Thermal Evolution and Structural Study of Cobalt Doped Magnesium Aluminate Spinel Nanoparticles Prepared by Coprecipitation Technique

Authors

  • Dr. Shyam Sunder  Department of Applied Science & Humanities, Ch. Devi Lal State Institute of Engineering & Technology Panniwala Mota, Sirsa, India
  • Dr. Wazir Singh  Department of Applied Science & Humanities, Ch. Devi Lal State Institute of Engineering & Technology Panniwala Mota, Sirsa, India

Keywords:

Magnesium Aluminate, Cobalt, Nanoparticle, Coprecipitation, Structure Characterization.

Abstract

Introduction of  transition metal ( M = Co, Fe, Ni, V, Cr, Mn, Ca, Ba, Sr ) in MgAl2O4 spinel have attracted a lot of interest of researchers as well as technologists due to its excellent absorption, emission and luminescence properties potential use. Among various transition metals, Co: MgAl2O4 can be regarded as a good candidate for such applications to the high mechanical resistance, high thermal and chemical stability, and low temperature sinterability of spinel type oxide materials. The physical properties of Co:MgAl2O4 like chemical strength, catalytic ability, and high temperature resistivity have been further enhanced. Cobalt-magnesium aluminate crystallizes at relatively higher temperature, i.e. above 850°C as compared to un-doped magnesium aluminate that crystallizes around 800°C. A single phase Co:MgAl2O4 face centred cubic ordered-spinel nanopowder (grain size ~ 20 nm) with a good, chemical homogeneity, is obtained by using co-precipitation method followed by thermal treatment at temperature 1000°C for 4h, in air.

