Advance in Penny-Shaped Cracks of Piezoelectricity

Authors

  • Yi Xiao  Research School of Engineering, Australian National University, Acton, ACT 2601, Australia

Keywords:

Piezoelectric materials, Penny-shaped crack, piezoelectric cylinder

Abstract

This paper presents an overview of Penny-shaped cracks of piezoelectric materials. Developments of Penny-shaped crack problems in piezoelectric materials are presented. Finally, a brief summary of the approaches discussed is provided and future trends in this field are identified.

References

[1] J. Curie, P. Curie, Development par compression de l’eletricite polaire dans les cristaux hemiedres a faces inclines, Comptes Rendus Acad. Sci. Paris, 91 (1880) 294.

[2] W. Voigt, General theory of the piezo-and pyroelectric properties of crystals, Abh. Gott, 36(1) (1890).

[3] W. Cady, Piezoelectricity, vols. 1 and 2, Dover Publishers, New York, 1964.

[4] H.F. Tiersten, Linear piezoelectric plate vibrations, Springer, New York, 1969.

[5] V.Z. Parton, B.A. Kudryavtsev, Electromagnetoelasticity: piezoelectrics and electrically conductive solids, Gordon and Breach Science Publishers, New York, 1988.

[6] T. Ikeda, Fundamentals of piezoelectricity, Oxford university press, New York, 1996.

[7] N.N. Rogacheva, The theory of piezoelectric shells and plates, CRC Press, Boca Raton, 1994.

[8] Q.H. Qin, Fracture mechanics of piezoelectric materials, WIT Press, Southampton, 2001.

[9] Q.H. Qin, Green's function and boundary elements of multifield materials, Elsevier, Oxford, 2007.

[10] Q.H. Qin, Advanced mechanics of piezoelectricity, Higher Education Press and Springer, Beijing, 2013.

[11] Q.H. Qin, Mechanics of Cellular Bone Remodeling: Coupled Thermal, Electrical, and Mechanical Field Effects, CRC Press, Taylor & Francis, Boca Raton, 2013.

[12] Q.H. Qin, Q.S. Yang, Macro-micro theory on multifield coupling behaivor of hetereogenous materials, Higher Education Press and Springer, Beijing, 2008.

[13] S. Diao, Q.H. Qin, J. Dong, On branched interface cracks between two piezoelectric materials, Mechanics research communications, 23(6) (1996) 615-620.

[14] Q.H. Qin, Y.W. Mai, Crack branch in piezoelectric bimaterial system, International Journal of Engineering Science, 38(6) (2000) 673-693.

[15] Q.H. Qin, X. Zhang, Crack deflection at an interface between dissimilar piezoelectric materials, International Journal of Fracture, 102(4) (2000) 355-370.

[16] D. Fu, Z. Hou, Q.H. Qin, L. Xu, Y. Zeng, Influence of Shear Stress on Behaviors of Piezoelectric Voltages in Bone, Journal of Applied Biomechanics, 28(4) (2012) 387-393.

[17] D.H. Fu, Z.D. Hou, Q.H. Qin, Analysis of the waveforms of piezoelectric voltage of bone, Journal of Tianjin University, 39 (2006) 349-353.

[18] D.H. Fu, Z.D. Hou, Q.H. Qin, Influence of a notch on the piezoelectric voltages in bone, Engineering Mechanics, 28(1) (2011) 233-237.

[19] D.H. Fu, Z.D. Hou, Q.H. Qin, C. Lu, On the Influence of Relative Humidity on Piezoelectric Signals in Bone, Journal of Experimental Mechanics, 24(5) (2009) 473-478.

[20] Z. Hou, D. Fu, Q.H. Qin, An exponential law for stretching–relaxation properties of bone piezovoltages, International Journal of Solids and Structures, 48(3) (2011) 603-610.

[21] L. Xu, Z. Hou, D. Fu, Q.-H. Qin, Y. Wang, Stretched exponential relaxation of piezovoltages in wet bovine bone, Journal of the Mechanical Behavior of Biomedical Materials, 41 (2015) 115-123.

[22] X. He, C. Qu, Q.H. Qin, A theoretical model for surface bone remodeling under electromagnetic loads, Archive of Applied Mechanics, 78(3) (2008) 163-175.

[23] Q.H. Qin, Thermoelectroelastic solutions for internal bone remodelling under constant loads, Mechanics of electromagnetic solids, 3 (2003) 73-88.

