Acoustical and Mechanical Characterization of Natural Fibre-Reinforced Composite : A Review
DOI:
https://doi.org/10.32628/IJSRSET2310147Keywords:
Natural fibre-reinforced composite, Acoustical characteristics, Mechanical characteristics, Noise pollution, Sound absorption coefficient, Influencing parameters.Abstract
Noise pollution is increasing in this era as countries' development is faster. This noise pollution causes serious non-auditory effects on human health. As a result, it needs effective controls on noise pollution. Hence, use a natural fibre-reinforced composite for acoustical applications. Natural fibre-reinforced composites have various benefits, such as being eco-friendly, easy to manufacture, and effective in cost, and natural fibre improves the sound absorption, mechanical strength, and structural stability of the composite. The present review describes various techniques for measuring the acoustical and mechanical characteristics of natural fibre-reinforced composites. In addition to these acoustical (sound absorption coefficient, sound transmission losses, etc.) and mechanical (tensile, flexural, impact, etc.) characteristics are reviewed. Furthermore, this review paper studied an influencing parameter that affects the acoustical and mechanical characteristics of natural fibre-reinforced composites. these influencing parameters, such as fibre properties, density, porosity, sample thickness, binder amount, and filler material. In natural fibre-reinforced composites, increasing the percentage of the fibre density, binder amount, and filler material enhances sound absorption and mechanical strength, but these parameters have certain limitations, and crossing the limitation decreases the characteristics. reduce the porosity, decrease sound absorption, and increase sample thickness to increase acoustical characteristics. The conclusion states that the acoustical and mechanical characteristics of natural fibre-reinforced composites are enhanced when considering the performance-influencing parameters.
References
- M. M. Dawoud and H. M. Saleh, “Introductory Chapter: Background on Composite Materials,” in Characterizations of Some Composite Materials, IntechOpen, 2019. doi: 10.5772/intechopen.80960.
- D. Chandramohan and & K. Marimuthu, “A Review on Natural Fibers,” IJRRAS, vol. 8, no. 2, Aug. 2011, [Online]. Available: www.arpapress.com/Volumes/Vol8Issue2/IJRRAS_8_2_09.pdf.
- Sadiqsha H A J and Pradeep P Patil, “A Review on Natural Fibre Composites,” Journal of Xidian University, vol. 14, no. 6, Jun. 2020, doi: 10.37896/jxu14.6/332.
- N. Saba and M. Jawaid, “Epoxy resin-based hybrid polymer composites,” in Hybrid Polymer Composite Materials: Properties and Characterisation, Elsevier Inc., 2017, pp. 57–82. doi: 10.1016/B978-0-08-100787-7.00003-2.
- Chawla Krishan K, “Advantages and disadvantages of different fabrication methods of polymer matrix,” in Composite Material, 3rd ed., 2012, pp. 1–533. doi: 10.1007/978-0-387- 74365-3.
- E. Taban, A. Tajpoor, M. Faridan, S. E. Samaei, and M. H. Beheshti, “Acoustic Absorption Characterization and Prediction of Natural Coir Fibers,” Acoust Aust, vol. 47, no. 1, pp. 67– 77, Apr. 2019, doi: 10.1007/s40857-019-00151-8.
- X. Xu, H. Wang, Y. Sun, J. Han, and R. Huang, “Sound absorbing properties of perforated composite panels of recycled rubber, fibreboard sawdust, and high-density polyethylene,” J Clean Prod, vol. 187, pp. 215–221, Jun. 2018, doi: 10.1016/j.jclepro.2018.03.174.
- J. Shen, X. Li, and X. Yan, “Mechanical and Acoustic Properties of Jute Fiber-Reinforced Polypropylene Composites,” ACS Omega, vol. 6, no. 46, pp. 31154–31160, Nov. 2021, doi: 10.1021/acsomega.1c04605.
- S. N. Nair and A. Dasari, “Development and Characterization of Natural-Fiber-Based Composite Panels,” Polymers (Basel), vol. 14, no. 10, May 2022, doi: 10.3390/polym14102079.
- C. Chen et al., “Properties and applications of bamboo fiber—A current-state-of-the art,” Journal of Renewable Materials, vol. 10, no. 3. Tech Science Press, pp. 605–624, 2022. doi: 10.32604/jrm.2022.018685.
