Bioinformatics in Environmental Bioremediation - A Review

Authors

  • Neerja Shukla  Department of Chemistry, University of Allahabad, Allahabad, Uttar Pradesh, India

Keywords:

Bioremediation, Bioinformatics, RNA, Proteomics, Genomics, Interactomics, Computational Biology, Phylogeny

Abstract

Bioremediation is a technology that uses metabolic processes to degrade or transform contaminants, so that they remain no longer in harmful form. Microbial mediated bioremediation has a great potential to effectively restore contaminated environment, but the lack of information about factor regulating the growth and metabolism of various microbial communities in polluted environment often limits its implementation. Newly seeded technology such as Bioinformatics offer remarkable promise as tools to address longstanding questions regarding the molecular mechanisms involved in the control of mineralization pathways. Bioinformatics requires the study of microbial genomics, proteomics, interactomics, computational biology, phylogeny and application of bioinformatics tools for determining the structure and development of databases which would be further utilized for better upliftment. The bioinformatics web-servers plays key role in the application of bioremediation. This paper highlights the significance of bioinformatics concepts utilized over the bioremediation fields.

References

  1. Zhang C, Bennett GN. Biodegradation of xenobiotics  by anaerobic bacteria. Appl Microbiol Biotechnol 2005;67: 600-18.
  2. Samanta SK, Singh OV, Jain RK. Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends Biotechnol 2002;20:243-8.
  3. Pandey G, Paul D, Jain RK. Branching of o-nitrobenzoate degradation pathway in Arthrobacter protophormiae RKJ100: identification of new intermediates. FEMS Microbiol Lett2003; 229:231-6.
  4. Labana S, Singh OV, Basu A, et al. A microcosm study on bioremediation of p-nitrophenol contaminated soil using  Arthrobacter protophormiae RKJ100. Appl Microbiol Biotechnol 2005;68:417-24.
  5. Labana S, Pandey G, Paul D, etal. Plot and field studies on bioremediation of p-nitrophenol contaminated soil using Arthrobacter protophormiae RKJ100. Environ Sci Technol 2005; 39:3330-7.
  6. Esteve-Nunez A, Caballero A, Ramos JL. Biological degradation of 2,4,6-trinitrotoluene. Microbiol Mol Biol Rev 2001;65:335-52.
  7. Schut GJ, Zhou J, Adams MW. DNA microarray analysis of the hyperthermophilic archaeon Pyrococcus furiosus: evidence for a new type of sulfur-reducing enzyme complex. JBacteriol 2001;183 :7027-36.
  8. Krivobok S, Kuony S, Meyer C, et al. Identification of pyrene-induced proteins in Mycobacterium spp. strain 6PY1: evidence for two ring-hydroxylating dioxygenases. JBacteriol 2003;185 :3828-41.
  9. Rhee SK, Liu X, Wu L, etal. Detection of genes involved in biodegradation and biotransformation in microbial communities by using 50-mer oligonucleotide microarrays. Appl EnvironMicrobiol 2004;70:4303-17.
  10. Kim SJ, Jones RC, Cha CJ, et al. Identification of proteins induced by polycyclic aromatic hydrocarbon in Mycobacterium vanbaalenii PYR-1 using two-dimensional polyacrylamide gel electrophoresis and de novo sequencing methods. Proteomics 2004;4:3899-908.
  11. Kuhner S, Wohlbrand L, Fritz I, et al. Substrate-dependent regulation of anaerobic degradation pathways for toluene and ethylbenzene in a denitrifying bacterium, strain EbN1. JBacteriol 2005;18 7:1493-503.
  12. Lovley DR. Cleaning up with genomic: applying molecular biology to bioremediation. Nat Rev Mi crobiol 2003;1:35-44.
  13. Santos PM, Benndorf D, Sa-Correia I. Insights into Pseudomonas putida KT2440 response to phenol-induced stress by quantitative proteomics. Proteomics 2004;4: 2640-52.