[24] Q.H. Qin, Multi-field bone remodeling under axial and transverse loads, in: D.R. Boomington (Ed.) New research on biomaterials, Nova Science Publishers, New York, 2007, pp. 49-91.

[25] Q.H. Qin, C. Qu, J. Ye, Thermoelectroelastic solutions for surface bone remodeling under axial and transverse loads, Biomaterials, 26(33) (2005) 6798-6810.

[26] Q.H. Qin, J.Q. Ye, Thermoelectroelastic solutions for internal bone remodeling under axial and transverse loads, International Journal of Solids and Structures, 41(9) (2004) 2447-2460.

[27] C. Qu, X. He, Q.H. Qin, Bone functional remodeling under multi-field loadings, Proceedings of the 5th Australasian Congress on Applied Mechanics,  (2007) 627-632.

[28] C. Qu, Q.H. Qin, Bone remodeling under multi-field coupled loading, Zhineng Xitong Xuebao(CAAI Transactions on Intelligent Systems), 2(3) (2007) 52-58.

[29] C. Qu, Q.H. Qin, Y. Kang, A hypothetical mechanism of bone remodeling and modeling under electromagnetic loads, Biomaterials, 27(21) (2006) 4050-4057.

[30] X. He, J.S. Wang, Q.H. Qin, Saint-Venant decay analysis of FGPM laminates and dissimilar piezoelectric laminates, Mechanics of Materials, 39(12) (2007) 1053-1065.

[31] K.Q. Hu, Y.L. Kang, Q.H. Qin, A moving crack in a rectangular magnetoelectroelastic body, Engineering Fracture Mechanics, 74(5) (2007) 751-770.

[32] K.Q. Hu, Q.H. Qin, Y.L. Kang, Anti-plane shear crack in a magnetoelectroelastic layer sandwiched between dissimilar half spaces, Engineering Fracture Mechanics, 74(7) (2007) 1139-1147.

[33] Q.H. Qin, Solving anti-plane problems of piezoelectric materials by the Trefftz finite element approach, Computational Mechanics, 31(6) (2003) 461-468.

[34] H.Y. Liu, Q.H. Qin, Y.W. Mai, Theoretical model of piezoelectric fibre pull-out, International Journal of Solids and Structures, 40(20) (2003) 5511-5519.

[35] Q.H. Qin, J.S. Wang, Y.L. Kang, A theoretical model for electroelastic analysis in piezoelectric fibre push-out test, Archive of Applied Mechanics, 75(8-9) (2006) 527-540.

[36] J.S. Wang, Q.H. Qin, Debonding criterion for the piezoelectric fibre push-out test, Philosophical Magazine Letters, 86(2) (2006) 123-136.

[37] J.S. Wang, Q.H. Qin, Y.L. Kang, Stress and electric field transfer of piezoelectric fibre push-out under electrical and mechanical loading, in:  Proc. of 9th International Conference on Inspection, Appraisal, Repairs & Maintenance of Structures, Fuzhou, China, 20-21 October, CI-Premier PTY LTD, ISBN: 981-05-3548-1, 2005, pp. 435-442.

[38] Z. Liu, Z. Hou, Q.H. Qin, Y. Yu, L. Tang, On electromechanical behaviour of frog sartorius muscles, in:  Engineering in Medicine and Biology Society, 2005. IEEE-EMBS 2005. 27th Annual International Conference of the, IEEE, 2006, pp. 1252-1255.

[39] Q.H. Qin, Using GSC theory for effective thermal expansion and pyroelectric coefficients of cracked piezoelectric solids, International Journal of Fracture, 82(3) (1996) R41-R46.

[40] Q.H. Qin, Y.W. Mai, S.W. Yu, Effective moduli for thermopiezoelectric materials with microcracks, International Journal of Fracture, 91(4) (1998) 359-371.

[41] Q.H. Qin, S.W. Yu, Effective moduli of piezoelectric material with microcavities, International Journal of Solids and Structures, 35(36) (1998) 5085-5095.

[42] Q.H. Qin, S.W. Yu, Using Mori-Tanaka method for effective moduli of cracked thermopiezoelectric materials, in:  ICF 9-Sydney, Australia-1997, 1997.

[43] Q.H. Qin, Thermoelectroelastic Green's function for a piezoelectric plate containing an elliptic hole, Mechanics of Materials, 30(1) (1998) 21-29.

[44] Q.H. Qin, Thermoelectroelastic Green’s function for thermal load inside or on the boundary of an elliptic inclusion, Mechanics of Materials, 31(10) (1999) 611-626.

