Thermal Evolution of Magnesium Aluminate Spinel Nanoparticles Prepared By Coprecipitation Technique

Authors

  • Dr. Shyam Sunder  Department of Applied Science & Humanities, Ch. Devi Lal State Institute of Engineering & Technology Panniwala Mota, Sirsa, India
  • Dr. Wazir Singh  Department of Applied Science & Humanities, Ch. Devi Lal State Institute of Engineering & Technology Panniwala Mota, Sirsa, India

Keywords:

Magnesium Aluminate, Nanoparticle, Coprecipitation, Structure Characterization

Abstract

MgAl2O4 spinel nanoparticles were prepared by coprecipitation method and followed by thermal heating at temperatures 550°C, 700°C, 850°C and 1000°C for 4 hours, in air. The samples were structurally characterized by TGA-TGT, XRD, FTIR and SEM with EDS. The effects of heat treatment on the structural properties of MgAl2O4 nanoparticles were investigated. The double hydroxide of magnesium and aluminium powders transformed from the amorphous phase, via intermediate cubic oxide (γ-Al2O4, a rock salt type structure) disordered phase, into face-centred cubic MgAl2O4 spinel nanoparticles. In a low calcination temperature range 700-850°C for 4h, MgAl2O4 face-centred cubic disordered spinel nanoparticles with grain size ~ 6 nm is obtained. At 1000°C (4h), disorder-order phase transformation results in a sudden increase in the lattice increased constant. Single phase MgAl2O4 cubic ordered-spinel nanoparticles (grain size ~ 12 nm) with a good chemical homogeneity, narrow particle size distribution are obtained. It is also shown that heat treatment enhances the crystallinity and transmission of the spinel; and also controls dislocation density and amount of stress at the surface and hence yields the strength of the material. Results of FTIR and SEM support XRD studies. The realization of temperature dependent structural properties makes the applicability of the MgAl2O4 nanocrystalline powders more versatile.

