
IJSRSET162291 | Received: 20 March 2016 | Accepted: 26 March 2016 | March-April 2016 [(2)2: 306-310]

© 2016 IJSRSET | Volume 2 | Issue 2 | Print ISSN : 2395-1990 | Online ISSN : 2394-4099
Themed Section: Engineering and Technology

306

Improving Performance of Graph Selector in Heap Graph Based

Software Theft Detection
Prachi M. Tamgadge, Prof. S. A. Murab

Department of Computer Engineering
,
JCOET, Yavatmal, Maharashtra, India

ABSTRACT

Various applications for web users are designed using client side scripting language such as JavaScript. This source code of

JavaScript can be easily copied through browser. JavaScript was implemented as a part of web browsers, so that the user to can

control the browser and alter the displayed website contents. Hence the informal cribbing of JavaScript code has become the

serious threat. Software watermarking and code obfuscation are two approaches to detect software piracy. But watermarks can

be defaced and code obfuscation cannot prevent the code from being copied. Hence software birthmark is introduced in the

program to detect the code theft of JavaScript programs. The largest object graph is chosen to become the birthmark of a

program. The software birthmark is extracted using the run-time heap. The behavioral structure of the software is extracted into

heap graph which shows how the objects are linked together. The aim is the improvement of the graph selector to choose the

graph extracted from the program.

Keywords: Watermarking, Obfuscation, Software Birthmark, Heap Graph, Theft Detection

I. INTRODUCTION

Amongst the various platforms for programming JavaScript

has become the popular platform for the development of

various applications. It offers various features to the developer

for the ease of programming. Nowadays the source code of

JavaScript programs can be readily available as it is an

interpreted language. Hence for protecting the code theft

methods like watermarking are used. Watermarking is one of

the well-known approach to detect software piracy in which a

watermark is added into a program to prove the ownership of

it [1]. However, it is believed that “a sufficiently determined

attacker will eventually be able to defeat any watermark.” [2].

Watermarking [3] also requires the owner to take extra action

such as embedding the watermark into the code prior to

releasing the software. Thus, some existing JavaScript

developers do not use watermarking but try to obfuscate their

source code before publishing. Code obfuscation is a

semantics-preserving transformation of the source code that

makes it more difficult to understand and reverse engineer.

However, it only prevents others from learning the logic of the

source code but does not protect them from being copied. A

relatively new but less popular software theft detection

technique is software birthmark. Software birthmark does not

require any code being added to the software. It depends

solely on the intrinsic characteristics of a program to

determine the similarity between two programs. A birthmark

could be used to identify software theft even after destroying

the watermark by code transformation. There are two

categories of software birthmarks, static birthmarks and

dynamic birthmarks. Static birthmarks are extracted from the

syntactic structure of a program. Dynamic birthmarks are

extracted from the dynamic behavior of a program at run-time.

Since semantics-preserving transformations like code

obfuscation only modify the syntactic structure of a program

but not the dynamic behavior of it, dynamic birthmarks are

more robust against them. Identifying same or similar code

fragments among different programs or in the same program

is very important in some applications. For example,

duplicated codes found in the same program may degrade

efficiency in both development and execution phase. Code

identification techniques such as clone detection can be used

to discover and refactor the identical code fragments to

improve the program. For another example, same or similar

code found in different programs may lead to even more

serious issues. If those programs have been individually

developed by different programmers, and if they do not embed

any public domain code in common, duplicated code can be

an indication of software plagiarism or code theft. In code

theft cases, determining the similarity of two code fragments

becomes much more difficult since plagiarizers can use

various code transformation techniques including code

obfuscation techniques to hide stolen code from detection. In

order to handle such cases, code characterization and

identification techniques must be able to detect the identical

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

307

code without being easily circumvented by code

transformation techniques

A redesigned heap graph based birthmark for JavaScript to

make it a scalable and robust solution for detecting software

theft can be used. The proposed birthmark is formed by

extracting objects from the heap and building a heap graph out

of them. A heap graph is a simple directed graph in which the

nodes represent the objects and the edges represent the

references between them. Since not all the objects and

references stem from the software itself, further filtering on

them is performed to let us focus on objects and references

that truly represent the behavior of the software. The first kind

of nodes filtered out are those that are created by the browser.