[45] Q.H. Qin, Green's function for thermopiezoelectric plates with holes of various shapes, Archive of Applied Mechanics, 69(6) (1999) 406-418.

[46] Q.H. Qin, Green function and its application for a piezoelectric plate with various openings, Archive of Applied Mechanics, 69(2) (1999) 133-144.

[47] Q.H. Qin, Green's functions of magnetoelectroelastic solids with a half-plane boundary or bimaterial interface, Philosophical Magazine Letters, 84(12) (2004) 771-779.

[48] Q.H. Qin, 2D Green's functions of defective magnetoelectroelastic solids under thermal loading, Engineering Analysis with Boundary Elements, 29(6) (2005) 577-585.

[49] Q.H. Qin, Green’s functions of magnetoelectroelastic solids and applications to fracture analysis, in:  Proc. of 9th International Conference on Inspection, Appraisal, Repairs & Maintenance of Structures, Fuzhou, China, 20-21 October,2005, CI-Premier PTY LTD, ISBN: 981-05-3548-1, 2005, pp. 93-106.

[50] Q.H. Qin, Y.W. Mai, Thermoelectroelastic Green's function and its application for bimaterial of piezoelectric materials, Archive of Applied Mechanics, 68(6) (1998) 433-444.

[51] Q.H. Qin, General solutions for thermopiezoelectrics with various holes under thermal loading, International Journal of Solids and Structures, 37(39) (2000) 5561-5578.

[52] Q.H. Qin, Y.W. Mai, A new thermoelectroelastic solution for piezoelectric materials with various openings, Acta Mechanica, 138(1) (1999) 97-111.

[53] Q.H. Qin, Y.W. Mai, S.W. Yu, Some problems in plane thermopiezoelectric materials with holes, International Journal of Solids and Structures, 36(3) (1999) 427-439.

[54] Q.H. Qin, A new solution for thermopiezoelectric solid with an insulated elliptic hole, Acta Mechanica Sinica, 14(2) (1998) 157-170.

[55] Q.H. Qin, General solutions for thermopiezoelectric materials with various openings, Encyclopedia of Thermal Stresses,  (2014) 1932-1942.

[56] Q.H. Qin, Thermoelectroelastic analysis of cracks in piezoelectric half-plane by BEM, Computational Mechanics, 23(4) (1999) 353-360.

[57] Q.H. Qin, Material properties of piezoelectric composites by BEM and homogenization method, Composite structures, 66(1) (2004) 295-299.

[58] Q.H. Qin, Micromechanics-BE solution for properties of piezoelectric materials with defects, Engineering Analysis with Boundary Elements, 28(7) (2004) 809-814.

[59] Q.H. Qin, Micromechanics-BEM Analysis for Piezoelectric Composites, Tsinghua Science & Technology, 10(1) (2005) 30-34.

[60] Q.H. Qin, Boundary Element Method, in: J.S. Yang (Ed.) Special Topics in the Theory of Piezoelectricity, Springer, Cambridge Massachusetts, 2009, pp. 137-168.

[61] Q.H. Qin, Analysis of Piezoelectric Solids through Boundary Element Method, J Appl Mech Eng, 2(1) (2012) e113.

[62] Q.H. Qin, Y.W. Mai, BEM for crack-hole problems in thermopiezoelectric materials, Engineering Fracture Mechanics, 69(5) (2002) 577-588.

[63] Q.H. Qin, Mode III fracture analysis of piezoelectric materials by Trefftz BEM, Structural Engineering and Mechanics, 20(2) (2005) 225-240.

[64] Q.H. Qin, Thermopiezoelectric interaction of macro-and micro-cracks in piezoelectric medium, Theoretical and Applied Fracture Mechanics, 32(2) (1999) 129-135.

[65] Q.H. Qin, Variational formulations for TFEM of piezoelectricity, International Journal of Solids and Structures, 40(23) (2003) 6335-6346.

[66] Q.H. Qin, Fracture Analysis of Piezoelectric Materials by Boundary and Trefftz Finite Element Methods, WCCM VI in conjunction with APCOM’04, Sept. 5-10, 2004, Beijing, China,  (2004).

[67] Q.H. Qin, Trefftz Plane Element of Piezoelectric Plate with p-Extension Capabilities, IUTAM Symposium on Mechanics and Reliability of Actuating Materials,  (2006) 144-153.

[68] C. Cao, Q.H. Qin, A. Yu, Hybrid fundamental-solution-based FEM for piezoelectric materials, Computational Mechanics, 50(4) (2012) 397-412.