  14. Gao H, Wang Y, Liu X, etal. Global transcriptome analysis of the heat shock response of Shewanella oneidensis. JBacteriol 2004;186 :7796-803.
  15. Eyers L, George I, Schuler L, et al. Environmental genomics: exploring the unmined richness of microbes to degrade xenobiotics. Appl Microbiol Biotechnol 2004;66: 123-30.
  16. Schena M, Heller RA, Theriault TP, et al. Microarrays: biotechnology’s discovery platform for functional genomics. Trends Biotechnol 1998;16:301-6.
  17. Golyshin PN, Martins Dos Santos VA, Kaiser O, et al. Genome sequence completed of Alcanivorax borkumensis,a hydrocarbon-degrading bacterium that plays a global role in oil removal from marine systems. JBiotechnol2003;10 6: 215-20.
  18. Diaz E. Bacterial degradation of aromatic pollutants: a paradigm of metabolic versatility. Int Microbiol 2004;7:173-80.
  19. Dharmadi Y, Gonzalez R. DNA microarrays: experimental issues, data analysis, and application to bacterial systems. Biotechnol Prog 2004;20:1309-24.
  20. Tiedje JM. Shewanella—the environmentally versatile genome. Nat B iotechnol 2002;20:1093-4.
  21. Heidelberg JF, Paulsen IT, Nelson KE, et al. Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis. Nat Biotechnol 2002;20:1118-23.
  22. Seshadri R, Adrian L, Fouts DE, et al. Genome sequence of the PCE-dechlorinating bacterium Dehalococcoides ethenogenes. Science 2005;307:105-8.
  23. Rabus R, Kube M, Heider J, etal. The genome sequence of an anaerobic aromatic-degrading denitrifying bacterium, strain EbN1. Arch Microbiol 2005;183:27-36.
  24. Muffler A, Bettermann S, Haushalter M, et al. Genome- wide transcription profiling of Corynebacterium glutamicum after heat shock and during growth on acetate and glucose. J Biotechnol 2002;98:255-68.
  25. Schut GJ, Brehm SD, Datta S, et al. Whole-genome DNA microarray analysis of a hyperthermophile and an archaeon: Pyrococcus furiosus grown on carbohydrates or peptides. J Bacteriol 2003;18 5:3935-47.
  26. Dennis P, Edwards EA, Liss SN, et al. Monitoring gene expression in mixed microbial communities by using DNA microarrays. Ap pl E nviron Microbiol 2003;69:769-78.
  27. Ye RW, Tao W, Bedzyk L, et al. Global gene expression profiles of Bacillus subtilis grown under anaerobic conditions. J Bacteriol 2000;18 2:4458-65.
  28. Denef VJ, Park J, Rodrigues JL, et al. Validation of a more sensitive method for using spotted oligonucleotide DNA microarrays for functional genomics studies on bacterial communities. E nviron Microbiol 2003;5:933-43.
  29. Cho JC, Tiedje JM. Quantitative detection of microbial genes by using DNA microarrays. Appl Environ Microbiol 2002;68:1425-30.
  30. Greene EA, Voordouw G. Analysis of environmental microbial communities by reverse sample genome probing. JMicrobiol Methods 2003;53:211-9.
  31. Zhou J, Thompson DK. Challenges in applying microarrays to environmental studies. Curr Opin Biotechnol 2002;13: 204-7.
  32. Burgmann H, Widmer F, Sigler WV, et al. mRNA extraction and reverse transcription-PCR protocol for detection of nifH gene expression by Azotobacter vinelandii in soil. Appl Environ Microbiol 2003;69:1928-35.
  33. Urakawa H, El Fantroussi S, Smidt H, et al. Optimization of single-base-pair mismatch discrimination in oligo- nucleotide microarrays. Appl Environ Microbiol 2003;69: 2848-56.
  34. Wu L, Thompson DK, Li G, et al. Development and evaluation of functional gene arrays for detection of selected genes in the environment. Appl Environ Microbiol 2001;67: 5780-90.
  35. Wasinger VC, Cordwell SJ, Cerpa-Poljak A, et al. Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium. Electrophoresis 1995;16:1090-4.
  36. Hochstrasser DF. Proteome in perspective. Clin Chem Lab Med 1998;36:825-36.
  37. Sikkema J, deBont JAM, Poolman B. Mechanisms of membrane toxicity of hydrocarbons. Microbiological Rev1995;59 :201-22.