References

  1. M. B. Camargo, R. D. Stultz, M. Birnbaum and M. Kokta, Co2+:YSGG saturable absorber Q switch for infrared erbium lasers, Opt. Lett. 20 (1995) 339-341.
  2. I. A. Denisov, M. L. Demchuk, N. V. Kuleshov and K. V. Yumashev, Co2+:LiGa5O8 saturable absorber passive Q switch for 1.34 μm Nd3+:YAlO3 and 1.54 μm Er3+:glass lasers, Appl. Phys. Lett. 77 (2000) 2455-2457.
  3. N. V. Kuleshov, V. P. Mikhailov, V. G. Scherbitsky, P. V. Prokoshin and K. V. Yumashev, Absorption and luminescence of tetrahedral Co2+ ion in MgAl2O4, J. Lumin. 55 (1993) 265-269.
  4. T. Abritta and F. H. Blak, Luminescence study of ZnGa2O4: Co2+, J. Lumin. 48 & 49 (1991) 558-560.
  5. K. V. Yumashev, Saturable absorber Co2+:MgAl2O4 crystal for Q switching of 1.34-µm Nd3+:YAlO3 and 1.54-µm Er3+:glass lasers, Appl. Opt. 38 (1999) 6343-6346.
  6. J. F. Donegan, F. G. Anderson, F. J. Bergin, T. J. Glynn and G. F. Imbusch, Optical and magnetic-circular-dichroism–optically-detected-magnetic-resonance study of the Co2+ ion in LiGa5O8, Phys. Rev. B 45 (1992) 563.
  7. I. S. Ahmed, S. A. Shama, M. M. Moustafa, H. A. Dessouki and A. A. Ali, Synthesis and spectral characterization of Co?Mg1-?A12O4 as new nano-coloring agent of ceramic pigment, Spectrochimica Acta A 74 (2009) 665-672.
  8. A. E. Giannakas, A. K. Ladavos, G. S. Armatas and P. J. Pomonis, Surface properties,  extural features and catalytic performance for NO + CO abatement of spinels MAl2O4 (M = Mg, Co and Zn) developed by reverse and bicontinuous microemulsion method, Appl. Surface Sc. 253 (2007) 6969-6979.
  9. M. Llusar, A. For´es, J. A. Badenes, J. Calbo, M. A. Tena and G. Monr´os, Colour analysis of some cobalt-based blue pigments, J. of Eur. Ceram. Soc., 21 (2001) 1121-1130.
  10. W. Li, J. Li and J. Guo, Synthesis and characterization of nanocrystalline CoAl2O4 spinel powder by low temperature combustion, J. of Eur. Ceram. Soc. 23(2003) 2289-2295
  11. C. Luan, D. Yuan, X. Duan, H. Sun, G. Zhang, S. Guo, Z. Sun, D. Pan, X. Shi and Z. Li, Synthesis and characterization of Co2+:MgAl2O4 nanocrystal, J. Sol-Gel Sci. Techn.  38 (2006) 245-249.
  12. X. L. Duan, C. F. Song, Y.C. Wu, F. P. Yu, X. F. Cheng and D. R. Yuan, Preparation and optical properties of nanoscale MgAl2O4 powders doped with Co2+ ions, J. of Non-Cryst. Solids 354 (2008) 3516-3519.
  13. M. J. Iqbal and B. Kishwar, Electrical properties of MgAl2–2xZrxMxO4 (M = Co, Ni and x = 0.00-0.20) synthesized by coprecipitation technique using urea, Mater. Res. Bull. 44 (2009) 753-758.
  14. M. J. Iqbal, B. Ismail, C. Rentenberger and H. Ipser, Modification of the physical properties of semiconducting MgAl2O4 by doping with a binary mixture of Co and Zn ions, Mater. Res. Bull. 46 (2011) 2271-2277.
  15. J. Ahmad, M. Q. Awan, M. E. Mazhar and M. N. Ashiq, Effect of substitution of Co2+ ions on the structural and electrical properties of nanosized magnesium aluminate, Physica B 406 (2011) 254-258.
  16. L. Torkian, M. Daghighi and Z. Boorboor, Simple and Efficient Rout for Synthesis of Spinel Nanopigments, J. of Chemistry (2013), Article ID 694531, DOI: 10.1155/2013/694531
  17. B. Thomas and M. A. Khadar, Dielectric properties of nano-particles of zinc sulphide, Pramana J. Phys. 45 (1995) 431-438.
  18. G. A. Slack, F. S. Ham and R. M. Chrenko, Optical Absorption of Tetrahedral Fe2+ (3d6) in Cubic ZnS, CdTe, and MgAl2O4, Phys. Rev. 152 (1966) 376.
  19. E. S. Gaffney, Spectra of Tetrahedral Fe2+ in MgAl2O4, Phys. Rev. B 8 (1973) 3484.
  20. A. D. Giusta, S. Carbonin and G. Ottonello, Temperature-dependent disorder in Mg-A1-Fe2+-Fe3+-spinel a natural, Miner. Mag. 60 (1996) 603-616.
  21. T. N. Michail, M. K. Muller and K. Langer, Electronic absorption spectroscopy of natural (Fe2+, Fe3+)-bearing spinels of spinel s.s.-hercynite and gahnite-hercynite solid solutions at different temperatures and high-pressures, Phys. Chem. Miner. 32 (2005) 175-188.
  22. W. Ying, K.X. Yu, Y. Xiong and W. Hui, EPR investigation of the site symmetry of Fe3+ ions in the spinel crystals, Physica B 381 (2006) 260-264.
