Use of Noncoding Plastid Marker trnL-F as DNA Barcode for Identification of True Mangrove Genus Rhizophora

Authors

  • S. Surya  Research Scholar, CMS College ,Kottayam, Kerala, India
  • N. Hari  Assistant Professor, CMS College ,Kottayam, Kerala, India

Keywords:

DNA barcoding, trnL-F , mangrove, Rhizophora.

Abstract

DNA barcoding should provide rapid, accurate identifications by using a standardized DNA region. The ability to discriminate all species is the ultimate target in barcoding. The barcoding method has been extremely useful in species identification, cryptic species identification, biodiversity studies, forensic analysis and phylogenetics. Application of DNA barcoding to plants has primarily focused on evaluating the success of candidate barcodes across a broad spectrum of evolutionary divergence. In addition to accurately identifying query sequences, results showed that DNA barcoding is useful for detecting taxonomic uncertainty, determining whether erroneous taxonomy. The magnitude of differentiation within and among the Rhizophora species sampled suggests that our results inform how DNA barcoding will perform among closely related species in genera.

References

  1. Weiguo Z, Yile P, Shihai ZZJ, Xuexia M, Yongping H. 2005. Phylogeny of the morus (Urticales: Moraceae) inferred from ITS and trnL-F sequences. Afr J Biotechnol 4: 563-569.
  2. Chung S-M, Staub JE, Chen J-F (2006) Molecular phylogeny of Cucumis species as revealed by consensus chloroplast SSR marker length and sequence variation. Genome 49: 219-229
  3. Chung SM, Gordon VS, Staub JE. 2007. Sequencing cucumber (Cucumis sativus L.) chloroplast genomes identifies differences between chilling-tolerant and -susceptible cucumber line. Genome 50: 215-225.
  4. Kajita T, Kamiya K, Nakamura K, Tachida H, Wickneswari R, TsumuraY, Yoshimaru H,  Yamazaki T. 1998. Molecular phylogeny of Dipterocarpaceae in Southeast Asia based on nucleotide sequences of matK, trnL intron, and trnL-F IGS Region in cpDNA. Mol Phylo Evol 10: 202-209.
  5. Alejandro GD, Razafimandimbison SG, Liede-Schumann S. 2005. Polyphyly of Mussaenda inferred from ITS and trnT-F data and its implications for generic limits in Mussaendeae (Rubiaceae). Am J Bot 92: 544-557.
  6. Barfuss MHJ, Samuel R, Till W, Stuessy TF. 2005. Phylogenetic relationships in subfamily Tillandsioideae (Bromeliaceae) based on DNA sequence data from seven plastid regions. Am J Bot 92: 337-351.
  7. Shaw J, Kelchner SA, Lickey EB, Beck JT, Farmer SB, Liu W, Miller J, Siripun KC, Winder CT, Schilling EE, Small RL. 2005. The tortoise and the hare ii: Relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. Am J Bot 92: 142-166.
  8. Fitmawatii, Fauziahi R, Hayatii I, Sofiyantii N, Inoue E,Matra DD. 2017. Phylogenetic analysis of Mangifera from central region of Sumatra using trnL-F intergenic spacer.Biodiversitas. 1035-1040.
  9. Bayer RJB, Puttock CF, Kelchner SA. 2000. Phylogeny of South African Gnaphilieae (Asteraceae) based on two-coding sequences. Am J Bot 87: 259-272.
  10. Fitmawati, Swita A, Sofiyanti N. 2013. Exploration and characterization of mango germplasm (Mangifera) in Central Sumatra. Proceeding of Semirata FMIPA. Universitas Lampung, Lampung, 10-12 May 2013.
  11. Taberlet P, Gielly L, Pautou G. 1991. Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 17:1105-1109.

Downloads

Published

2017-12-31

Issue

Section

Research Articles

How to Cite

[1]
S. Surya, N. Hari, " Use of Noncoding Plastid Marker trnL-F as DNA Barcode for Identification of True Mangrove Genus Rhizophora, International Journal of Scientific Research in Science, Engineering and Technology(IJSRSET), Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 3, Issue 8, pp.830-834, November-December-2017.