Geographically Weighted Negative Binomial Regression Modeling of Tuberculosis Cases with Distribution Evaluation
DOI:
https://doi.org/10.32628/IJSRSET1207473Keywords:
TB, count data, VMR, spatial aspects, GWNBRAbstract
Tuberculosis (TB) is contagious disease caused by the bacteria mycobacterium tuberculosis and is one of the top 10 causes of death in the world. Central Java is included as one of the three provinces with highest number of TB cases in Indonesia. End the TB epidemic by 2030 is the final goal of Sustainability Development Goal and Indonesia has set target for TB elimination by 2035. The number of TB cases is non-negative count data. The distribution pattern of the count data needs to be noticed in order to produce valid analysis. Based on calculation of the VMR (Variance Mean Ratio) value and suitability test, the data on the number of TB cases follows negative binomial distribution. The infection of TB disease tends to be clumped and is affected by geographical factors (environmental, social, and economic). This study aims to determine factors that affecting TB cases through Geographic Weighted Negative Binomial Regression (GWNBR) model approach which considering spatial aspects. Based on the ratio of AIC and BIC value, GWNBR model with an adaptive gaussian kernel weighting gives the best results. The affecting factors are the number of hospitals , the percentage of population with good water access , the population density , the percentage of household with a distance of drinking water sources and feces septic tank less than 10 meters.
References
- [BPS] Badan Pusat Statistik Provinsi Jawa Tengah. 2019. Provinsi Jawa Tengah Dalam Angka. Pemerintah Provinsi Jawa Tengah
- [Dinkes] Dinas Kesehatan Provinsi Jawa Tengah. 2018. Profil Kesehatan Provinsi Jawa Tengah Tahun 2018. Pemerintah Provinsi Jawa Tengah.
- [Kemenkes] Kementrian Kesehatan Indonesia. 2016. Peraturan Menteri Kesehatan Republik Indonesia No. 67 Tahun 2016 Tentang Penanggulangan Tuberkulosis. Jakarta (ID): Kemenkes.
- [WHO] World Health Organization. 2019. Global Tuberculosis Report 2019. France (FR): WHO.
- Anselin L. 1988. Spatial Econometrics: Methods and Models. Netherlands (NL): Kluwer Academic Publisher.
- Cameron AC, Trivedi PK. 2013. Regression Analysis of Count Data. Cambridge (UK): Cambridge University Press.
- Fotheringham AS, Brunsdon C, Charlton M. 2002. Geographically Weighted Regression the Analysis of Spatially Varying Relationships. Chichester (UK): John Wiley and Sons.
- Girsang M, Tobing K, Rafrizal. 2011. Faktor Penyebab Kejadian Tuberkulosis Serta Hubungannya Dengan Lingkungan Tempat Tinggal di Provinsi Jawa Tengah. Buletin Peneliti. Kesehatan. 39(1): 34 - 41.
- Hilbe MJ. 2011. Negative Binomial Regression: 2nd. New York (USA): Cambridge University Press.
- Krebs CJ. 2013. Ecological Methodology. Ed ke- 4. New York (US): Harper Collins Publisher.
- Ruswanto B. 2010. Analisis Spasial Sebaran Kasus Tuberkulosis Paru Ditinjau dari Faktor Lingkungan Dalam dan Luar Rumah di Kabupaten Pekalongan [Disertation]. Semarang (ID): Universitas Diponegoro.
Downloads
Published
Issue
Section
License
Copyright (c) IJSRSET

This work is licensed under a Creative Commons Attribution 4.0 International License.