[69] C. Cao, A. Yu, Q.H. Qin, A new hybrid finite element approach for plane piezoelectricity with defects, Acta Mechanica, 224(1) (2013) 41-61.

[70] H. Wang, Q.H. Qin, Fracture analysis in plane piezoelectric media using hybrid finite element model, in:  International Conference of fracture, 2013.

[71] Q.H. Qin, M. Lu, BEM for crack-inclusion problems of plane thermopiezoelectric solids, International Journal for Numerical Methods in Engineering, 48(7) (2000) 1071-1088.

[72] Q.H. Qin, Thermoelectroelastic solution for elliptic inclusions and application to crack–inclusion problems, Applied Mathematical Modelling, 25(1) (2000) 1-23.

[73] Q.H. Qin, Y.W. Mai, Crack growth prediction of an inclined crack in a half-plane thermopiezoelectric solid, Theoretical and Applied Fracture Mechanics, 26(3) (1997) 185-191.

[74] H.Y. Liu, Q.H. Qin, Y.W. Mai, Crack growth in composites with piezoelectric fibers, in:  Proc. of the Third Int. Conf. for Mesomechanics, Xi’an, China, June 13-16, Tsinghua Univ. Press, Vol. 1, 2000, pp. 357-366.

[75] Q.H. Qin, Y.W. Mai, Multiple cracks in thermoelectroelastic bimaterials, Theoretical and Applied Fracture Mechanics, 29(2) (1998) 141-150.

[76] Q.H. Qin, Y.W. Mai, Thermal analysis for cracks near interfaces between piezoelectric materials, Localized Damage 1998: Fifth International Conference on Damage and Fracture Mechanics,  (1998) 13-22.

[77] Q.H. Qin, S.W. Yu, An arbitrarily-oriented plane crack terminating at the interface between dissimilar piezoelectric materials, International Journal of Solids and Structures, 34(5) (1997) 581-590.

[78] Q.H. Qin, S.W. Yu, On the plane piezoelectric problem of a loaded crack terminating at a material interface, Acta Mechanica Solida Sinica, 9 (1996) 151-158.

[79] Q.H. Qin, Y.W. Mai, A closed crack tip model for interface cracks in thermopiezoelectric materials, International Journal of Solids and Structures, 36(16) (1999) 2463-2479.

[80] Q.H. Qin, Y.W. Mai, Crack path selection in piezoelectric bimaterials, Composite structures, 47(1) (1999) 519-524.

[81] Q.H. Qin, J.S. Wang, X. Li, Effect of elastic coating on fracture behaviour of piezoelectric fibre with a penny-shaped crack, Composite structures, 75(1) (2006) 465-471.

[82] J.S. Wang, Q.H. Qin, Penny-shaped Crack in a Solid Piezoelectric Cylinder With Two Typical Boundary Conditions, Journal of Beijing University of Technology, 32(S1) (2006) 29-34.

[83] Q.H. Qin, S. Yu, Logarithmic singularity at crack tips in piezoelectric media, Chinese science bulletin, 41(7) (1996) 563-566.

[84] W. Qiu, Y. Kang, Q. Sun, Q.H. Qin, Y. Lin, Stress analysis and geometrical configuration selection for multilayer piezoelectric displacement actuator, Acta Mechanica Solida Sinica, 17(4) (2004) 323-329.

[85] W. Qiu, Y.L. Kang, Q.H. Qin, Q. Sun, F. Xu, Study for multilayer piezoelectric composite structure as displacement actuator by Moire interferometry and infrared thermography experiments, Materials Science and Engineering: A, 452 (2007) 228-234.

[86] J.S. Wang, Q.H. Qin, Symplectic model for piezoelectric wedges and its application in analysis of electroelastic singularities, Philosophical Magazine, 87(2) (2007) 225-251.

[87] C.-Y. Lee, Q.H. Qin, G. Walpole, Numerical modeling on electric response of fibre-orientation of composites with piezoelectricity, International Journal of Research and Reviews in Applied Science, 16(3) (2013) 377-386.

[88] Q.S. Yang, Q.H. Qin, T. Liu, Interlayer stress in laminate beam of piezoelectric and elastic materials, Composite structures, 75(1) (2006) 587-592.

[89] Q.S. Yang, Q.H. Qin, L. Ma, X. Lu, C. Cui, A theoretical model and finite element formulation for coupled thermo-electro-chemo-mechanical media, Mechanics of Materials, 42(2) (2010) 148-156.