  38. Paoletti AC, Zybailov B, Washburn MP. Principles and applications of multidimensional protein identification technology. Expert Rev Proteomics 2004;1:275-82.
  39. Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature 2003;422:198-207.
  40. Aitken A, Learmonth M. Protein identification by in-gel digestion and mass spectrometric analysis. Mol Biotechnol 2002;20:95-7.
  41. Landry F, Lombardo CR, Smith JW. A method for application of samples to matrix-assisted laser desorption ionization time-of-flight targets that enhances peptide detection. Anal Biochem 2000;279:1-8.
  42. Merchant M, Weinberger SR. Recent advancements in surface-enhanced laser desorption/ionization-time of flight-mass spectrometry. Electrophoresis 2000;21:1164-77.
  43. Seibert V, Ebert MP, Buschmann T. Advances in clinical cancer proteomics: SELDI-ToF-mass spectrometry and bio- marker discovery. BriefFunct Genomic Proteomic 2005;4:16-26.
  44. Knigge T, Monsinjon T, Andersen OK. Surface-enhanced laser desorption/ionization-time of flight-mass spectrometry approach to biomarker discovery in blue mussels (Mytilus edulis) exposed to polyaromatic hydrocarbons and heavy metals under field conditions. Proteomics 2004;4:2722-7.
  45. Joo WA, Kim CW. Proteomics of Halophilic archaea. JChromatogr BAnalytTechnolBiomed Life Sci 2005;815:237-50.
  46. Vasseur C, Labadie J, Hebraud M. Differential protein expression by Pseudomonas fragi submitted to various stresses. Electrophoresis 1999;20:2204-13.
  47. Wilkins JC, Homer KA, Beighton D. Altered protein expression of Streptococcus oralis cultured at low pH revealed by two-dimensional gel electrophoresis. Appl Environ Microbiol 2001;67:3396-405.
  48. Kim S II, Kim SJ, Nam MH, et al. Proteome analysis of aniline-induced proteins in Acinetobacter lwoffi K24. Curr Microbiol 2002;44:61-6.
  49. Johnsen AR, Wick LY, Harms H. Principles of microbial PAH-degradation in soil. Environ Pollut 2005;133:71-84.
  50. Wang RF, Wennerstrom D, Cao WW, et al. Cloning, expression, and characterization of the katG gene, encoding catalase-peroxidase, from the polycyclic aromatic hydro- carbon-degrading bacterium Mycobacterium sp. strain PYR-1. Appl EnvironMicrobiol 2000;66:4300-4.
  51. Khan AA, Wang RF, Cao WW, et al. Molecular cloning, nucleotide sequence, and expression of genes encoding a polycyclic aromatic ring dioxygenase from Mycobacterium sp. strain PYR-1. Appl EnvironMicrobiol 2001; 67:3577-85.
  52. Segura A, Godoy P, van Dillewijn P, et al. Proteomic analysis reveals the participation of energy- and stress-related proteins in the response of Pseudomonas putida DOT-T1E to toluene. JBacteriol 2005;187 :5937-45.
  53. Lee WC, Lee KH. Applications of affinity chromatography in proteomics. Anal Biochem 2004;324:1-10.
  54. Coulombe B, Jeronimo C, Langelier MF, et al. Interaction networks of the molecular machines that decode, replicate, and maintain the integrity of the human genome. Mol Cell Prot eomics 2004;3:851-6.
  55. Gingras AC, Aebersold R, Raught B. Advances in protein complex analysis using mass spectrometry. JPhysiol 2005; 563:11-21.
  56. Labaer J, Ramachandran N. Protein microarrays as tools for functional proteomics. Curr Opin Chem Biol 2005; 9:14-9.
  57. Liu WT, Zhu L. Environmental microbiology-on-a-chip and its future impacts. Trends Biotechnol 2005;23:174-9.
  58. Gygi SP, Rochon Y, Franza BR, etal. Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 1999; 19:1720-30.
  59. Eymann C, Homuth G, Scharf C, et al. Bacillus subtilis functional genomics: global characterization of the stringent response by proteome and transcriptome analysis. JBacteriol 2002;18 4:2500-20.
