Estimating Poverty Indicator with Small Area Estimation in Simulation Study of Different Population and Sample Size
Keywords:
direct estimation, empirical Bayes, fast empirical Bayes, poverty indicator, small area estimationAbstract
The estimation of poverty indicators of the sub-district or village level can be calculated by small area estimation using direct estimation, empirical Bayes and fast empirical Bayes method. These three methods are evaluated through a simulation study. The usual simulation uses the same population size and sample for each area. This study compares three SAE methods with four population size scenarios with different samples for each area. Based on Bias and MSE values, direct predictions are well used in small populations. The EB method is capable of generating estimation with small bias and MSEs for all scenarios but take longer computation time. While the FEB method produces estimations with bias and MSE are small in large population conditions with faster computational time
References
- [BPS] Badan Pusat Statistik. 2014. Perhitungan dan analisis kemiskinan makro Indonesia tahun 2014. Jakarta (ID): BPS.
- Ferretti C, Molina I. 2012.Fast EB for estimating complex poverty indicators in large populations. Journal of The Indian Society of Agricultural Statistics. 66(1): 105-120.
- Molina I, Rao JNK. 2010. Small area estimation of poverty indicators. The Canadian Journal of Statistics. 38(3): 369-385.
- Rao JNK. 2003. Small Area Estimation. New York (US): John Wiley and Sons.
- Sadik K. 2009. Metodeprediksitak-bias linier terbaikdanbayesberhirarkiuntukpendugaan area kecilberdasarkan model state space disertasi]. Bogor (ID): InstitutPertanian Bogor.
- Vinny. 2017. PengembanganMetodePendugaan Area Kecil MelaluiPenggunaanInformasiGerombolPada Area Yang TidakTerdapatContoh (StudiKasusIndikatorKemiskinan di Wilayah Bogor) tesis]. Bogor (ID): InstitutPertanian Bogor.
Downloads
Published
Issue
Section
License
Copyright (c) IJSRSET

This work is licensed under a Creative Commons Attribution 4.0 International License.