- E. Jayamani, S. Hamdan, M. R. Rahman, and M. K. bin Bakri, “Investigation of fiber surface treatment on mechanical, acoustical and thermal properties of betelnut fiber polyester composites,” in Procedia Engineering, 2014, vol. 97, pp. 545–554. doi: 10.1016/j.proeng.2014.12.282.
- Y. Saygili, G. Genc, K. Y. Sanliturk, and H. Koruk, “Investigation of the Acoustic and Mechanical Properties of Homogenous and Hybrid Jute and Luffa Bio Composites,” Journal of Natural Fibers, vol. 19, no. 4, pp. 1217–1225, 2020, doi: 10.1080/15440478.2020.1764446.
- Altenbach Holm, Altenbach Johann, and Kissing Wolfgang, Mechanics of Composite Structural Elements. 2004. doi: 10.1007/978-3-662-08589-9.
- A. Kudva, M. Gt, and K. Dayananda Pai, “Physical, thermal, mechanical, sound absorption and vibration damping characteristics of natural fiber reinforced composites and hybrid fiber reinforced composites: A review,” Cogent Engineering, vol. 9, no. 1. Cogent OA, 2022. doi: 10.1080/23311916.2022.2107770.
- U. Berardi and G. Iannace, “Acoustic characterization of natural fibers for sound absorption applications,” Build Environ, vol. 94, pp. 840–852, Dec. 2015, doi: 10.1016/j.buildenv.2015.05.029.
- S. A. Stansfeld and M. P. Matheson, “Noise pollution: non-auditory effects on health,” British Medical Bulletin, vol. 68. pp. 243–257, 2003. doi: 10.1093/bmb/ldg033.
- M. R. Monazzam, V. Abolhasannejad, B. N. Moasheri, V. Abolhasannejad, and H. Kardanmoghaddam, “Noise pollution in old and new urban fabric with focus on traffic flow,” Journal of Low Frequency Noise Vibration and Active Control, vol. 35, no. 4, pp. 257– 263, Dec. 2016, doi: 10.1177/0263092316661056.
- H. Slabbekoorn, “Noise pollution,” Current Biology, vol. 29, no. 19. Cell Press, pp. R957– R960, Oct. 07, 2019. doi: 10.1016/j.cub.2019.07.018.
- D. B. Patel, H. Kumar, and A. Solanki, “Effects of Noise Pollution on Human Health,” Research and Reviews: Journal of Environmental Sciences, vol. 3, no. 1, pp. 1–5, 2021.
- N. Dhandapani and A. Megalingam, “Mechanical and Sound Absorption Behavior of Sisal and Palm Fiber Reinforced Hybrid Composites,” Journal of Natural Fibers, vol. 19, no. 12, pp. 4530–4543, 2022, doi: 10.1080/15440478.2020.1863893.
- S. Prabhakaran, V. Krishnaraj, M. Senthil Kumar, and R. Zitoune, “Sound and vibration damping properties of flax fiber reinforced composites,” in Procedia Engineering, 2014, vol. 97, pp. 573–581. doi: 10.1016/j.proeng.2014.12.285.
- S. Sakthivel et al., “Sound absorbing and insulating properties of natural fiber hybrid composites using sugarcane bagasse and bamboo charcoal,” J Eng Fiber Fabr, vol. 16, 2021, doi: 10.1177/15589250211044818.
- Y. S. Munde, R. B. Ingle, and I. Siva, “Vibration damping and acoustic characteristics of sisal fibre–reinforced polypropylene composite,” Noise and Vibration Worldwide, vol. 50, no. 1, pp. 13–21, Jan. 2019, doi: 10.1177/0957456518812784.
- D. K. Rajak, D. D. Pagar, P. L. Menezes, and E. Linul, “Fiber-reinforced polymer composites: Manufacturing, properties, and applications,” Polymers, vol. 11, no. 10. MDPI AG, Oct. 01, 2019. doi: 10.3390/polym11101667.
- R. M. Rowell, “Natural fibres: Types and properties,” in Properties and Performance of Natural-Fibre Composites, Elsevier Inc., 2008, pp. 3–66. doi: 10.1533/9781845694593.1.3.
- Hu Jinlian., Kumar Bipin., and Lu Jing., Handbook of Fibrous Materials, vol. 1 & 2. John Wiley & Sons, Incorporated, 2020.