References

  1. J-G Li, T Ikegami, J-H Lee, T. Mori, Y. Yajima, A wet-chemical process yielding reactive magnesium aluminate spinel (MgAl2O4) powder, Ceram. Int. 27 (2001) 481-489.
  2. C. Baudin, R. Martinez, P. Pena, High-temperature mechanical behaviour of stoichiometric magnesium spinel, J. Am. Ceram. Soc. 78 (1995) 1857–1862.
  3. M. A. Sainz, A. Caballero, Aluminium oxycarbide formation on carbon-coated Al2O3-MgO spinel, Key. Engg. Mater. 132–136 (1997) 846–847.
  4. J.G. Li, T. Ikegami, J.H. Lee, T. Mori, Fabrication of translucent magnesium aluminium spinel ceramics, J. Am. Ceram. Soc. 83 (2000) 2866–2868.
  5. G. Gusmano, G. Montesperelli, E. Traversa, G. Mattogno, Microstructure and electrical properties of MgAl2O4 thin films for humidity sensing, J. Am. Ceram. Soc. 76 (1993) 743–750.
  6. L. Thome, A. Gentils, J. Jagielski, F. Garrido, T. Thome,  Radiation stability of ceramics: Test cases of zirconia and spinel, Vacuum 81 (2007) 1264–1270.
  7. M.M. Rashad, Z.I. Zaki, H. El-Shall, A novel approach for synthesis of nanocrystalline MgAl2O4 powders by co-precipitation method, Mater. Sci. 44 (2009) 2992–2998.
  8. C.W. Fairhurst, Dental Ceramics: the State of the Science, Adv. Dent. Res. 6 (1992) 78–81.
  9. H. Revero´n, D. Gutie´rrez-Campos, R.M. Rodr?´guez, J.C. Bonassin, Chemical synthesis and thermal evolution of MgAl2O4 spinel precursor prepared from industrial gibbsite and magnesia powder, Mater. Lett. 56 (2002) 97-101.
  10. J. Parmentier, M. Richard-Plouet, S. Vilminot, Influence of the sol-gel synthesis on the formation of spinel MgAl2O4, Mater. Res. Bull. 33 (1998) 1717-1724.
  11. B. Alinejad, H. Sarpoolaky, A. Beitollahi, A. Saberi, S. Afshar, Synthesis and characterization of nanocrystalline MgAl2O4 spinel via sucrose process, Mater. Res. Bull. 43 (2008) 1188-1194.
  12. H.J. Fecht, Formation of nanostructured by mechanical attrition. In: A.S. Edelstein, R.C. Cammaratra (2nd edn), Nanomaterials: Synthesis, Properties and Applications, Taylor & Francis Group LLC, 1996, pp. 89-95
  13. C.T. Wang, L.S. Lin, S.J. Yang, Preparation of MgAl2O4 Spinel Powders via Freeze-Drying of Alkoxide Precursors, J. Am. Ceram. Soc. 75 (1992) 2240-2243.
  14. T. Shiono, K. Shiono, K. Miyamoto, G. Pezzotti,  Synthesis and Characterization of MgAl2O4 Spinel Powder from a Heterogeneous Alkoxide Solution Containing Fine MgO Powder, J. Am. Ceram. Soc. 83 (2000) 235–237.
  15. S.K. Behera, P. Barpanda, S.K. Pratihar, S. Bhattacharyya, Synthesis of magnesium-aluminium spinel from autoignition of citrate-nitrate gel, Mater. Lett. 58 (2004) 1451-1455.
  16. A. Saberi, F. Golestani-Fard, M. Willert-Porada, Z. Negahdari, C. Liebscher, B. Gossler, A novel approach to synthesis of nanosize MgAl2O4 spinel powder through sol–gel citrate technique and subsequent heat treatment, Ceram. Int. 35 (2009) 933–937.
  17. M.F. Zawrah, H. Hamaad, S. Meky, Synthesis and characterization of nano MgAl2O4 spinel by the co-precipitated method, Ceram. Int. 33 (2007) 969-978.
  18. P. Ku´strowski, A. Rafalska-Lasocha, D. Madja, D. Tomaszewska, R. Dziembaj, Preparation and characterization of new Mg–Al–Fe oxide catalyst precursors for dehydrogenation of ethylbenzene in the presence of carbon dioxide, Solid State Ionics 141–142 (2001) 237-242.
  19. S.A. Bocanegra, A.D. Ballarini, O.A. Scelza, S.R. de Miguel, The influence of the synthesis routes of MgAl2O4 on its properties and behaviour as support of dehydrogenation catalysts, Mater. Chem. Phys. 111 (2008) 534–541.
  20. J. Bai, J. Liu, C. Li, G. Li, Q. Du, Mixture of fuels approach for solution combustion synthesis of nanoscale MgAl2O4 powders, Advanced Powder Technology 22 (2011) 72-76.
  21. M. Kobayashi, Y. Usuki, M. Ishii, N. Senguttuvan, K. Tanji, M. Chiba, A. Hark, H. Takano, M. Nikl, P. Bohacek, A. Cecilia, M. Diemoz, A. Vedda, M. Martini, Scintillation characteristics of PbWO4 single crystals doped with Th, Zr, Ce, Sb and Mn ions, Nucl. Instrum. Methods Phys. Res. A 465 (2001) 428-439.