  60. Hegde PS, White IR, Debouck C. Interplay of transcriptomics and proteomics. Curr Opin Biotechnol 2003;14: 647-51.
  61. Ideker,T., Thorsson,V., Ranish,J.A., Christmas,R., Buhler,J., Eng,J.K., Bumgarner,R., Goodlett,D.R., Aebersold,R. and Hood,L. (2001) Integrated genomic and proteomic analysesof a systematically perturbed metabolic network. Science, 292, 929-934.
  62.  Jeong,H., Mason,S.P., Baraba si,A.L. and Oltvai,Z.N. (2001) Lethality and centrality in protein networks. Nature, 411, 41-42.
  63.  Alves,R., Chaleil,R.A.G. and Sternberg,M.J.E. (2002) Evolution of enzymes in metabolism: a network perspective. J. Mol. Biol., 320, 751-770.
  64.  Fraser,H.B., Hirsh,A.E., Steinmetz,L.M., Scharfe,C. and Feldman,M.W.(2002) Evolutionary rate in the protein interaction network. Science, 296, 750-752.
  65.  Rison,S.G.C. and Thornton,J.M. (2002) Pathway evolution, structurally speaking. Curr. Opin. Struct. Biol., 12, 374-382.
  66. Hecker M, Volker U. Towards a comprehensive understanding of Bacillus subtilis cell physiology by physiological proteomics. Proteomics 2004;4:3727-50.
  67.  Antelmann H, Scharf C, Hecker M. Phosphate starvation inducible proteins of Bacillus subtilis: Proteomics and transcriptional analysis. Journal of Bacteriology 2000;182: 4478-90.
  68.  Bernhardt J, Weibezahn J, Scharf C, et al. Bacillus subtilis during feast and famine: visualization of the overall regulation of protein synthesis during glucose starvation by proteome analysis. Genome Res 2003;13:224-37.
  69.  Eymann C, Mach H, Harwood CR, et al. Phosphate- starvation-inducible proteins in Bacillus subtilis: A two- dimensional gel electrophoresis study. Microbiology-UK1996;142:3163-70.
  70.  Hoper D, Bernhardt J, Hecker M. Salt stress adaptation of Bacillus subtilis: a physiological proteomics approach. Prot eomics 2006;6:1550-62.
  71.  Hecker M, Engelmann S. Proteomics, DNA arrays and the analysis of still unknown regulons and unknown proteins of Bacillus subtilis and pathogenic Gram-positive bacteria. IntJ Med Microbiol 2000;290:123-34.
  72.  Tam le T, Antelmann H, Eymann C, et al. Proteome signatures for stress and starvation in Bacillus subtilis as revealed by a 2-D gel image color coding approach. Prot eomics 2006;6:4565-85.
  73.  Morikawa M, Kagihiro S, Haruki M, et al. Biofilm formation by a Bacillus subtilis strain that produces gamma- polyglutamate. Microbiology-SGM 2006;152 :2801-7.
  74.  Oosthuizen MC, Steyn B, Theron J, et al. Proteomic analysis reveals differential protein expression by Bacillus cereus during biofilm formation. Appl Environ Microbiol2002;68:2770-80.
  75.  Buttner K, Bernhardt J, Scharf C, et al. A comprehensive two-dimensional map of cytosolic proteins of Bacillus of the versatile microbe Rhodopseudomonas palustris subtilis. Electrophoresis 2001;22:2908-35.
  76. Eymann C, Dreisbach A, Albrecht D, etal. A comprehensive proteome map of growing Bacillus subtilis cells. Proteomi cs 2004;4:2849-76.
  77. Wolff S, Antelmann H, Albrecht D, et al. Towards the entire proteome of the model bacterium Bacillus subtilis by gel-based and gel-free approaches. J Chromatogr B Analyt Te c h n o l B i o m e d L i f e S ci 2007;849:129-40.
  78. Lamonica JM, Wagner MA, Eschenbrenner M, et al. Comparative secretome analyses of three Bacillus anthracis strains with variant plasmid contents. Infect Immun 2005;73: 3646-58.
  79. Tjalsma H, Antelmann H, Jongbloed JDH, etal. Proteomics of protein secretion by Bacillus subtilis: Separating the  ‘‘secrets’’ of the secretome. Mi crobiol Mol Biol Rev 2004;68: 207-33.
  80. Antelmann H, Williams RC, Miethke M, et al. The extracellular and cytoplasmic proteomes of the non-virulent Bacillus anthracis strain UM23C1-2. Proteomics 2005;5: 3684-95.