- M. Saxena, A. Pappu, A. Sharma, R. Haque, and S. Wankhede, “Composite Materials from Natural Resources: Recent Trends and Future Potentials,” in Advances in Composite Materials - Analysis of Natural and Man-Made Materials, InTech, 2011. doi: 10.5772/18264.
- N. Venkatachalam, “Introduction of Natural Fiber Composite Using in Paperboard Industry,” in Composite and Nanocomposite Materials - From Knowledge to Industrial Applications, IntechOpen, 2020. doi: 10.5772/intechopen.91001.
- N. H. Bhingare, S. Prakash, and V. S. Jatti, “A review on natural and waste material composite as acoustic material,” Polym Test, vol. 80, Dec. 2019, doi: 10.1016/j.polymertesting.2019.106142.
- E. M. Taiwo, K. Yahya, and Z. Haron, “Potential of Using Natural Fiber for Building Acoustic Absorber: A Review,” in Journal of Physics: Conference Series, Aug. 2019, vol. 1262, no. 1. doi: 10.1088/1742-6596/1262/1/012017.
- X. Tang and X. Yan, “Acoustic energy absorption properties of fibrous materials: A review,” Composites Part A: Applied Science and Manufacturing, vol. 101. Elsevier Ltd, pp. 360–380, Oct. 01, 2017. doi: 10.1016/j.compositesa.2017.07.002.
- R. Ďuriš and E. Labašová, “The design of an impedance tube and testing of sound absorption coefficient of selected materials,” in IOP Conference Series: Materials Science and Engineering, Jan. 2021, vol. 1050, no. 1. doi: 10.1088/1757-899X/1050/1/012003.
- M. Nolan, S. A. Verburg, J. Brunskog, and E. Fernandez-Grande, “Experimental characterization of the sound field in a reverberation room,” J Acoust Soc Am, vol. 145, no. 4, pp. 2237–2246, Apr. 2019, doi: 10.1121/1.5096847.
- R. Lanoye, G. Vermeir, W. Lauriks, R. Kruse, and V. Mellert, “Measuring the free field acoustic impedance and absorption coefficient of sound absorbing materials with a combined particle velocity-pressure sensor,” J Acoust Soc Am, vol. 119, no. 5, pp. 2826– 2831, May 2006, doi: 10.1121/1.2188821.
- C. Nocke, “In-situ acoustic impedance measurement using a free-field transfer function method,” Applied Acoustics, vol. 59, no. 3, pp. 254–264, 1998, doi: 10.1016/s0003- 682x (99)00004-3. [36] H. Koruk, “Assessment of the Measurement and Prediction Methods for the Acoustic Properties of Natural Fiber Samples and Evaluation of Their Properties,” Journal of Natural Fibers, 2021, doi: 10.1080/15440478.2021.1907835.
- “Brüel & Kjær impedance tube.” Accessed: Dec. 27, 2022. [Online]. Available: https://www.bksv.com/en/transducers/acoustic/acoustic-material-testing kits/transmission-loss-and-impedance-tube-kits-4206
- N. Hiremath, V. Kumar, N. Motahari, and D. Shukla, “An Overview of Acoustic Impedance Measurement Techniques and Future Prospects,” Metrology, vol. 1, no. 1, pp. 17–38, May 2021, doi: 10.3390/metrology1010002.
- T. Yang et al., “Sound absorption properties of natural fibers: A review,” Sustainability (Switzerland), vol. 12, no. 20. MDPI, pp. 1–25, Oct. 02, 2020. doi: 10.3390/su12208477.
- D. S. Mondloe, A. Khare, H. K. Ghritlahre, G. K. Agrawal, and H. Naik, “Thermal and acoustic characterization of musa-coir-epoxy based novel hybrid composites for railway coach interior applications,” International Journal of Advanced Technology and Engineering Exploration, vol. 9, no. 94, pp. 1276–1289, Sep. 2022, doi: 10.19101/IJATEE.2021.875631.
- K. Meena, M. Singh, K. Soni, and A. S. Nair, “Influences of Various Parameters on Sound Absorption Properties of Vetiver Grass Fiber-based Developed Composite Material,” 2022.
