On Interval Valued Intuitionistic(S,T)-fuzzy Hv-ideals
Keywords:
Hv -ideal, interval valued intuitionistic (S, T)-fuzzy Hv -ideal, interval valued intuitionistic (S, T)-fuzzy idealAbstract
Atanassov introduced the concept of the interval valued intuitionistic fuzzy sets. By using this we introduce the notion of interval valued intuitionistic - Hv fuzzy -ideals of an Hv -ring with respect to a t-norm T and an s-norm S. Also some of their characteristic properties are described. The homomorphic image and the inverse image are investigated.
References
[1] Marty F., Sur une generalization de la notion
de group, in: 8th congress Math. Skandenaves, Stockhole, (1934) 45-49.
[2] Vougiouklis T., A new class of hyperstructures,
J. Combin. Inf. System Sci.     Â
[3] Davvaz B., A brief survey of the theory of
Hv-structures, in: Proceedings of the 8th                  International Congress on
AHA, Greece 2002,Spanids Press, (2003) 39-70.
[4] Zadeh L. A., Fuzzy sets, Inform. And Control 8
(1965) 338-353.
[5] Atanassov K.T., Intuitionistic fuzzy sets,
Fuzzy Sets and Systems 20 (1986) 87-96.
[6] Atanassov K. T., Intuitionistic fuzzy sets:
Theory and Applications, Studies in fuzziness and soft computing, 35,
Heidelberg, New York, Physica-Verl., 1999.
[7] Atanassov K. T., New operations defined over
the intuitionistic fuzzy sets, Fuzzy Sets andÂ
Systems 61, (1994) 137-142.
[8] Biswas R., Intuitionistic fuzzy subgroups,
Math. Forum 10 (1989) 37-46.
[9] Kim K. H., Dudek W. A., Jun Y. B., On
intuitionistic fuzzy subquasigroups of quasigroups, Quasigroups Relat Syst 7
(2000) 15-28.
[10] Kim K. H.,
Jun Y. B., Intuitionistic fuzzy idealsÂ
of semigroups, Indian J. Pure Appl. Math. 33 (4) (2002) 443-449.
[11] Zhan J.,
Dudek W. A., Interval Valued Intuitionistic -fuzzy -submodules, Acta Mathematica Sinica, Englsh
series 22 (2006) 963-970.
[12] Davvaz B.,
Dudek W. A., Jun Y. B., Intuitionistic fuzzy Hv–submodules, Inform. Sci. 176
(2006) 285-300.
[13] Vougiouklis
T., Hyperstructures and their representations, Hadronic Press, Florida, 1994.
[14] Davvaz B.,
Fuzzy Hv-groups, Fuzzy Sets and Systems 101 (1999) 191-195.
[15] Sinha A. K.,
Dewangan M. K., Intuitionistic Fuzzy Hv-subgroups, International Journal of
Advanced Engineering Research and Science 3 (2014) 30-37.
[16] Davvaz B.,
Dudek W. A., Intuitionistic fuzzy Hv–ideals, International Journal of
Mathematics and Mathematical Sciences,Â
2006, 1-11.
[17] Zhan J.,
Davvaz B., Corsini P., Intuitionistic -fuzzy hyperquasigroups, Soft Comput 12
(2008) 1229-1238.
[18] Davvaz B.,
Fuzzy Hv-submodules, Fuzzy Sets and Systems 117 (2001) 477-484.
Downloads
Published
Issue
Section
License
Copyright (c) IJSRSET

This work is licensed under a Creative Commons Attribution 4.0 International License.