  81. Dassarma S, Berquist BR, Coker JA, et al. Post-genomics of the model haloarchaeon Halobacterium sp. NRC-1. Saline Syst 2006;2:3.
  82. Kennedy SP, Ng WV, Salzberg SL, etal. Understanding the adaptation of Halobacterium species NRC-1 to its extremeenvironment through computational analysis of its genomesequence. Genome Res 2001;11:1641-50.
  83. Joo WA, Kim CW. Proteomics of Halophilic archaea. JChromatogr BAnalytTechnolBiomed LifeSci 2005;815:237-50.
  84. Kim SI, Choi JS, Kahng HY. A proteomics strategy for the analysis of bacterial biodegradation pathways. Omics 2007; 11 :280-94.
  85. Krayl M, Benndorf D, Loffhagen N, etal. Use of proteomics and physiological characteristics to elucidate ecotoxic effects of methyl tert-butyl ether in Pseudomonas putida KT2440. Prot eomics 2003;3:1544-52.
  86. Lupi CG, Colangelo T, Mason CA. Two-dimensional gel electrophoresis analysis of the response of Pseudomonas putida KT2442 to 2-Chlorophenol. Appl EnvironMicrobiol 1995;61: 2863-72.
  87. Reardon KF, Kim KH. Two-dimensional electrophoresis analysis of protein production during growth of Pseudomonas putida F1 on toluene, phenol, and their mixture. Electrophoresis 2002;23:2233-41.
  88. Arevalo-Ferro C, Reil G, Go¨rg A, et al. Biofilm formation of Pseudomonas putida IsoF: the role of quorum sensing as assessed by proteomics. Syst Appl Mi crobi ol 2005;28:87-114.
  89. Sauer K, Camper AK. Characterization of phenotypic changes in Pseudomonas putida in response to surface- associated growth. JBacteriol 2001;183 :6579-89.
  90. Sauer K, Camper AK, Ehrlich GD, et al. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 2002;184:1140-54.
  91. Sauer K, Cullen MC, Rickard AH, et al. Characterization of nutrient-induced dispersion in Pseudomonas aeruginosa PAO1 biofilm. J Bacteriol 2004;186:7312-26.
  92. Kertesz MA, Leisinger T, Cook AM. Proteins induced by sulfate limitation in Escherichia coli, Pseudomonas putida, or Staphylococcus aureus. J Bacteriol 1993;175:1187-90.
  93. VerBerkmoes NC, Shah MB, Lankford PK, et al. Determination and comparison of the baseline proteomes under its major metabolic states. JProteomeRes 2006;5: 287-98.
  94. Elias DA, Monroe ME, Marshall MJ, et al. Global detection and characterization of hypothetical proteins in Shewanella oneidensis MR-1 using LC-MS based proteomics. Proteomics 2005;5:3120-30.
  95. Elias DA, Monroe ME, Smith RD, et al. Confirmation of the expression of a large set of conserved hypothetical proteins in Shewanella oneidensis MR-1. J Microbiol Methods2006;66:223-33.
  96. Fang R, Elias DA, Monroe ME, etal. Differential label-free quantitative proteomic analysis of Shewanella oneidensis cultured under aerobic and suboxic conditions by accurate mass and time tag approach. Mol C el l Proteomics 2006;5: 714-25.
  97. Masselon C, Pasa-Tolic L, Tolic N, et al. Targeted comparative proteomics by liquid chromatography- tandem Fourier ion cyclotron resonance mass spectrometry. Anal Chem 2005;77:400-6.
  98. Mohan D, Pasa-Tolic L, Masselon CD, et al. Integration of electrokinetic-based multidimensional separation/concentration platform with electrospray ionization-Fourier transform ion cyclotron resonance-mass spectrometry for proteome analysis of Shewanella oneidensis. Anal Chem 2003; 75:4432-40.
  99. Romine MF, Elias DA, Monroe ME, et al. Validation of Shewanella oneidensis MR-1 small proteins by AMT tag-based proteome analysis. OMICS 2004;8:239-54.

Downloads

Published

2017-10-31

Issue

Section

Research Articles

How to Cite

[1]
Neerja Shukla, " Bioinformatics in Environmental Bioremediation - A Review, International Journal of Scientific Research in Science, Engineering and Technology(IJSRSET), Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 3, Issue 6, pp.195-205, September-October-2017.