They include, among the others, the objects that are created

for the DOM tree and closures of JavaScript builtin functions.

The second kind of nodes filtered out are those that are not

accessible from the JavaScript program. For references, only

the references created for context variables are filtered as they

are not accessible from the JavaScript program. The filtered

graph forms the birthmark of the program.

II. METHODS AND MATERIAL

A. Literature Review

The term birthmark was first used by Grover [4] where the

term was used to mean the unique characteristics exhibited by

the program which can be useful to identify the program. The

term “birthmark” differs from the term “fingerprint” in that

the characteristics used to embed the fingerprint are

intentionally placed in the code. The general idea of a

software birthmark is similar to that of a computer virus

signature.

The first dynamic birthmark was proposed by Myles et al.[5],

to identify the program. They explored the complete control

flow trace of a program execution. They proved that their

technique can resist to any kind of attacks by code obfuscation.

Whole Program Paths (WPP) is a technique presented to

represent a program’s dynamic control flow. The WPP is

constructed by collecting a trace of the path executed by the

program. The trace is then transformed into a more compact

form by identifying its regularity, which is repeated code. To

collect the trace the edges of the program’s control flow graph

are instrumented, by uniquely labelling each edge. As the

program executes the edges are recorded, producing a trace.

There is a drawback that their work is sensitive to various

loop transformations. Besides, the whole program path traces

are large and hence it is not feasible to scale this technique

further.

Haruaki Tamada et. al, proposed birthmarks based on

Dynamic Software Birthmarks to Detect the Theft of

Windows Applications[6]. Applications running on the

operating system can use many features called API function

calls, provided by the Operating System. The typical API

function calls are file input/output, synchronized objects such

as semaphore, mutual exclusion and critical section, user

interface and graphics. Since the most of API function calls

cannot be replaced by other instructions without affecting the

program behaviour, history of their executions can be used as

robust birthmarks. For example, the high level OS does not

allow direct operations to the file system from user

applications, and it only allows file input/output via API

function calls. Also, the operations to GUIs are allowed only

via API function calls. It indicates that the birthmark using

API function calls has good tolerance against program

transformation attacks.

Haruaki Tamada et. al, proposed design and evaluation of

birthmarks for detecting theft of java programs[7]. They

presented four types of birthmarks to provide a reasonable

evidence of theft of Java class files. The results showed that

the proposed birthmarks could successfully distinguish (non-

copied) class files in practical Java packages except some tiny

classes, and that they achieved relatively good tolerance to

program obfuscation. Compared to watermarking, the

advantage is that the birthmarks are easily used without any

extra code. Limitation is that birthmarks might be a bit weaker

evidence than watermarks. However, watermarking and

birthmarking are not exclusive techniques. Hence, they

suggested combined use of watermarking and birthmarking

would cover the limitation of each other.

Ginger Myles and Christian Collberg introduced the k-gram

based software birthmarks[8]. A k-gram is a contiguous

substring of length k which can be comprised of letters, words,

or opcodes. The k-gram birthmark is based on static analysis

of the executable program. For each method in a module the

set of unique k-grams by sliding a window of length k over

the static instruction sequence as it is laid out in the

executable is computed. The birthmark for the module is the

union of the birthmarks of each method in the module. The

order of the k-grams within the set is unimportant as is the

frequency of occurrence of each k-gram. By using the unique

k-grams without their associated frequency the birthmark is

less susceptible to semantics-preserving transformations. For

example, an obfuscation which duplicates basic blocks will

increase the frequency of those k-grams in the block.

Additionally, because the birthmark is independent of the

order of the methods in the module or the modules within the

program, the technique can be used at the module or program

level. In order to use k-grams to uniquely identify a program it

must be true that a specific set of k-grams is unique to a

program.