  23. S. Britto, A. V. Radha, N. Ravishankar and P. V. Kamath, Solution decomposition of the layered double hydroxide (LDH) of Zn with Al, Solid State Sciences 9 (2007) 279-286.
  24. T. Suzuki, H. Nagai and M. Nohara, Melting of antiferromagnetic ordering in spinel oxide CoAl2O4, Journal of Physics, 19 (2007), Article ID145265.
  25. Z. Chen, E. Shi and Y. Zheng, Hydrothermal synthesis of nanosized CoAl2O4 on ZnAl2O4 seed crystallites, J. of Am. Ceram. Soc. 86 (2003) 1058-1060.
  26. A. T. Aruna and A. S. Mukasyan, Combustion synthesis and nanomaterials, Current Opinion in Solid State & Mater. Sc. 12 (2008) 44-50.
  27. R. Ianos and R. Laza, Combustion synthesis, characterization and sintering behavior of magnesium aluminate (MgAl2O4) powders, Mater. Chem. and Phys., 115 (2009) 645-648.
  28. K. V. Yumashev, N. N. Posnov and V. P. Mikhailov, Excited-state absorption and stimulated emission of tetrahedral Co2+ ion in LiGa5O8, Appl Phys B 69 (1999) 41-44.
  29. K. V. Yumashev, I. A. Denisov, N. N. Posnov, P. V. Prokoshin and V. P. Mikhailov, Nonlinear absorption properties of Co2+:MgAl2O4 crystal, Appl. Phys. B 70 (2000) 179-184.
  30. H. V. Keer, M. G. Bodas, A. Bhaduri and A. B. Biswas, Studies on Mn3O4 & MgAl2O4 system, J. Inorg. Nucl. Chem. 37 (1975) 1605-1607.
  31. M. J. Iqbal and S. Farooq, Effect of doping of divalent and trivalent metal ions on the structural and electrical properties of magnesium aluminate, Mater. Sci. Eng. B 136 (2007) 140-147.
  32. K. Vivekanandan, S. Selvasekarapandian and P. Kolandaivel, Raman and FTIR studies of Pb4(NO3)2(PO4)2·2H2O crystal, Mater. Chem. Phys. 39 (1995) 284-289.
  33. M. A. Ulibarri, C. Barriga and J. Cornejo, Kinetics of the thermal dehydration of some layered hydroxycarbonates, Thermochim. Acta 135 (1988) 231-236.
  34. P. Aghamkar, S. Duhan, M. Singh, N. Kishore and P. K. Sen, Effect of thermal annealing on Nd2O3-doped silica powder prepared by the solgel process, J. Sol-Gel Sci. Technol. 46 (2008) 17-22.
  35. J. Parmentier, M. Richard-Plouet and S. Vilminot, Influence of the sol-gel synthesis on the formation of spinel MgAl2O4, Mater. Res. Bull. 33 (1998) 1717-1724.
  36. R. V. Prikhod’ko, M. V. Sychev, I. M. Astrelin, K. Erdmann, A. Mangel and R. A. Van Santen, Synthesis and Structural Transformations of Hydrotalcite-like Materials Mg3Al and Zn3Al, Russ. J. Appl. Chem. 74 (2001) 1621-1626.
  37. F. Meyer, R. Hempelmann, S. Mathur and M. Veith, Microemlusion mediated sol-gel synthesis of nano scaled MAl2O4 (M= Co, Ni, Cu) spinels from single-Source Heterobimetallic Alkoxide precursor, J. Mater. Chem. 9 (1999) 1755-1763.
  38. F. T. Li, Y. Zhaoa, L. Ying, H. J. Ying, L. R. Hong and D. Zhaob, Solution combustion synthesis and visible light-induced photocatalytic activity of mixed amorphous and crystalline MgAl2O4 nanopowders, Chem. Eng. J. 173 (2011) 750-759.
  39. A. I. Gusev and A. A. Rempel, Nanocrystalline Materials, Cambridge International Science Publication Cambridge, (2004).
  40. Jr E. H. Walker, J. W. Owens, M. Etienne and D. Walker, The novel low temperature synthesis of nanocrystalline MgAl2O4 spinel using “gel” precursors, Mater. Res. Bull. 37 (2002) 1041-1050.
  41. L. K. C. de Souza, J. R. Zamian, G. N. da Rocha Filho, Luiz E.B. Soledadeb, Ieda M.G. dos Santosb, Antonio G. Souzab, Thomas Schellerc, Rômulo S. Angélicac and Carlos E. F. da Costaa, Blue pigments based on CoxZn1-xAl2O4 spinels synthesized by the polymeric precursor method, Dyes and Pigments, 81 (2009) 187-192.

Downloads

Published

2018-03-30

Issue

Section

Research Articles

How to Cite

[1]
Dr. Shyam Sunder, Dr. Wazir Singh, " Thermal Evolution and Structural Study of Cobalt Doped Magnesium Aluminate Spinel Nanoparticles Prepared by Coprecipitation Technique, International Journal of Scientific Research in Science, Engineering and Technology(IJSRSET), Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 4, Issue 7, pp.712-723, March-April-2018.