 GGT and  ¼ hðRÞ2 ZZp. Let 0 denote 

the linear combination denote the aggregated of sampled 

authenticator blocks 0¼¼PQ i2i2II imiii2, GGand1. To ensure 

the auditing leaks zero knowledge, the server has to blind both 

0 and . Specifically, the server computes:  ¼ rmþ 0 mod p, and  
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¼   g1. It then sends f&;;;Rgas the response proof of storage 

correctness to the TPA, where & ¼ rþ  mod p. 

 

With the response from the server, the TPA 

runs Verify Proof to validate the response by first 

computing γ= h(R)and then checking the verification equation 

 

Theorem 4.The above auditing protocol achieves zero-

knowledge information leakage to the TPA, and it also 

ensures the storage correctness guarantee. Proof. Zero-

knowledge is easy to see. Randomly pick ;;& Q from ZZ p and  

from GG1, set R eðði
s
¼

c 
s1 HðWiÞ

i
Þ u ;vÞ eðg1;gÞ

&
=eð;gÞand 

backpatch ¼ hðRÞ. For proof of storage correctness, we can 

extract similar to the extraction of   
0 

as in the proof of 

Theorem 1. Likewise, can be recovered from . To conclude, a 

valid pair of and
0 
can be extracted. 

 

V. RELATED WORK 
Ateniese et al. [9] are the first to consider public auditability 

in their “provable data possession” (PDP) model for ensuring 

possession of data files on untrusted storages. They utilize the 

RSA-based homogenous linear authenticators for auditing 

outsourced data and suggest randomly sampling a few blocks 

of the file. However, among their two proposed schemes, the 

one with public auditability exposes the linear combination of 

sampled blocks to external auditor. When used directly, their 

protocol is not provably privacy preserving, and thus may leak 

user data information to the external auditor. Juels et al. [11] 

describe a “proof of retrievability” (PoR) model, where spot-

checking and error-correcting codes are used to ensure both 

“possession” and “retrievability” of data files on remote 

archive service systems. However, the number of audit 

challenges a user can perform is fixed a priori, and public 

auditability is not supported in their main scheme. Although 

they describe a straightforward Merkle-tree construction for 

public PoRs, this approach only works with encrypted data. 

Later, Bowers et al. [18] proposed an improved framework for 

POR protocols that generalizes Juels’ work. Dodis et al. [29] 

also give a study on different variants of PoR with private 

auditability. Shacham and Waters [13] design an improved 

PoR scheme built from BLS signatures [19] with proofs of 

security in the security model defined in [11]. Similar to the 

construction in [9], they use publicly verifiable homogenous 

linear authenticators that are built from provably secure BLS 

signatures. Based on 372 IEEE TRANSACTIONS ON 

COMPUTERS, VOL. 62, NO. 2, FEBRUARY 2013 Fig. 2. 

Comparison on auditing time between batch and individual 

auditing, when _-fraction of 256 responses are invalid: Per 

task auditing time denotes the total auditing time divided by 

the number of tasks. The elegant BLS construction, a compact 

and public verifiable scheme is obtained. Again, their 

approach is not privacy preserving due to the same reason as 

[9]. Shah et al. [15], [10] propose introducing a TPA to keep 

online storage honest by first encrypting the data then sending 

a number of pre-computed symmetric-keyed hashes over the 

encrypted data to the auditor. The auditor verifies the integrity 

of the data file and the server’s possession of a previously 

committed decryption key. This scheme only works for 

encrypted files, requires the auditor to maintain state, and 

suffers from bounded usage, which potentially brings in online 

burden to users when the keyed hashes are used up.  

 

Dynamic data have also attracted attentions in the recent 

literature on efficiently providing the integrity guarantee of 

remotely stored data. Ateniese et al. [21] is the first to propose 

a partially dynamic version of the prior PDP scheme, using 

only symmetric key cryptography but with a bounded number 

of audits. In [22], Wang et al. consider a similar support for 

partially dynamic data storage in a distributed scenario with 

additional feature of data error localization. In a subsequent 

work, Wang et al. [8] propose to combine BLS-based HLA 

with MHT to support fully data dynamics. Concurently, 

Erway et al. [23] develop a skip listbased scheme to also 

enable provable data possession with full dynamics support. 

However, the verification in both protocols requires the linear 

combination of sampled blocks as an input, like the designs in 

[9], [13], and thus does not support privacy-preserving 

auditing. 

 

In other related work, Sebe et al. [30] thoroughly study a set 

of requirements which ought to be satisfied for a remote data 

possession checking protocol to be of practical use. Their 

proposed protocol supports unlimited times of file integrity 

verifications and allows preset tradeoff between the protocol 

running time and the local storage burden at the user. Schwarz 

and Miller [31] propose the first study of checking the 

integrity of the remotely stored data across multiple 

distributed servers. Their approach is based on erasure-

correcting code and efficient algebraic signatures, which also 

have the similar collecting property as the homogenous linear 

authenticator utilized in our approach. Curtmola et al. [32] aim 

to ensure data possession of multiple replicas across the 

distributed storage system. They extend the PDP scheme in [9] 

to cover multiple replicas without encoding each replica 

separately, providing guarantee that multiple copies of data 

are actually maintained. In [33], Bowers et al. utilize a two-

layer erasure-correcting code structure on the remotely 

archived data and extend their POR model [18] to distributed 

scenario with high-data availability assurance. While all the 

above schemes provide methods for efficient auditing and 

provable assurance on the correctness of remotely stored data, 

almost none of them necessarily meet all the requirements for 

privacy-preserving Trusted public auditing of storage. 

Moreover, none of these schemes consider batch auditing, 

while our scheme can greatly reduce the computation cost on 

the TPA when coping with a large number of audit 

deputations. 

 

Portions of the work presented in this paper have previously 

appeared as an extended abstract in [1]. We have revised the 

paper a lot and improved many technical details as compared 

to [1]. The primary improvements are as follows: First, we 

provide a new privacy-preserving Trusted public auditing 

protocol with enhanced security strength in Section 3.4. For 

completeness, we also include an additional (but slightly less 

efficient) protocol design for provably secure zero-knowledge 

leakage Trusted public auditing scheme in Section 5.Second, 

based on the enhanced main auditing scheme, we provide a 

new provably secure batch auditing protocol. All the 

experiments in our performance evaluation for the newly 

designed protocol are completely redone. Third, we extend 

our main scheme to support data dynamics in Section 3.6, and 

provide discussions on how to generalize our privacy-

preserving Trusted public auditing scheme in Section 3.7, 
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which are lacking in [1]. Finally, we provide formal analysis 

of privacy-preserving guarantee and storage correctness, while 

only heuristic arguments are sketched in [1].  

 

VI. CONCLUSION 
In this paper, we propose a trusted public auditing process for 

secure cloud storage.To ensure that the TPA does not learn 

anything about the user data which is stored on the cloud 

server during the process of auditing, we use Homogenous 

elongate authenticator algorithm and random masking 

technique. Because it reduces the burden of cloud user, from 

auditing process and also provides relief from leakage of 

data.The experiment conducted on EC2 instance shows the 

fast performance of our design. Reports also shows that this 

method is very efficient and highly secure. We can further 

improve the trusted public auditing process as a multiuser 

secure cloud storage by making TPA to handle multiple 

auditing task in batch manner. This is implemented as a future 

extension.  
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