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

308

Tamada et. al, proposed birthmarks based on design and

evaluation of dynamic software birthmarks based on API

Calls[9]. Applications running on an operating system (OS)

can use various build-in features of the OS by calling APIs.

The file input/output, synchronized objects such as semaphore,

mutex and critical section and graphic user interface (GUI) are

the typical API function calls. For API calls involved in a

program p (in a binary form), they focused on the following

properties.

 It is hardly possible to replace the API calls with other

instructions without changing the behaviour of p.

 In general, a compiler does not optimize the APIs

themselves.

As for the first property, they assumed a relatively complex

program (application) operating on the recent sophisticated

operating systems such as MS Windows, where every access

to system resources is strictly managed via APIs. In such OS,

any operation to the file system, for instance, must be done via

file I/O APIs. The operations to GUIs (widgets) must be also

performed by API calls. Hence, it is almost impossible to alter

these API calls with other user-made instructions.

David Schuler et al. [10] proposed a dynamic birthmark for

Java that perceives how a program uses objects provided by

the Java Standard API. To extract a birthmark from a program,

they statically instrument the byte code of the program as well

as the byte code of the Java API classes and then run the

program. The instrumentation detects for each API object the

methods invoked from the program. From this information the

birthmark is computed at runtime in memory (for efficiency)

and written to a file when the program terminates. The key

idea is to replace each API call site in the user program with a

call to a proxy method that was added to the API class, which

requires instrumentation of both the API and the program

itself. Using method interposition, they captured all method

calls from the user program to the API, whereas API-to-API

calls remain unaltered. The short sequences of method calls

received by distinct objects from Java Platform Standard API

were observed. Then the call traces were decomposed into a

set of short call sequences received by API objects. The

proposed dynamic birthmark system could accurately identify

programs that were similar to each other and distinguish

separate programs. In addition, they showed that all

birthmarks of obfuscated programs were identical to that of

the original program. API birthmark was more scalable and

more resilient than the Whole Program Path Birthmark by

Myles and Collberg.

Wang et al. [11] put forward behaviour based software theft

detection. A system call dependence graph (SCDG) is a

graphical representation of the behaviours of a program, is a

good candidate for behaviour based birthmarks. In a SCDG,

system calls are represented by vertices, and data and control

dependences between system calls by edges. A SCDG shows

the interaction between a program and its operating system

and the interaction is an essential behaviour characteristic of

the program. Although a code stealer may apply compiler

optimization techniques or sophisticated semantic preserving

transformation on a program to disguise original code, these

techniques usually do not change the SCDGs. It is also dicult

to avoid system calls, because a system call is the only way

for a user mode program to request kernel services in modern

operating systems. For example, in operating systems such as

Unix/Linux, there is no way to go through the file access

control enforcement other than invoking open()/read()/write()

system calls. Although an exceptionally sedulous and creative

plagiarist may correctly overhaul the SCDGs, the cost is

probably higher than rewriting his own code, which conflicts

with the intention of software theft. After all, software theft

aims at code reuse with disguises, which requires much less

eff ort than writing one’s own code. To extract SCDG

birthmarks, automated dynamic analysis is performed on both

plaintiff and suspect programs to record system call traces and

dependence relation between system calls. Since system calls

are low level implementation of interactions between a

program and an OS, it is possible that two dierent system call

traces represent the same behaviour. Thus, they filtered out

noises, which cause the diff erence, from system call traces.

Then, SCDGs are constructed and both plaintiff and suspect

SCDG birthmarks are extracted from the SCDGs. Evaluation

of their system showed that it was vigorous against attacks

based on obfuscation techniques and different compilers. It is

the first system that is able to find software component theft

where only some part of code is stolen.