- M. el Messiry and Y. Ayman, “Investigation of sound transmission loss of natural fiber/rubber crumbs composite panels,” Journal of Industrial Textiles, vol. 51, no. 3_suppl, pp. 5347S-5369S, Jun. 2022, doi: 10.1177/15280837211039574.
- N. A. G, “Experimental Analysis on Acoustic, Vibration and Moisture Absorption Properties of Natural Bio-polymer Composite,” Journal of Manufacturing Engineering, vol. 16, no. 1, pp. 24–028, 2021, doi: 10.37255/jme.v16i1pp024-028.
- L. Yuvaraj, S. Jeyanthi, and A. Yogananda, “An acoustical investigation of partial perforation in jute fiber composite panel,” in Materials Today: Proceedings, 2020, vol. 37, no. Part 2, pp. 665–670. doi: 10.1016/j.matpr.2020.05.632.
- M. S. Kassim, A. F. H. Al-Maliki, and H. A. Jasim, “Experimental study of Natural composite Material on Acoustic properties,” in IOP Conference Series: Materials Science and Engineering, Jul. 2020, vol. 870, no. 1. doi: 10.1088/1757-899X/870/1/012158.
- S. Sair, S. Mansouri, O. Tanane, Y. Abboud, and A. el Bouari, “Alfa fiber-polyurethane composite as a thermal and acoustic insulation material for building applications,” SN Appl Sci, vol. 1, no. 7, Jul. 2019, doi: 10.1007/s42452-019-0685-z.
- T. H. Teng et al., “Effect of biomass ash mixture composite on sound absorption,” in Materials Today: Proceedings, 2019, vol. 29, pp. 223–227. doi: 10.1016/j.matpr.2020.05.533.
- R. Rahmad and A. S. Ahmad Sukri, “Sound Absorption of Palm Coir Fiber,” Journal of Science and Technology, vol. 10, no. 4, Dec. 2018, doi: 10.30880/jst.2018.10.04.010.
- M. N. Yahya, M. Sambu, H. A. Latif, and T. M. Junaid, “A study of Acoustics Performance on Natural Fibre Composite,” in IOP Conference Series: Materials Science and Engineering, Aug. 2017, vol. 226, no. 1. doi: 10.1088/1757-899X/226/1/012013.
- M. S. M. Azahari, A. Z. M. Rus, S. Kormin, and M. T. Zaliran, “Acoustic properties of polymer foam composites blended with different percentage loadings of natural fiber,” in IOP Conference Series: Materials Science and Engineering, Oct. 2017, vol. 244, no. 1. doi: 10.1088/1757-899X/244/1/012009.
- M. Ali, “Microstructure, Thermal Analysis and Acoustic Characteristics of Calotropis procera (Apple of Sodom) Fibers,” Journal of Natural Fibers, vol. 13, no. 3, pp. 343–352, May 2016, doi: 10.1080/15440478.2015.1029198.
- W. D. Yang and Y. Li, “Sound absorption performance of natural fibers and their composites,” Sci China Technol Sci, vol. 55, no. 8, pp. 2278–2283, 2012, doi: 10.1007/s11431-012-4943-1.
- S. Mahzan et al., “Study on Sound Absorption Properties of Coconut Coir Fibre Reinforced Composite with Added Recycled Rubber,” International Journal of Integrated Engineering (Issue on Mechanical, Materials and Manufacturing Engineering), 2010, [Online]. Available: https://www.researchgate.net/publication/266212504
- M. Asim, N. Saba, M. Jawaid, and M. Nasir, “Potential of natural fiber/biomass filler reinforced polymer composites in aerospace applications,” in Sustainable Composites for Aerospace Applications, Elsevier, 2018, pp. 253–268. doi: 10.1016/B978-0-08-102131- 6.00012-8.
- M. K. Marichelvam, K. Kandakodeeswaran, and M. Geetha, “Mechanical and Acoustic properties of Bagasse–Coconut Coir based Hybrid Reinforced Composites,” Journal of Natural Fibers, vol. 19, no. 11, pp. 4105–4114, 2020, doi: 10.1080/15440478.2020.1854143.
- A. S. Ismail, M. Jawaid, and J. Naveen, “Void content, tensile, vibration and acoustic properties of kenaf/bamboo fiber reinforced epoxy hybrid composites,” Materials, vol. 12, no. 13, Jul. 2019, doi: 10.3390/ma12132094.