[90] S.W. Yu, Q.H. Qin, Damage analysis of thermopiezoelectric properties: Part I—crack tip singularities, Theoretical and Applied Fracture Mechanics, 25(3) (1996) 263-277.

[91] S.W. Yu, Q.H. Qin, Damage analysis of thermopiezoelectric properties: Part II. Effective crack model, Theoretical and Applied Fracture Mechanics, 25(3) (1996) 279-288.

[92] S. Lin, F. Narita, Y. Shindo, Electroelastic analysis of a penny-shaped crack in a piezoelectric ceramic under mode I loading, Mechanics Research Communications, 30(4) (2003) 371-386.

[93] H. Wang, Q.H. Qin, Fundamental-solution-based hybrid FEM for plane elasticity with special elements, Computational Mechanics, 48(5) (2011) 515-528.

[94] H. Wang, Q.H. Qin, Fundamental-solution-based finite element model for plane orthotropic elastic bodies, European Journal of Mechanics-A/Solids, 29(5) (2010) 801-809.

[95] M. Dhanasekar, J. Han, Q.H. Qin, A hybrid-Trefftz element containing an elliptic hole, Finite Elements in Analysis and Design, 42(14) (2006) 1314-1323.

[96] Q.H. Qin, C.X. Mao, Coupled torsional-flexural vibration of shaft systems in mechanical engineering—I. Finite element model, Computers & Structures, 58(4) (1996) 835-843.

[97] Q.H. Qin, Hybrid Trefftz finite-element approach for plate bending on an elastic foundation, Applied Mathematical Modelling, 18(6) (1994) 334-339.

[98] Q.H. Qin, The Trefftz finite and boundary element method, WIT Press, Southampton, 2000.

[99] Q.H. Qin, Trefftz finite element method and its applications, Applied Mechanics Reviews, 58(5) (2005) 316-337.

[100] Q.H. Qin, Hybrid-Trefftz finite element method for Reissner plates on an elastic foundation, Computer Methods in Applied Mechanics and Engineering, 122(3-4) (1995) 379-392.

[101] H. Wang, Q.H. Qin, Hybrid FEM with fundamental solutions as trial functions for heat conduction simulation, Acta Mechanica Solida Sinica, 22(5) (2009) 487-498.

[102] Q.H. Qin, H. Wang, Matlab and C programming for Trefftz finite element methods, New York: CRC Press, 2008.

[103] J. Jirousek, Q.H. Qin, Application of hybrid-Trefftz element approach to transient heat conduction analysis, Computers & Structures, 58(1) (1996) 195-201.

[104] Q.H. Qin, X.Q. He, Variational principles, FE and MPT for analysis of non-linear impact-contact problems, Computer methods in applied mechanics and engineering, 122(3) (1995) 205-222.

[105] Y. Cui, J. Wang, M. Dhanasekar, Q.H. Qin, Mode III fracture analysis by Trefftz boundary element method, Acta Mechanica Sinica, 23(2) (2007) 173-181.

[106] W.-G. Jiang, R.-Z. Zhong, Q.H. Qin, Y.-G. Tong, Homogenized Finite Element Analysis on Effective Elastoplastic Mechanical Behaviors of Composite with Imperfect Interfaces, International Journal of Molecular Sciences, 15(12) (2014) 23389-23407.

[107] H.-W. Wang, Q.H. Qin, H. Ji, Y. Sun, Comparison Among Different Modeling Techniques of 3D Micromechanical Modeling of Damage in Unidirectional Composites, Advanced Science Letters, 4(2) (2011) 400-407.

[108] B.-L. Wang, N. Noda, J.-C. Han, S.-Y. Du, A penny-shaped crack in a transversely isotropic piezoelectric layer, European Journal of Mechanics-A/Solids, 20(6) (2001) 997-1005.

[109] J. Yang, K. Lee, Penny shaped crack in a three-dimensional piezoelectric strip under in-plane normal loadings, Acta Mechanica, 148(1-4) (2001) 187-197.

[110] J.H. Yang, K.Y. Lee, Penny shaped crack in a piezoelectric cylinder surrounded by an elastic medium subjected to combined in-plane mechanical and electrical loads, International journal of solids and structures, 40(3) (2003) 573-590.

 

Downloads

Published

2017-08-31

Issue

Section

Research Articles

How to Cite

[1]
Yi Xiao, " Advance in Penny-Shaped Cracks of Piezoelectricity, International Journal of Scientific Research in Science, Engineering and Technology(IJSRSET), Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 3, Issue 5, pp.349-361, July-August-2017.