Chan et al. [12] proposed the first dynamic birthmark based

on the run-time heap for JavaScript programs. It is in the form

of an object reference tree. A tree comparison algorithm was

used to compare two birthmarks and gave a similarity score

between two birthmarks. However, due to efficiency problem

of the tree comparison algorithm, the depth of the tree was

limited to 3 in order to make the running time of the algorithm

practical. On the other hand, new birthmark is an object graph

and graph monomorphism was used to search for the

birthmark in the heap graph of the suspected program.

Although they limited the size of the heap graphs in the

system, the limitation is less restrictive. It is because the root

node of the heap graph is actually at level 2 of the whole

object reference graph with reference to the virtual node. Even

though the size of the heap graph was limited, the current

birthmark captured far more information than the previous

system.

Later, they proposed another heap based birthmark system

[13]. This time, the birthmark system was for detecting theft

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

309

in Java programs. Graph isomorphism algorithm was used for

birthmark detection. As graph isomorphism is too restrictive

and makes the birthmark system vulnerable to reference

injection attack. They used the largest heap graph from the

program to be the birthmark of the program.

But most of the previous techniques cannot handle advanced

obfuscation techniques. The methods based on source code

analysis are not practical since the source code of suspicious

programs typically cannot be obtained until strong evidences

have been collected.

B. The Structure of A Heap Graph

A heap graph [13] is a simple directed graph in which the

nodes represent the objects and edges represent the references

between them. The structure of the heap graph is as shown in

the following figure.

Figure 1. Structure of Heap graph

A heap graph starts with the virtual node which is the entry

point to all the nodes in the heap. The virtual node points to

one or more window objects which represent the different

DOM windows residing on the web page. A window object in

turn points to the various objects in its DOM windows. The

objects under the window nodes are compared on the basis of

their sizes in terms of the number of nodes and number of

edges reachable from the nodes of them.

C. The Heap Graph Based Theft Detection System

Following figure shows the overview of software birthmark

system [13]. It outlines the processes that the plaintiff program

and the suspected program undergo. The objects of heap graph

are considered as the nodes and the references are treated as

the edges.

The JavaScript heap profiler is used to take the snapshots. The

snapshots are in the form of heap graphs which are accessible

through the virtual nodes of the heap graph generated. The

heap profiler first triggers the garbage collections so that the

weakly reachable objects are ensured to be reachable from the

root nodes. The heap contents are iterated to count the entries

and references. The references are filled between the entries.

The dominators of the entries are set. Further the retained size

of each entry is calculated. Thus in this way a snapshot is

taken and converted into the text file.

Figure 2. Heap graph based software theft detection

The graph generator takes the output of the heap profiler as an

input. For each snapshot a depth first search traversal is

performed. Then it is passed to the filter. The filter traverses

the objects in the heap snapshots and builds heap graphs out

of them. All objects and references never represent the

behavior of the system. For this reason the filtering is

important. So that the objects and references which purely

depicts the behavior of the software are concentrated more.

The output of the graph generator and filter is a set of heap

graphs captured at different points of time.

The graph merger takes the multiple labelled connected heap

graphs from generator and filter as an input. The

superimposition of all the graphs is done one by one. The

union set of nodes and edges of the two graphs is considered.

The graph selector selects a graph from the heap graph to

form the birthmark of the plaintiff program. The largest object

graph reachable from the node is chosen as the birthmark

because it captures the most information of the heap. This step

is not needed for the suspected program.

The detector takes the graph from the original program and

entire heap graph of the suspected program as an input.

Finally, the detector searches for the birthmark of the plaintiff

program in the heap graph of the suspected program. Once

there is a match found the detector raises an alert and reports

where the match is found.

III. RESULTS AND DISCUSSION

Proposed Approach

The performance of graph selector is focused because

currently largest object graph is chosen to become the

birthmark of the program. But the birthmark should be more

representative of the program. The time taken by large graph

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

310

for mining is slow. So performance tuning is done on graph

selector to make it more robust and practical. We take the two

heap snap shot for request searched in the chrome browser.