- A. Abdel-Hakim, T. M. El-Basheer, A. M. Abd El-Aziz, and M. Afifi, “Acoustic, ultrasonic, mechanical properties and biodegradability of sawdust/ recycled expanded polystyrene eco-friendly composites,” PolymTest, vol. 99, Jul. 2021, doi: 10.1016/j.polymertesting.2021.107215.
- H. Olcay and E. D. Kocak, “Rice plant waste reinforced polyurethane composites for use as the acoustic absorption material,” Applied Acoustics, vol. 173, Feb. 2021, doi: 10.1016/j.apacoust.2020.107733.
- T. Hassan et al., “Acoustic, mechanical and thermal properties of green composites reinforced with natural fibers waste,” Polymers (Basel), vol. 12, no. 3, Mar. 2020, doi: 10.3390/polym12030654.
- M. Lahouioui, R. ben Arfi, M. Fois, L. Ibos, and A. Ghorbal, “Investigation of Fiber Surface Treatment Effect on Thermal, Mechanical and Acoustical Properties of Date Palm Fiber-Reinforced Cementitious Composites,” Waste Biomass Valorization, vol. 11, no. 8, pp. 4441–4455, Aug. 2019, doi: 10.1007/s12649-019-00745-3.
- N. Mati-Baouche et al., “Mechanical, thermal and acoustical characterizations of an insulating bio-based composite made from sunflower stalks particles and chitosan,” Ind Crops Prod, vol. 58, pp. 1–6, 2014, doi: https://doi.org/10.1016/j.indcrop.2014.04.022.
- H. S. Yang, D. J. Kim, Y. K. Lee, H. J. Kim, J. Y. Jeon, and C. W. Kang, “Possibility of using waste tire composites reinforced with rice straw as construction materials,” Bioresour Technol, vol. 95, no. 1, pp. 61–65, Oct. 2004, doi: 10.1016/j.biortech.2004.02.002.
- S. John, P. Devaseelan, and S. Rajakumar, “Mechanical and Thermal Properties of Hybrid Reinforcement Polymer Composite,” International Journal of Advances in Engineering Research (IJAER) 2016, vol. 11, no. VI, pp. 29–37, 2016, [Online]. Available: http://www.ijaer.com
- T. A. Nguyen and T. H. Nguyen, “Study on Mechanical Properties of Banana Fiber-Reinforced Materials Poly (Lactic Acid) Composites,” International Journal of Chemical Engineering, vol. 2022, 2022, doi: 10.1155/2022/8485038.
- H. Teramoto, M. Iga, H. Tsuboi, and K. Nakajima, “Characterization and scaled-up production of azido-functionalized silk fiber produced by transgenic silkworms with an expanded genetic code,” Int J Mol Sci, vol. 20, no. 3, Feb. 2019, doi: 10.3390/ijms20030616.
- S. I. Mureşan Borlea, A. E. Tiuc, O. Nemeş, H. Vermeşan, and O. Vasile, “Innovative use of sheep wool for obtaining materials with improved sound-absorbing properties,” Materials, vol. 13, no. 3, Feb. 2020, doi: 10.3390/ma13030694.
- A. M. Okoro and C. Khoathane, “Synthesis and characterization of the mechanical properties of high-density polyethylene-based composites reinforced with animal fibers Development of Dombeya Buettneri fibre/Graphite Hybrid Reinforced Polypropylene Composite for Automobile Application View project Composite Development View project,” Leonardo Journal of Sciences, no. 29, pp. 99–112, 2016, [Online]. Available: https://www.researchgate.net/publication/320592383.
- S. A. Raji, A. A. Bello, K. K. Abdulraheem, and O. I. Adeyanju, “Effect of Asbestos, Cellulose Wood and Rice Husk Fibres on The Compressive Strength of Polymer Concrete,” 2017. [Online]. Available: www.jmest.org.
- Y. Salissou, R. Panneton, and O. Doutres, “Complement to standard method for measuring normal incidence sound transmission loss with three microphones,” J Acoust Soc Am, vol. 131, no. 3, pp. EL216–EL222, Mar. 2012, doi: 10.1121/1.3681016
Downloads
Published
Issue
Section
License
Copyright (c) IJSRSET

This work is licensed under a Creative Commons Attribution 4.0 International License.