Thermal Evolution of Zinc Aluminate Spinel Nanoparticles Prepared by Coprecipitation Technique

Authors

  • Dr. Shyam Sunder  Department of Applied Science and Humanities, Ch. Devi Lal State Institute of Engineering & Technology Panniwala Mota, Sirsa, India
  • Dr. Wazir Singh  Department of Applied Science and Humanities, Ch. Devi Lal State Institute of Engineering & Technology Panniwala Mota, Sirsa, India

Keywords:

Zinc aluminate, Nanoparticle, Coprecipitation, Structure Characterization

Abstract

Zinc aluminate (ZnAl2O4) has the spinel structure and has been used as a catalyst itself, catalyst support, catalysis and in many catalytic reactions, such as cracking, dehydration, hydrogenation, dehydrogenation reactions, the phosphor host etc. At calcination temperature 700°C (4h), an intermediate phase (γ-Al2O3, a rock salt type structure) of cubic ZnAl2O4 was formed. At calcination temperature 800°C (4h), interfacial interaction between high reactive decomposed products γ-Al2O3 and ZnO and their mixing at molecular level yielded ZnAl2O4 face-centred cubic spinel nanopowder via distribution of cations among the interstitial sites. It is observed that calcination enhances the crystallinity and transmission of the spinel; and also controls dislocation density and amount of stress at the surface and hence yields the strength of the material. A single phase ZnAl2O4 face centred cubic spinel nanopowder (grain size ~ 25 nm) can be obtained by using  co-precipitation method followed by thermal treatment at temperature 900°C for 4h, in air.

