Certain Results on Kenmotsu Manifolds

Authors

  • S. N. Manjunath  Lecturer, Department of Science, Govt. VISSJ Polytechnic, Bhadravathi, Karnataka, India
  • K. J. Jayashree  Lecturer, Department of Science, Govt. Polytechnic, Hiriyur, Karnataka, India
  • P. Rashmi  Lecturer, Department of Science, Govt. Polytechnic, Hiriyur, Karnataka, India

Keywords:

Projective curvature tensor, Kenmotsu manifold, Einstein.

Abstract

In this paper we study some curvature properties of Kenmotsu manifolds satisfying the conditions Projective Ricci pseudo-symmetric condition, P?Q=0.

References

  1. C.S. Bagewadi and Venkatesha, Some curvature tensor on a Kenmotsu manfold, Tensor, 68, (2007), 140-147.
  2. T.Q. Binh, L. Tamassy, U.C. De and M. Tarafder, Some Remarks on almost Kenmotsu manifolds, Math Pannon. 13, (2002), 31-39.
  3. D.E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Mathematics, Vol.509. Springer-Verlag, berlin-New-York, (1976).
  4. U.C. De, B.K. Mazumder, On pseudo Ricci symmetric spaces. Tensor N. S., 60, (1998), 135-138.
  5. R. Deszcz, On Ricci-pseudo-symmetric warped products, Demonstratio Math., 22, (1989), 1053-1065.
  6. R. Deszcz, On pseudo-symmetric spaces, Bull. Soc. Math. Belg. S´er. A, 44 (1), (1992), 1-34.
  7. Gurupadavva Ingalahalli and C.S. Bagewadi, A study on Conservative C-Bochner curvature tensor in K-contact and Kenmotsu manifolds admitting semi-symmetric metric connection, ISRN Geometry, (2012), 1-14.
  8. C.S. Bagewadi and Gurupadavva Ingalahalli, A study on curvature tensor of a Generalized Sasakian space forms, Acta Univer. Aplu.,38, (2014), 81-93.
  9. S.K. Hui and R.S. Lemence, Ricci pseudo symmetric generalized quasi-Einstein manifolds, SUT J. Math., 51, (2015), 195-213.
  10. S.K. Hui and R.S. Lemence and D. Chakraborty, Ricci Solitons on Ricci Pseudo-symmetric (LCS)_n-Manifolds, arXiv:1707.03618v1 [math.DG] 12 Jul 2017.
  11. B. Jahanara, S. Haesen, Z. Senturk and L. Verstraelen, On the parallel transport of the Ricci curvatures, J. Geom. Phys., 57,  (2007), 1771-1777
  12. K. Kenmotsu,., A class of almost contact Riemannian manifolds, Tohoku Math. J., 24, (1972), 93-103.
  13. G.P. Pokhariyal, Curvature tensors and their relativistic significance III, Yokohama Math. J., 21, (1973), 115-119.
  14. A.A. Shaikh and S.K. Hui, On some classes of generalized quasi-Einstein manifolds, Commun. Korean Math. Soc., 24 (3), (2009), 415-424.
  15. A.A. Shaikh and S.K.  Hui, On locally ϕ-symmetric β- Kenmotsu manifolds. Extracta Mathematicae, 24 (3), (2009), 301-316.
  16. A.A. Shaikh and S.K.  Hui, On extended generalized ϕ - recurrent β - Kenmotsu Manifolds. Publ. de l’Institut Math. (Beograd), 89 (103), (2011), 77-88.
  17. M.M. Tripathi and Punam Gupta, On τ-curvature tensor in K-contact and Sasakian manifolds, International Electronic Journal of Geometry, 4, (2011), 32-47.
  18. M.M. Tripathi and Punam Gupta, (N(k),ξ)-semi-Riemannian manifolds: Semisymmetries, arXiv:1202.6138v [math.DG] 28(Feb 2012).

Downloads

Published

2015-06-25

Issue

Section

Research Articles

How to Cite

[1]
S. N. Manjunath, K. J. Jayashree, P. Rashmi "Certain Results on Kenmotsu Manifolds" International Journal of Scientific Research in Science, Engineering and Technology (IJSRSET), Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 1, Issue 3, pp.462-465, May-June-2015.