  22. V.S. Vinila, R. Jacob, A. Mony, H.G. Nair, S. Issac, S. Rajan, A.S. Nair, J. Isac, XRD Studies on Nano Crystalline Ceramic Superconductor PbSrCaCuO at Different Treating Temperatures, Crystal Structure Theory and Applications 3 (2014) 1-19.
  23. A.K.M. Akther  Hossain, S.T. Mahmud, M. Seki, T. Kawai, H. Tabata, Structural, electrical transport, and magnetic properties of Ni1−xZnxFe2O4, J. Magn. Magn. Mater.  312 (2007) 210-219.
  24. G. Li, L. Li, J. Boerio-Goates, B.F. Woodfield, High Purity Anatase TiO2 Nanocrystals:  Near Room-Temperature Synthesis, Grain Growth Kinetics, and Surface Hydration Chemistry, J. Am. Chem. Soc. 127 (2005) 8659-8666.
  25. D. Simeone, C. Dodane-Thiriet, D. Gosset, P. Daniel, M. Beauvy, Order–disorder phase transition induced by swift ions in MgAl2O4 and ZnAl2O4 spinels, J. Nucl. Mater. 300 (2002) 151-160.
  26. K.E. Sickafus, Comment on ‘Order-disorder phase transition induced by swift ions in MgAl2O4 and ZnAl2O4 spinels’ by D. Simeone et al., J. Nucl. Mater. 300 (2002) 151-160, J. Nucl. Mater. 312 (2003) 111-123.
  27. A.I. Gusev, A.A. Rempel, Nanocrystalline Materials. Cambridge International Science Publication Cambridge, 2004.
  28. A.K. Adak, S.K. Saha, P. Pramanik, Synthesis and characterization of MgAl2O4 spinel by PVA evaporation technique, J. Mater. Sci. Lett. 16 (1997) 234-235.
  29. H. Toroya, M. Yoshimura, Somiy, Calibration Curve for Quantitative Analysis of the Monoclinic-Tetragonal ZrO2 System by X-Ray Diffraction, J. Am. Ceram. Soc. 67 (1984) C119–C121.
  30. P. Barpanda, S.K. Behera, P.K. Gupta, S.K. Pratihar, S. Bhattacharya, Chemically induced order disorder transition in magnesium aluminium spinel, J. Eur. Ceram. Soc. 26 (2006) 2603–2609.
  31. C. Suryanarayana, C.C. Koch, Nanocrystalline materials–Current research and future directions, Hyperfine Interaction 130 (2000) 5-44.
  32. K. Vivekanandan, S. Selvasekarapandian, P. Kolandaivel, Raman and FT-IR studies of Pb4(NO3)2(PO4)2·2H2O crystal, Mater. Chem. Phys. 39 (1995) 284-289.
  33. M.A. Ulibarri, C. Barriga, J. Cornejo, Kinetics of the thermal dehydration of some layered hydroxycarbonates, Thermochim. Acta 135 (1988) 231–236.
  34. P. Aghamkar, S. Duhan, M. Singh, N. Kishore, P.K. Sen, Effect of thermal annealing on Nd2O3-doped silica powder prepared by the solgel process, J. Sol-Gel Sci. Technol. 46 (2008)17–22.
  35. R.V. Prikhod’ko, M.V. Sychev, I.M. Astrelin, K. Erdmann, A. Mangel, R.A. Van Santen, Synthesis and Structural Transformations of Hydrotalcite-like Materials Mg3Al and Zn3Al, Russ. J. Appl. Chem. 74 (2001) 1621-1626.
  36. F. Meyer, R. Hempelmann, S. Mathur, M. Veith, Microemlusion mediated sol-gel synthesis of nano scaled MAl2O4 (M= Co, Ni, Cu) spinels from single-Source Heterobimetallic Alkoxide precursor, J. Mater. Chem. 9 (1999) 1755-1763.
  37. Fa-tang Li, Ye Zhaoa, Ying Liua, Ying-juan Haoa, Rui-hong Liua, Di-shun Zhaob, Solution combustion synthesis and visible light-induced photocatalytic activity of mixed amorphous and crystalline MgAl2O4 nanopowders, Chem. Eng. J. 173 (2011) 750–759.
  38. Jr E.H. Walker, J.W. Owens, M. Etienne, D. Walker, The novel low temperature synthesis of nanocrystalline MgAl2O4 spinel using “gel” precursors, Mater. Res. Bull. 37 (2002) 1041-1050.

Downloads

Published

2018-01-30

Issue

Section

Research Articles

How to Cite

[1]
Dr. Shyam Sunder, Dr. Wazir Singh, " Thermal Evolution of Magnesium Aluminate Spinel Nanoparticles Prepared By Coprecipitation Technique, International Journal of Scientific Research in Science, Engineering and Technology(IJSRSET), Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 4, Issue 6, pp.294-305, January-February-2018.