References

  1. H. Grabowska, W. Mista, M. Zawadzki and J. Wrzyszcz, Catalytic properties of Fe2O3/ZnAl2O4 system in alkylation reactions of chosen hydroxyarenes with methanol, Polish J. Chem. Technol. 5 (2003) 32-34.
  2. H. Grabowska, M. Zawadzki and L. Syper, Gas phase alkylation of 2-hydroxypyridine with methanol over hydrothermally synthesised zinc aluminate, Appl. Catal. A : Gen. 314 (2006) 226-232.
  3. H. St. C. O’neill, M. james, Wayne, Dollase, Simon and T. Redfern, Temperature dependence of the cation distribution in CuAl2O4 spinel, Eur. J. Mineral. 17 (2005) 581-586.
  4. S. K. Sampath and J. F. Cordaro, Optical Properties of Zinc Aluminate, Zinc Gallate, and Zinc Aluminogallate Spinels, J. Am. Ceram. Soc. 81 (1998) 649-654.
  5. T. El-Nabarawy, A. A. Attia and M. N. Alaya, Effect of thermal treatment on the structural, textural and catalytic properties of the ZnO-Al2O3 system, Mater. Lett. 24 (1995) 319-325.
  6. A. Escardino, J. L. Amoros, A. Gozalbo, M. J. Orts and A. Moreno, Gahnite devitrification in ceramic frits: mechanism and process kinetics, J. Am. Ceram. Soc., 83 (2000) 2938-2944.
  7. J. Wrzyszcz, M. Zawadzki, J. Trawczynsky, H. Grabowska and W. Mista, Some catalytic properties of hydrothermally synthesised zinc aluminate spinel, J. Appl. Catalysis A: General 210 (2001) 263-269.
  8. J. Zhao, Z. Wang, L. Wang, Hua Yang and M. Zhao, The preparation and mechanism studies of porous titania, J. Mater. Chem. Phys. 63 (2000) 9-12.
  9. M. A. Valenzuela, P. Bosch, G. Aguilar-Rios, A. Montoya and I. Schifter, Comparison Between Sol-Gel, Coprecipitation and Wet Mixing Synthesis of ZnAl2O4, J. Sol-Gel Sci. Technol. 8 (1997) 107-110.
  10. A. K. Adak, A. Pathak and P. Pramanik, Characterization of ZnAl2O4 nanocrystals prepared by the polyvinyl alcohol evaporation route, J. Mater. Sci. Lett. 17 (1998) 559-561.
  11. Y. D. Wang, C. Ma, X. Sun and H. Li, Preparation of nanocrystalline metal oxide powders with the surfactant-mediated method, J. Inorg. Chem. Com. 5 (2002) 751-755.
  12. A. E. Giannakas, T. C. Veimakis, A. K. Ladavos, P. N. Trikalitis and P. J. Pomonis, Variation of surface properties and textural features of spinel ZnAl2O4 and perovskite LaMnO3 nanoparticles prepared via CTAB–butanol–octane–nitrate salt microemulsions in the reverse and bicontinuous states, J. Coll. Interface Sci. 259 (2003) 244-253.
  13. H. St. C. O'Neill and A. Navrotsky, Cation distributions and thermodynamic properties of binary spinel solid solutions, American Mineralogist 69 (1984) 733-753.
  14. N. J. Van der Laag, M. D. Snel, P. C. Magusin and G. de With, Structural, elastic, thermophysical and dielectric properties of zinc aluminate (ZnAl2O4), J. Eur. Ceram. Soc. 24 (2004) 2417-2424.
  15. M. Valenzuela, J. Jacobs, P. Bosch, S. Reijne, B. Zapata and H. Brongersma, The influence of the preparation method on the surface structure of ZnAl2O4, Appl. Catal. A: Gen 148 (1997) 315-324.
  16. M. A. Valenzuela, Thesis, ESIQIE-IPN, Me´xico, (1990).
  17. B. Strohmeier and D. Hercules, Surface spectroscopic characterization of the interaction between zinc ions and γ-alumina, J. Catal. 86 (1984) 266-279.
  18. I. Ganesh, B. Srinivas, B. Saha, R. Johnson and Y. Mahajan, Microwave assisted solid state reaction synthesis of MgAl2O4 spinel powders, J. Eur. Ceram. Soc. 24 (2004) 201-207.
  19. M. V. Zdujie´ and O. B. Milosevie´, Mechanochemical treatment of ZnO and Al2O3 powders by ball milling, Mater. Lett. 13 (1992) 125-129.
  20. D. Domanski, G. Urretavizcaya, F. Castro and F. Gennari, Mechanochemical Synthesis of Magnesium Aluminate Spinel Powder at Room Temperature, J. Am. Ceram. Soc. 87 (2004) 2020-2024.
  21. L. B. Kong and J. M. Huang, MgAl2O4 spinel phase derived from oxide mixture activated by a high-energy ball milling process, Mater. Lett. 56 (2002) 238-243.
  22. J. Guo, H. Lou, X. Wang and X. Zheng, Novel synthesis of high surface area MgAl2O4 spinel as catalyst support, Mater. Lett. 58 (2004) 1920-1923.
  23. L. Chen and X. Sun, Porous ZnAl2O4 synthesized by a modified citrate technique, J. Alloys Compd. 376 (2004) 257-261.
  24. Y. Wu, J. Du, K. Leong Choy, L. Hench and J. Guo, Formation of interconnected microstructural ZnAl2O4 films prepared by sol–gel method, J. Thin Solid Film 472 (2005) 150-156.
  25. G. Monro´s and J. Tena, Spinets from gelatine-protected gels, J. Mater. Chem. 5 (1995) 85-90.
  26. J. Wrzyszcz, M.  Zawadzki, A. M. Trzeciak and J. J. Zió?kowski, Rhodium complexes supported on zinc aluminate spinel as catalysts for hydroformylation and hydrogenation: preparation and activity, J. Mol. Catal. A: Chem. 189 (2002) 203-210.
  27. M. Zawadzki, W. Mista and L. Kepinski, Metal-support effects of platinum supported on zinc aluminate, Vacuum 63 (2001) 291-296.
  28. Z. Chen and E. Shi, Synthesis of mono-dispersed ZnAl2O4 powders under hydrothermal conditions, Mater. Lett. 56 (2002) 601-605.
  29. C. C. Yang, S. Y. Chen and S. Y. Cheng, Synthesis and physical characteristics of ZnAl2O4 nanocrystalline and ZnAl2O4/Eu core-shell structure via hydrothermal route, Powder Technol. 148 (2004) 3-6.
  30. G. Aguilar-Rios and M. A. Valenzuela, Metal-support effects and catalytic properties of platinum supported on zinc aluminate, Appl. Catal. A: Gen. 90 (1992) 25-34.