The heap snap shot contains all nodes like object, arrays,

string, closure, etc. The snapshot file is processed and object

contents are retrieved. Next we get the distinct objects present

in the each heap snapshot. The overall size for the each object

present in the each heap snap shot is calculated. The two heap

snapshots are merged. The distinct value is computed on the

basis of comparison algorithm. By using this distinct value

software theft will be predicted. The comparison algorithm is

as follows:

match outputs(List I, List O, split-seq-Node N)

if O is empty then

 return true

end if

o1 head(O)

for all k to N children do

k.matchSet = k.matchSet{o1}

if matchOutputs(I, k.matchSet, k) then

if matchOutputs(I, tail(O), N) then

return true

end if

end if

IV. CONCLUSION

The heap graph extracted from the program is used as a

birthmark to identify the program. The similar functioning

programs are compared to detect the software theft. This

system is reliable because the birthmark cannot be defaced. It

provides a novel technique of using heap graph as a birthmark.

V. REFERENCES

[1] C. Collberg and C. Thomborson, “Software

watermarking: Models and dynamic embeddings,”

in Proceeding Symposium Principles of

Programming Languages (POPL’99), 1999, pp.

311–324.

[2] A. Monden, H. Iida, K. I. Matsumoto, K. Inoue,

and K. Torii, “Watermarking java programs,” in

Proceeding International Symposium Future

Software Technology, Nanjing, China, 1999.

[3] C. Collberg, E. Carter, S. Debray, A. Huntwork, J.

Kececioglu, C. Linn, and M. Stepp, “Dynamic

path-based software watermarking,” in Proceeding

ACM SIGPLAN 2004 Conference Programming

Language Design and Implementation (PLDI ’04),

New York, 2004, pp. 107–118, ACM.

[4] Derrick Grover. Program identification. In Derrick

Grover, editor, The Protection of Computer

Software – Its Technology and Applications,

pages 122–154. Cambridge University Press,

1989.

[5] G. Myles and C. Collberg, “Detecting software

theft via whole program path birthmarks,” in

Proceeding Inf. Security 7th International

Conference (ISC 2004), Palo Alto, CA, Sep. 27–

29, 2004, pp. 404–415.

[6] H. Tamada, K. Okamoto, M. Nakamura, and A.

Monden, “Dynamic software birthmarks to detect

the theft of windows applications,” in Proceeding

International Symposium Future Software

Technology Xian, China, 2004.

[7] H. Tamada, K. Okamoto, M. Nakamura, A.

Monden, and K. I. Matsumoto, “Design and

Evaluation of birthmarks for detecting theft of

java programs”, in Proceeding IASTED

International Conference Software Engineering,

2004, pp. 569-575.

[8] G. Myles and C. Collberg, “K-gram based

software birthmarks,” in Proceeding 2005 ACM

Symposium Application Computing (SAC ’05),

New York, 2005, pp. 314–318, ACM.

[9] H. Tamada, K. Okamoto, M. Nakamura, A.

Monden, and K. I. Matsumoto, “Design and

Evaluation of Dynamic Software Birthmarks

based on API Calls”, Nara Institute of Science and

Technology, Rep., 2007.

[10] D. Schuler, V. Dallmeier, and C. Lindig, “A

dynamic birthmark for java,” in Proceeding 22nd

IEEE/ACM International Conference Automated

Software Engineering (ASE ’07), New York,

2007, pp. 274–283, ACM.

[11] X. Wang, Y. C. Jhi, S. Zhu, and P. Liu, “Behavior

based software theft detection,” in Proceeding

16th ACM Conference Comput. and Commun.

Security (CCS ’09), New York, 2009, pp. 280–

290, ACM

[12] P. Chan, L. Hui, and S. Yiu, “Jsbirth: Dynamic

JavaScript birthmark based on the run-time heap,”

in Proceeding. 2011 IEEE 35th Annual Comput.

Software and Applications Conference

(COMPSAC), July 2011, pp. 407–412.

[13] P. Chan, L. Hui, and S. Yiu, “Heap graph based

software theft detection” 2013 IEEE Transactions

on Information Forensics and Security, 2013,v. 8

n. 1, p.101