  31. H. Armendariz, A. Guzma´n, A. Toledo, M. Llanos, A. Vazquez and G. Aguilar, In: Morfao J, Faria J, Figueiredo J (eds) Proc. XVII Ibero American symposium of catalysis. Porto, (2000) 105-114.
  32. J. G. Li, T. Ikegami, J. Lee, T. Mori and Y. Yamija, A wet-chemical process yielding reactive magnesium aluminate spinel (MgAl2O4) powder, Ceram. Int. 27 (2001) 481-489.
  33. J. Li, T. Ikegami, J. Lee, T. Mori and Y. Yajima, Synthesis of Mg-Al spinel powder via precipitation using ammonium bicarbonate as the precipitant, J Eur. Ceram. Soc. 21 (2001) 139-148.
  34. Z. Li, S. Zhang and W. E. Lee, Molten salt synthesis of zinc aluminate powder, J. Eur. Ceram. Soc. 27 (2007) 3407-3412.
  35. A. A. Da Silva, A. de Souza Gonçalves and  M. R. Davolos, Characterization of nanosized ZnAl2O4 spinel synthesized by the sol–gel method, J. Sol-Gel Sci. Technol. 49 (2009) 101-105.
  36. F. Davar and M. S. Niasari, Synthesis and characterization of spinel-type zinc aluminate nanoparticles by a modified sol-gel method using new precursor, J. Alloys and Compd. 509 (2011) 2487-2492.
  37. A. D. Ballarini, S. A. Bocanegra, A. A. Castro, S. R. de Miguel and O. A. Scelza, Characterization of ZnAl2O4 Obtained by Different Methods and Used as Catalytic Support of Pt, Catal. Lett.  129 (2009) 293-302.
  38. S. Farhadi and S. Panahandehjoo, Spinel-type zinc aluminate (ZnAl2O4) nanoparticles prepared by the co-precipitation method: A novel, green and recyclable heterogeneous catalyst for the acetylation of amines, alcohols and phenols under solvent-free conditions, Appl. Cata. A: Gen. 382 (2010) 293-302
  39. H. St. C. O'Neill and A. Navrotsky, Simple spinels; crystallographic parameters, cation radii, lattice energies, and cation distribution, American Mineralogist 68 (1983) 181-194.
  40. S. A. Bocanegra, A. D. Ballarini, O. A. Scelza and S. R. de Miguel, The influence of the synthesis routes of MgAl2O4 on its properties and behaviour as support of dehydrogenation catalysts, Mater. Chem. Phys. 111 (2008) 534-541.
  41. J. Bai, J. Liu, C. Li, G. Li and Q. Du, Mixture of fuels approach for solution combustion synthesis of nanoscale MgAl2O4 powders, Adv. Powder Technol. 22 (2011) 72-76.
  42. A. K. M. Akther Hossain, S. T. Mahmud, M. Seki, T. Kawai and H. Tabata, Structural, electrical transport, and magnetic properties of Ni1−xZnxFe2O4, J. Magn. Magn. Mater.  312 (2007) 210-219.
  43. G. Li, L. Li, J. Boerio-Goates and B. F. Woodfield, High Purity Anatase TiO2 Nanocrystals:  Near Room-Temperature Synthesis, Grain Growth Kinetics, and Surface Hydration Chemistry, J. Am. Chem. Soc. 127 (2005) 8659-8666.
  44. C. Thiriet-Dodane, Study of irradiation damages in MgAl2O4 and ZnAl2O4 spinels in the framework of nuclear waste transmutation, Report CEA-R-6010-Comunissariat ´al’ Energie Atomique France (2002).
  45. H. St. C. O'Neill and W. A. Dollase, Crystal Structures and Cation Distributions in Simple Spinels from Powder XRD Structural Refinements: MgCr2O4, ZnCr2O4, Fe3O4 and the Temperature Dependence of the Cation Distribution in ZnAl2O4, Phys. Chem. Minerals 20 (1994) 541-555.
  46. D. Simeone, C. Dodane-Thiriet, D. Gosset, P. Daniel and M. Beauvy, Order–disorder phase transition induced by swift ions in MgAl2O4 and ZnAl2O4 spinels, J. Nucl. Mater. 300 (2002) 151-160.
  47. K. Vivekanandan, S. Selvasekarapandian and P. Kolandaivel, Raman and FT-IR studies of Pb4(NO3)2(PO4)2·2H2O crystal, Mater. Chem. Phys. 39 (1995) 284-289.
  48. M. A. Ulibarri, C. Barriga and J. Cornejo, Kinetics of the thermal dehydration of some layered hydroxycarbonates, Thermochim. Acta 135 (1988) 231-236.
  49. P. Aghamkar, S. Duhan, M. Singh, N. Kishore and P. K. Sen, Effect of thermal annealing on Nd2O3-doped silica powder prepared by the solgel process, J. Sol-Gel Sci. Technol. 46 (2008) 17-22.
  50. J. Parmentier, M. Richard-Plouet and S. Vilminot, Influence of the sol-gel synthesis on the formation of spinel MgAl2O4, Mater. Res. Bull. 33 (1998) 1717-1724.
  51. F. Meyer, R. Hempelmann, S. Mathur and M. Veith, Microemlusion mediated sol-gel synthesis of nano scaled MAl2O4 (M = Co, Ni, Cu) spinels from single-Source Heterobimetallic Alkoxide precursor, J. Mater. Chem. 9 (1999) 1755-1763.
  52. A. K. Adak, S. K. Saha and P. Pramanik, Synthesis and characterization of MgAl2O4 spinel by PVA evaporation technique, J. Mater. Sci. Lett. 16 (1997) 234-235.
  53. F. Li, Y. Zhaoa, Y. Liua, Y. J. Haoa, R. H. Liua and D. Zhaob, Solution combustion synthesis and visible light-induced photocatalytic activity of mixed amorphous and crystalline MgAl2O4 nanopowders, Chem. Eng. J. 173 (2011) 750-759.
  54. A. E. Jimenez-Gonzalez, J. A. S. Urueta and R. Suarez-Parra, Optical and electrical characteristics of aluminum-doped ZnO thin films prepared by solgel technique, J. Cryst. Growth 192 (1998) 430-438.

Downloads

Published

2017-12-30

Issue

Section

Research Articles

How to Cite

[1]
Dr. Shyam Sunder, Dr. Wazir Singh, " Thermal Evolution of Zinc Aluminate Spinel Nanoparticles Prepared by Coprecipitation Technique, International Journal of Scientific Research in Science, Engineering and Technology(IJSRSET), Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 3, Issue 8, pp.1302-1315, November-December-2017.